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Abstract. If the Poisson integral of the unit disc is replaced by its square root, it is known
that normalized Poisson integrals of Lp and weak Lp boundary functions converge along
approach regions wider than the ordinary nontangential cones, as proved by Rönning and
the author, respectively. In this paper we characterize the approach regions for boundary
functions in two general classes of Orlicz spaces. The first of these classes contains spaces LΦ

having the property L∞ ⊂ LΦ ⊂ Lp, 1 6 p < ∞. The second contains spaces LΦ that
resemble Lp spaces.
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1. Introduction

Let P (z, ϕ) be the standard Poisson kernel in the unit disc U ,

P (z, ϕ) =
1
2π

· 1− |z|2
|z − eiϕ|2

where z ∈ U and ϕ ∈ ∂U =
� ∼= (−π, π].

Let
Pf(z) =

∫
� P (z, ϕ)f(ϕ) dϕ,

the Poisson integral of f ∈ C(
�
). Then Pf(z) → f(θ) as z → eiθ, as was first shown

by Schwarz [12].
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For any function h : � + → � + let

(1) Ah(θ) = {z ∈ U : |arg z − θ| 6 h(1− |z|)}.

We refer to Ah(θ) as the (natural) approach region determined by h at θ ∈
�
. Note

that, even though we use the word “region”, we have not imposed any openness
assumptions on Ah(θ). It is natural, but not necessary, to think of h as an increasing
and continuous function, with h(t) → 0 as t→ 0. Later, we shall let z ∈ U approach
the boundary (z → eiθ) within Ah(θ). We may think of the function h as a parameter
that measures the maximal admissible tangency a curve along which z approaches
the boundary may have.

If we only assume that f ∈ L1(
�

), the convergence properties are different than
in the case of continuous functions. Fatou [7] proved in 1906 that if h(t) = αt,
α > 0, then Pf(z) → f(θ) a.e. as z → eiθ and z ∈ Ah(θ), i.e. the convergence is
non-tangential. To prove this, one establishes a weak type (1, 1) estimate for the
corresponding maximal operator. The result then follows via standard techniques.

Littlewood [8] proved that the theorem, in a certain sense, is best possible:

Theorem (Littlewood, [8]). Let γ0 ⊂ U ∪ {1} be a simple closed curve, having a
common tangent with the circle at the point 1. Let γθ be the rotation of γ0 by the

angle θ. Then there exists a bounded harmonic function f in U with the property

that, for a.e. θ ∈ � , the limit of f along γθ does not exist.
Littlewood’s result has been generalized, in different directions. For example,

given a curve γ0 ⊂ U ∪ {1} that touches � tangentially at the point 1, Aikawa [1]
constructs a bounded harmonic function f in U such that, for any point θ ∈ � , the
limit lim

z→eiθ
f(z) does not exist along the curve γθ, where γθ is the rotation of γ0 by

the angle θ.

It is worth noting that one could consider more general approach regions, not
necessarily given in the form (1). This is done, for instance, in [9] by Nagel and

Stein. The essence of that paper is to prove that, whereas tangential curves are not
good for convergence (Littlewood), tangential sequences may be.

For a more complete treatise on the theorems and the general theory mentioned
so far, see [6].

For z = x+ iy let

Lz =
1
4
(1− |z|2)2(∂2

x + ∂2
y),

the hyperbolic Laplacian. Then

u(z) = Pλf(z) =
∫
� P (z, ϕ)λ+1/2f(ϕ) dϕ,
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for λ > 0, defines a solution of the equation

Lzu = (λ2 − 1
4 )u.

In connection with representation theory of the group SL(2, � ), one uses the
powers P (z, ϕ)iα+1/2, α ∈ � , of the Poisson kernel.
We shall use the notation f . g, for positive functions f and g, if there exists a

constant C > 0 such that f 6 Cg at all points, and we write f ∼ g if f . g and
g . f .

Since
P01(z) ∼ (1− |z|)1/2 log

1
1− |z| ,

as |z| → 1, one sees that the one has to normalize P0 in order to get boundary

convergence (P01(z) does not converge to 1). Thus, the operator that we shall be
concerned with is defined by

P0f(z) =
P0f(z)
P01(z)

.

For λ > 0 one has that
Pλ1(z) ∼ (1− |z|)1/2−λ,

and if one considers normalized λ-Poisson integrals for λ > 0, i.e. Pλf(z) =
Pλf(z)/Pλ1(z), the convergence properties are the same as for the ordinary Poisson
integral. This is because the kernels essentially behave in the same way.

We summarise the known convergence results in the following table. It should be
read from left to right as “For all f ∈ [Function space] one has for almost all θ ∈ �

that P0f(z) → f(θ) as z → eiθ and z ∈ Ah(θ) [Conv.] [Ah(θ) determined by].” In
the table it is assumed that 1 6 p <∞ and 1 < p1 <∞, and

σk = sup
2−2k 6s62−2k−1

h(s)
s(log 1/s)p1

.

By Lp,∞ we mean weak Lp (standard notation).
A few comments are in order. First of all, the convergence for continuous functions

is at all points, not only almost every point. This is because P0 is a convolution
operator with a kernel which behaves like an approximate identity in

�
.

The results for Lp(
�

), for finite values of p, are proved via weak type (p, p) esti-
mates for the corresponding maximal operators. To do this, in [11], Rönning uses a

quite technical machinery. In [5], a significantly easier proof is given (relying basi-
cally only on Hölder’s inequality), and the sharpness of the result is proved (without
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Function space Conv. Ah(θ) determined by Ref.

C(
�
) if h(t) = +∞ –

L1(
�

) iff lim sup
t→0

h(t)
t log 1/t

<∞ [13]

Lp(
�

) iff lim sup
t→0

h(t)
t(log 1/t)p

<∞ [11], [5]

L∞(
�
) iff lim sup

t→0

h(t)
t1−ε

= 0 ∀ε > 0 [14]

Lp1,∞(
�

) iff
∑
k>0

σk <∞ [3]

the assumption that h should be monotone, which Rönning assumed). Actually, it
is proved that M0f 6 (MHLf

p)1/p, where

M0f(θ) = sup
|arg z−θ|<h(1−|z|)

|z|>1/2

|P0f(z)|,

the relevant maximal operator, and MHL is the classical Hardy-Littlewood maximal
operator.

In Lp(
�
) one concludes the proofs with a standard approximation argument with

continuous functions, for which convergence is known to hold. However, this is not
an option in the case of boundary functions in L∞(

�
), since the continuous functions

are not dense in this space. The result by Sjögren, [14], is therefore deeper in its
nature. It relies on a theorem of Bellow and Jones, [2], “A Banach principle for L∞”.

Basically, the Bellow-Jones result for L∞ states that a.e. convergence is equivalent
to continuity of the maximal operator at 0, when restricted to the unit ball in L∞,
in the topology of convergence in measure. Actually, what Sjögren had to show was
that for all ε > 0 and all κ > 0 there exists δ > 0 such that

‖f‖1 < δ ⇒ |{θ ∈ � : M0f(θ) > ε}| < κ,

for any function f in the unit ball of L∞, whereM0 is the maximal operator defined

above. (It is easy to see that, in the unit ball in L∞, the topology of convergence in
measure is equivalent with the L1-topology.)

In [3], the author used a method similar to Sjögren’s to determine the approach

regions for boundary functions in Lp,∞ (weak Lp), 1 < p <∞. It relied on a Banach
principle for Lp,∞, proved in the paper.
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The author has also, with essential help and an original idea from professor Mizuta,

Hiroshima University, established a result for the corresponding “square root oper-
ator” in the half space � n+1

+ with boundary functions f ∈ Lp(G), where G ⊂ � n is
nonempty, bounded and open. For this result, see [4].

To understand better the significant difference in approach regions for Lp and
L∞ we consider, in this paper, two distinct classes of Orlicz spaces LΦ. Firstly,

Orlicz spaces where log Φ grows at least as some positive power, thus possessing the
property that L∞ ⊂ LΦ ⊂ Lp for any p > 1. Secondly, Orlicz spaces that resemble
Lp spaces. As a special case, with Φ(x) = xp, LΦ = Lp. To make this more precise,
we shall now define these two classes of functions, ∇ and ∆, from which we then
define the corresponding Orlicz spaces:

Definition 1. Let Φ: [0,∞) → [0,∞) be a strictly increasing C2-function with

Φ(0) = 0 and define M(x) = log Φ′(x). Then, Φ is said to satisfy the ∇ condition,
denoted Φ ∈ ∇, if the following conditions hold:
(i) M ′(x) > 0 for all x ∈ (0,∞).
(ii) M((0,∞)) = � .
(iii) lim inf

x→∞
M(2x)/M(x) = m0 > 1 (possibly m0 = ∞).

We note immediately that the conditions in Definition 1 imply that, for sufficiently
small α > 0, one has

(2) lim
x→∞

M(x)
xα

= ∞.

The space LΦ, Φ ∈ ∇, that we shall define below (Definition 3) does not depend
on the behaviour of Φ close to 0. Thus, without loss of generality, we impose one
further convenient assumption on M :

(3)
∫ 1

0

xM ′(x) dx <∞.

Definition 2. A function Φ: [0,∞) → [0,∞) is said to satisfy the ∆ condition,
denoted Φ ∈ ∆, if the following conditions hold:
(i) Φ ∈ C2(0,∞) with Φ′′(x) > 0 for x > 0.
(ii) lim

x→0
Φ(x) = lim

x→0
Φ′(x) = 0.

(iii) xϕ′(x)/ϕ(x) ∼ 1, uniformly for x > x0 for some x0 > 0, where ϕ(x) = Φ′(x).

Definition 3. For Φ ∈ ∇ we define

LΦ = {f ∈ L1(
�
) : Φ(c|f |) ∈ L1(

�
) for some c > 0}.
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Definition 4. Let Φ ∈ ∆. For f ∈ L1(
�

) define ‖f‖Φ = ‖Φ(|f |)‖1 and let

LΦ = {f ∈ L1(
�

) : ‖f‖Φ <∞}.

It is readily checked that LΦ is a vector space, regardless of if Φ ∈ ∇ or Φ ∈ ∆.
For further reading on Orlicz spaces, we refer to [10].

In this paper we shall prove the following two theorems:

Theorem 1. Let Φ ∈ ∇ be given. Then, the following conditions are equivalent
for any function h : � + → � + :

(i) For any f ∈ LΦ one has for almost all θ ∈ � that P0f(z) → f(θ) a.e. as z → eiθ

and z ∈ Ah(θ).
(ii) M

( log 1/t
log g(t)

)
/ log g(t) →∞ as t→∞ for all C > 0, where g(t) = h(t)/t.

Theorem 2. Let Φ ∈ ∆ be given. Then the following conditions are equivalent
for any function h : � + → � + :

(i) For any f ∈ LΦ one has for almost all θ ∈ � that P0f(z) → f(θ) a.e. as z → eiθ

and z ∈ Ah(θ).
(ii) lim sup

t→0
g(t)/Φ(log 1/t) <∞, where g(t) = h(t)/t.

We conclude this section with some examples of Φ ∈ ∇ and Φ ∈ ∆, indicating
what condition (ii) in the theorems reduces to in these cases.

Let L1(x) = logx and, for n > 2, let Ln(x) = Ln−1(logx).
The convergence condition (ii) in Theorem 1 and Theorem 2 only takes large

arguments of M and Φ into account, respectively. Thus, it is clearly sufficient to
know the order of magnitude of M(x) and Φ(x) as x→∞.
Example 1 (Φ ∈ ∇). Our first example is M(x) ∼ xp, p > 0, as x → ∞. This

example covers all spaces LΦ, where Φ(x) ∼ xα exp [xp] as x→∞, α ∈ � and p > 0.
Since M(x) ∼ xp as x → ∞, we may (in this context) assume that M(x) = xp.

We now have

M
(
C

log 1/t
log g(t)

)/
log g(t) = Cp

(
(log 1/t)p/(p+1)

log g(t)

)p+1

.

Clearly, this expression tends to ∞ (for all C > 0) if and only if

log g(t)
(log 1/t)p/(p+1)

→ 0,

as t→ 0. Note that the convergence is independent of α > 0.
Obviously, there is no optimal approach region. Specific examples of admissible

functions h determining Ah(θ) are h(t) = t exp [C(log 1/t)s(Ln(1/t))s
′
], for 0 < s <

p/(p+ 1), n > 2 and arbitrary C, s′ > 0.
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Example 2 (Φ ∈ ∇). In this example we assume that M(x) ∼ exp [xp], p > 0, as
x → ∞. As above, we may assume that we have equality, i.e. M(x) = exp [xp]. We
get

M
(
C

log 1/t
log g(t)

)/
log g(t) = exp

[(
C

log 1/t
log g(t)

)p
− L2(g(t))

]

= exp
[
L2(g(t))

((
C

log 1/t
L2(g(t))1/p log g(t)

)p
− 1
)]
.

Clearly this expression tends to ∞ as t→ 0, for all C > 0, if and only if

log 1/t
L2(g(t))1/p log g(t)

→∞

as t→ 0.
Again, there is no optimal approach region. Specific examples of admissible func-

tions h determining Ah(θ) are

h(t) = t exp
[ log 1/t
Ln(1/t)αL2(1/t)1/p

]
,

where α ∈ (0, 1) if n = 1 and α > 0 if n > 2.

Example 3 (Φ ∈ ∆). The natural example here is Φ(x) = xp, p > 1, which obvi-
ously gives LΦ = Lp. It is easily seen that we, in this case, recover the convergence
result by Rönning. More generally, if Φ ∈ ∆, we have convergence along approach re-
gions specified by h(t) = CtΦ(log 1/t), but not along any essentially wider approach
regions. This should be compared to the result in Theorem 1, where in general no

largest possible approach region exists.

2. Preliminaries, Φ ∈ ∇

In this section we assume that Φ ∈ ∇, without further notice. For c, β > 0 define
ϕβ,c(x) = β exp[M(cx)]. Furthermore, let
• Φβ,c(x) =

∫ x
0 ϕβ,c(y) dy.

• ψβ,c(y) = (ϕβ,c)−1(y).
• Ψβ,c(y) =

∫ y
0 ψβ,c(t) dt.

For abbreviation, if β = c = 1, we write ϕ, Φ, ψ and Ψ instead of ϕ1,1, Φ1,1, ψ1,1

and Ψ1,1, respectively.
Note that, if β = c = 1, this definition is in agreement with Definition 1, where

M(x) = log Φ′(x). The pair (Φβ,c,Ψβ,c) is referred to as a complementary pair.
We shall make use of the following standard inequality:
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Proposition (Young’s inequality). Let (Φβ,c,Ψβ,c) be a complementary pair.
Then

xy 6 Φβ,c(x) + Ψβ,c(y),

for any positive numbers x and y. Equality holds if and only if x = ψβ,c(y).

Lemma 1. If f ∈ LΦ then ‖f‖1 6 2πΦ−1
1,c(‖Φ1,c(|f |)‖1/(2π)).

�������
	
. Φ is convex, so the result is just a restatement of Jensen’s inequality.

�

For the concluding approximation argument, in the proof of Theorem 1, we need

Lemma 2. Assume that f ∈ LΦ(
�

), i.e. assume that ‖Φ1,c(|f |)‖1 < ∞ for some
c > 0. Then, for ε > 0 given, there exists g ∈ L∞(

�
) such that ‖Φ1,c(|f − g|)‖1 < ε.

�������
	
. Let g(x) = f(x)χ{|f |<R} for sufficiently large R > 0. �

Next, we prove an elementary lemma:

Lemma 3. Assume that {ak} and {bk} are two sequences of positive numbers,
such that lim

k→∞
ak = 0 and such that

lim
k→∞

ak
bk

= ∞.

Then there exists subsequences {aki} and {bki} and a sequence {Ni} ⊂ � such that

∑

i

Niaki = ∞, and
∑

i

Nibki <∞.

�������
	
. For i ∈ � choose ki ↑ ∞ such that aki/bki > 2i and aki < 1. Now,

chooseNi ∈ � such that 1 6 Niaki < 2. Then
∑
i

Niaki >
∑
i

1 and
∑
i

Nibki .
∑
i

2−i.

�

The following proposition is a key observation, solving an extremal problem.
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Proposition 1. Let a, c and ε be given positive numbers. Let g ∈ LΨ be a nonneg-

ative function, not identically 0, supported in [−a, a]. Then there exists a nonnegative
and measurable function f̃ , supported in [−a, a] and satisfying

∫ � f̃(ϕ)g(ϕ) dϕ = ε,

such that, for all nonnegative functions f such that
∫ � f(ϕ)g(ϕ) dϕ > ε, one has that

∫

|ϕ|<a
Φ1,c(f(ϕ)) dϕ >

∫

|ϕ|<a
Φ1,c(f̃(ϕ)) dϕ.

Moreover, f̃(ϕ) = ψβ,c(g(ϕ)), where β > 0 is the unique number determined by∫
|ϕ|<a ψβ,c(g(ϕ))g(ϕ) dϕ = ε.

�������
	
. By the Young inequality we have, for any β > 0, that

∫

|ϕ|<a
f(ϕ)g(ϕ) dϕ 6

∫

|ϕ|<a
Φβ,c(f(ϕ)) dϕ+

∫

|ϕ|<a
Ψβ,c(g(ϕ)) dϕ,

where equality holds if and only if f(ϕ) = f̃(ϕ) = ψβ,c(g(ϕ)). Choose β > 0
(uniquely) such that ∫

|ϕ|<a
f̃(ϕ)g(ϕ) dϕ = ε.

For an arbitrary nonnegative function f with
∫ � f(ϕ)g(ϕ) dϕ > ε, we then have

∫

|ϕ|<a
Φβ,c(f(ϕ)) dϕ >

∫

|ϕ|<a
f(ϕ)g(ϕ) dϕ−

∫

|ϕ|<a
Ψβ,c(g(ϕ)) dϕ

> ε−
∫

|ϕ|<a
Ψβ,c(g(ϕ)) dϕ

=
∫

|ϕ|<a
Φβ,c(f̃(ϕ)) dϕ,

which is equivalent to

∫

|ϕ|<a
Φ1,c(f(ϕ)) dϕ >

∫

|ϕ|<a
Φ1,c(f̃(ϕ)) dϕ,

as desired. �
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3. The proof of Theorem 1

Throughout this section we assume that g(t) = h(t)/t→∞ as t→ 0, without loss
of generality.

Before turning to the proofs of the two implications, we introduce a suitable no-
tation. If we write t = 1− |z| and z = (1− t)eiθ, then

P0f(z) = Rt ∗ f(θ),

where the convolution is taken in
�
and

Rt(θ) =
1√
2π

√
t(2− t)

|(1− t)eiθ − 1|
1

P01(1− t)
.

Here θ ∈ � ∼= (−π, π], as before. We are interested only in small values of t, so we
might as well assume from now on that t < 1

2 . Since P01(1 − t) ∼
√
t log 1/t, the

order of magnitude of Rt is given by

Rt(θ) ∼ Qt(θ) =
1

log 1/t
· 1
t+ |θ| .

Now let τη denote the translation τηf(θ) = f(θ − η). Then the convergence condi-
tion (i) in Theorem 1 above means

lim
t→0

|η|<h(t)

τηRt ∗ f(θ) = f(θ).

The relevant maximal operator for our problem is

M0f(θ) = sup
|arg z−θ|<h(1−|z|)

|z|>1/2

|P0f(z)|.

Notice that M0f(θ) is dominated by a constant times

(4) Mf(θ) = sup
|η|<h(t)
t<1/2

τηQt ∗ |f |(θ).

3.1. Proof of (ii) ⇒ (i)
�������
	

. Let f ∈ LΦ and ε > 0 be given.
We may assume that f > 0, without loss of generality. Write

Qt(θ) = Qt(θ)χ{|θ|62h(t)} +Qt(θ)χ{|θ|>2h(t)} = Q1
t (θ) +Q2

t (θ).
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By letting

Mjf(θ) = sup
|η|<h(t)
0<t<1/2

τηQ
j
t ∗ f(θ),

j ∈ {1, 2}, we get Mf 6 M1f +M2f and hence

{Mf > 2ε} ⊂ {M1f > ε} ∪ {M2f > ε}.

To deal with M2f , we observe that when |η| < h(t)

τηQ
2
t (θ) =

1
log 1/t

· 1
t+ |θ − η|χ{|θ−η|>2h(t)} 6 2

log 1/t
· 1
t+ |θ| .

The last expression is a decreasing function of |θ|, whose integral in � is bounded
uniformly in t. It is well known that convolution by such a function is controlled

by the Hardy-Littlewood maximal operator MHL, so that M2f 6 CMHLf . Since
MHL is of weak type (1, 1), we obtain

|{M2f > ε}| 6 Cε−1‖f‖1.

By invoking Lemma 1, we get

(5) |{M2f > ε}| 6
C · Φ−1

1,c(‖Φ1,c(f)‖1/(2π))
ε

.

Let us now turn our attention toM1. Assume thatM1f(θ) > ε. Then there exists

t ∈ (0, 1
2 ) and |η| < h(t) such that

1
log 1/t

∫

|ϕ|<2h(t)

f(θ − η − ϕ)
t+ |ϕ| dϕ > ε.

It follows then, by Proposition 1, that

(6)
∫

|ϕ|<2h(t)

Φ1,c(f(θ − η − ϕ)) dϕ >
∫

|ϕ|<2h(t)

Φ1,c

(
ψβ,c

( 1
t+ |ϕ|

))
dϕ,

where β is chosen such that

(7)
∫

|ϕ|<2h(t)

ψβ,c

( 1
t+ |ϕ|

)
· 1
t+ |ϕ| dϕ = ε log

1
t
.
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We shall now use (7) to get an estimate of the size of β. We have

ε log
1
t

=
∫

|ϕ|<2h(t)

ψβ,c

( 1
t+ |ϕ|

)
· 1
t+ |ϕ| dϕ

= 2
∫ 1/t

1/(t+2h(t))

ψβ,c(y)
y

dy

6 2ψβ,c(1/t) · log (1 + 2g(t))

6 Cψβ,c(1/t) · log g(t),

so that

(8)
1
β

> tϕ1,c

(
Cε

log 1/t
log g(t)

)
.

Now, let B(s) = Φ1,c(ψ1,c(s)). Then it is clear that B is increasing and lim
s→∞

B(s) =

∞. For convenience, let It denote the interval [−2h(t), 2h(t)]. We have

∥∥∥Φ1,c

(
ψβ,c

( 1
t+ |ϕ|

))∥∥∥
L1(It)

=
∫

It

B
( 1
β(t+ |ϕ|)

)
dϕ

> 4h(t)B
( 1
β(t+ 2h(t))

)

> 4h(t)B
( 1

3βh(t)

)
.

We may now invoke (8) to get

∥∥∥Φ1,c

(
ψβ,c

( 1
t+ |ϕ|

))∥∥∥
L1(It)

> 4h(t)B

(
tϕ1,c

(
Cε

log 1/t
log g(t)

)/
3h(t)

)

> 4h(t)B
(
C exp

[
M
(
Cε

log 1/t
log g(t)

)
− log g(t)

])

> C(ε)h(t),

by condition (ii) in Theorem 1. Thus, we have

h(t)
‖Φ1,c(ψβ,c((t+ |ϕ|)−1)))‖L1(It)

6 C,

which gives, by (6),

h(t) 6 C

∫

It

Φ1,c(f̃(ϕ)) dϕ 6 C

∫

It

Φ1,c(f(θ − η − ϕ)) dϕ.
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To sum up, we have shown that for each θ with M1f(θ) > ε there exists a t such

that the interval J(θ) = [θ − 3h(t), θ + 3h(t)] has the property

∫

J(θ)

Φ1,c(f(ϕ)) dϕ > Ch(t).

A covering argument now yields a sequence (θi, ti) with M1f(θi) > ε such that the

corresponding intervals J(θi) are disjoint, and such that the union of the scaled
intervals J ′(θi) = [θi − 10h(ti), θi + 10h(ti)] covers the set {M1f > ε}. In particular
we have

‖Φ1,c(f)‖1 >
∑

i

∫

J(θi)

Φ1,c(f(ϕ)) dϕ > C
∑

i

h(ti).

Thus,

|{M1f > ε}| 6
∑

i

|J ′(θi)| 6 C
∑

i

h(ti) 6 C‖Φ1,c(f)‖1.

It follows, from the above estimate and from (5), that

|{Mf > 2ε}| 6 C1(ε)‖Φ1,c(f)‖1 + C2(ε)Φ−1
1,c(‖Φ1,c(f)‖1/(2π)).

For each ε > 0 the right-hand side tends to 0 with ‖Φ1,c(f)‖1. By Lemma 2 we are
done (approximation by bounded functions). �

3.2. Proof of (i) ⇒ (ii)
�������
	

. Assume that condition (ii) in Theorem 1 is false. We show that this

implies that (i) is false too.
Assume that, for some C0 > 0,

lim inf
t→0

M
(
C0

log 1/t
log g(t)

)/
log g(t) = A <∞.

The claim now is that we may assume that

(9) lim inf
t→0

M
(
C0

log 1/t
log g(t)

)/
log g(t) = A ∈

(1
4
,
1
2

)
.

To see that we may assume that A < 1
2 we note that, by the conditions we have

on M , there is a number m ∈ (0, 1) such that M(x) 6 mM(2x) for sufficiently
large x. Thus we have

lim inf
t→0

M
(
2−NC0

log 1/t
log g(t)

)/
log g(t) 6 mN lim inf

t→0
M
(
C0

log 1/t
log g(t)

)/
log g(t) = mNA.

357



By choosing N = N(A) large enough, we can make mNA < 1
2 . Thus, we can assume

from now on that A < 1
2 .

To see that we may assume that A > 1
4 , note that if for some t > 0 we have

M
(
C0

log 1/t
log g(t)

)/
log g(t) 6 1

4
,

then we can clearly make g(t) smaller so that the quotient above is greater than 1
4 ,

say, and still smaller than 1
2 . Then the corresponding approach region for the new

function g (at any θ ∈ �
) is a subset of the original one, and it suffices to disprove

convergence in the new one.

Pick a decreasing sequence {ti}∞1 , converging to 0, such that

(10) M
(
C0

log 1/ti
log g(ti)

)/
log g(ti) → A,

as i→∞. For convenience, let si = C0
log 1/ti
log g(ti)

. We may assume that {ti}∞1 is chosen
such that

(11)
1
4

6 M(si)
log g(ti)

6 1
2
,

for all i ∈ � .
Let

fi(ϕ) = ψβi,1

( 1
ti + |ϕ|

)
· χ{|ϕ|<h(ti)},

where β−1
i = tiϕ(si).

Note that Φ(x) 6 x · ϕ(x), so that Φ(ψβ,1(x)) 6 (x/β) · ψβ,1(x) = (x/β) · ψ(x/β),
and thus

‖Φ(fi)‖1 6 2
∫ h(ti)

0

ψ
(
(βi(ti + ϕ))−1)

)

βi(ti + ϕ)
dϕ

=
2
βi

∫ 1/(βiti)

1/(βi(ti+h(ti)))

ψ(y)
y

dy

6 2ti ·
1
βiti

∫ 1/(βiti)

0

ψ(y)
y

dy

= 2ti · ϕ(si)
∫ ϕ(si)

0

ψ(y)
y

dy.
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At this stage we make a change of variables, y = ϕ(x), and use (3) to get

‖Φ(fi)‖1 6 2ti · ϕ(si)
∫ si

0

xM ′(x) dx

6 2ti · ϕ(si)
(∫ 1

0

xM ′(x) dx+
∫ si

1

xM ′(x) dx
)

6 2ti · ϕ(si)
(
C + si

∫ si

1

M ′(x) dx
)

6 2ti · ϕ(si)(C + siM(si)) 6 Cti · ϕ(si) · siM(si).

Now, using the above estimate, we get

h(ti)
‖Φ(fi)‖1

> C
h(ti)

ti · ϕ(si) · siM(si)

> C

log 1/ti
exp [log g(ti)−M(si)] > Cg(ti)1/2

log 1/ti
,

the last two inequalities by (11). For all t > 0 sufficiently small, we have that

1
2

> M
(
C0

log 1/t
log g(t)

)/
log g(t) > Cα0

(log 1/t)α

(log g(t))1+α
,

for some sufficiently small α > 0, by (11) and (2).
It follows that

(12)
h(ti)

‖Φ(fi)‖1
→∞,

as i→∞.
It follows from (12), by Lemma 3, that we can pick a subsequence of {ti}, with

possible repetitions, for simplicity denoted {ti} also, such that

(13)
∞∑

1

h(ti) = ∞,

and

(14)
∞∑

1

‖Φ(fi)‖1 <∞.

We shall now proceed with the construction of a function that disproves boundary
convergence a.e. The idea is to distribute mass on

�
over and over again, sufficient to
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make the relevant Poisson integral larger than some positive constant, at all points

in
�
, and at the same time being able to make the function arbitrarily close to 0 on

a set with positive measure.

Let A1 = h(t1), and for n > 2 let An = h(tn) +
n−1∑
j=1

2h(tj). By (13) one has that

lim
n→∞

An = ∞.
Define (on

�
) Fj(ϕ) = τAjfj(ϕ), and let

F (N)(ϕ) = sup
j>N

Fj(ϕ).

It is clear by construction that any given ϕ ∈ �
lies in the support of infinitely

many Fj :s.

Pointwise one obviously has that

Φ(F (N)(ϕ)) 6
∞∑

j=N

Φ(Fj(ϕ)),

so that

‖Φ(F (N))‖1 6
∞∑

j=N

‖Φ(Fj)‖1 =
∞∑

j=N

‖Φ(fj)‖1 → 0

as N →∞, by (14). Thus, in particular, F (N) ∈ LΦ for any N > 1.
For θ ∈ �

and a given ξ0 > 0 we can, by construction, find j ∈ � so that
θ ∈ supp(Fj) and so that tj ∈ (0, ξ0). We can then choose η, with |η| < h(tj), so
that θ − η ≡ Aj mod 2π. It follows that

lim sup
t→0, |η|<h(t)

P0F
(N)((1− t)ei(θ−η)) > lim sup

j→∞
P0Fj((1− tj)eiAj ).

We shall now conclude the proof by proving that the right-hand side above is always
greater than some positive constant.

We have

P0Fj((1− tj)eiAj ) > C

log 1/tj

∫

|ϕ|<h(tj)

Fj(Aj − ϕ)
tj + |ϕ| dϕ =

C

log 1/tj

∫

|ϕ|<h(tj)

fj(ϕ)
tj + |ϕ| dϕ

=
C

log 1/tj

∫ h(tj)

0

ψ
(
(βj(tj + ϕ))−1)

)

tj + ϕ
dϕ

=
C

log 1/tj

∫ (βjtj)
−1

(βj(tj+h(tj)))−1

ψ(y)
y

dy > C

log 1/tj

∫ ϕ(sj)

1

ψ(y)
y

dy.
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In the last inequality, the lower limit 1/(βj/(tj + h(tj))) can be replaced by 1, since
by (11) we have

βj(tj + h(tj)) > βjh(tj) = exp[log g(tj)−M(sj)] > exp[ 12 log g(tj)] →∞,

as j →∞.
We continue the estimate by making the change of variables y = ϕ(x), and we get

P0Fj((1− tj)eiAj ) > C

log 1/tj

∫ sj

ψ(1)

xϕ′(x)
ϕ(x)

dx =
C

log 1/tj

∫ sj

ψ(1)

xM ′(x) dx

> C

log 1/tj

∫ sj

sj/2

xM ′(x) dx

> Csj
log 1/tj

(M(sj)−M( 1
2sj)).

At this point we note that, by Definition 1 (iii), we haveM(sj)−M( 1
2sj) > CM(sj)

for some positive constant C (depending only on m0). We may now, finally, continue
the estimate to get the desired conclusion. We have

P0Fj((1− tj)eiAj ) > CsjM(sj)
log 1/tj

=
CM(sj)
log g(tj)

> C1,

the last inequality by (11).
To sum up, we have shown that for any θ ∈ � one has

(15) lim sup
t→0, |η|<h(t)

P0F
(N)((1− t)ei(θ−η)) > C1.

Take N so large so that λF (N)( 1
2C1) < π, say, and a.e. convergence is disproved. �

4. The proof of Theorem 2

In this section we assume that Φ ∈ ∆, without further notice. We use basically the
same notation as we did in the proof of Theorem 1, and we shall carry out only those

calculations that differ from that proof. Remember that the parameter c should have
the value 1 when applying the other proof to this. The results from Section 2 are
easily seen to remain true for Φ ∈ ∆ (again with c = 1).
For β > 0, let Φβ(x) = βΦ(x). Furthermore, let
• ϕβ(x) = Φ′

β(x).
• ψβ(y) = (ϕβ)−1(y).
• Ψβ(y) =

∫ y
0 ψβ(t) dt.

(Φβ ,Ψβ) is referred to as a complementary pair, as before.
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For short, if β = 1, we write ϕ, Φ, ψ and Ψ instead of ϕ1, Φ1, ψ1 and Ψ1,

respectively.

Lemma 4. Assume that Φ ∈ ∆. Then the following hold, uniformly in (x0,∞):
(i) ϕ(2x) ∼ ϕ(x) and Φ(2x) ∼ Φ(x).
(ii) Φ(x) ∼ xϕ(x).
(iii)

∫ x
0
ψ(y)/y dy ∼ ψ(x).

�������
	
. To prove the first part of (i), note that

log
ϕ(2x)
ϕ(x)

=
∫ 2x

x

ϕ′(t)
ϕ(t)

dt ∼
∫ 2x

x

dt
t
∼ 1,

and the statement follows. If we can establish (ii), then the second part of (i) follows
by the same techniques used to prove the first part. We have

Φ(x) =
∫ x

0

ϕ(t) dt ∼
∫ x

0

tϕ′(t) dt = xϕ(x) − Φ(x),

and thus Φ(x) ∼ xϕ(x), so (ii) is proved. Statement (iii) is trivial, via the change of
coordinates given by y = ϕ(t). �

4.1. Proof of (ii) ⇒ (i)
�������
	

. All we need to prove, according to the proof of Theorem 1, is that

(16)
h(t)

‖Φ(ψβ((t+ |ϕ|)−1)))‖L1(It)
6 C.

In fact, all we need to do to show this, is to estimate β slightly differently. Here we

have

ε log 1/t = 2
∫ 1/t

1/(t+2h(t))

ψβ(y)
y

dy 6 2
∫ 1/t

0

ψβ(y)
y

dy . ψβ(1/t),

the last inequality by Lemma 4 (iii), so that

(17)
1
β

> tϕ(Cε log 1/t).

Now, let B(s) = Φ(ψ(s)). Then, by Lemma 4 (ii), we have B(s) ∼ sψ(s). For
convenience, let It denote the interval [−2h(t), 2h(t)]. We have

∥∥∥Φ
(
ψβ

( 1
t+ |ϕ|

))∥∥∥
L1(It)

=
∫

It

B
( 1
β(t+ |ϕ|)

)
dϕ

∼ C

∫

It

ψβ

( 1
t+ |ϕ|

)
· 1
β(t+ |ϕ|) dϕ =

Cε log 1/t
β

,
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the last equality by (7). We may now invoke (17) to get

∥∥∥Φ
(
ψβ

( 1
t+ |ϕ|

))∥∥∥
L1(It)

> C1(ε)t log
1
t
ϕ
(
Cε log

1
t

)

> C2(ε)tΦ
(
Cε log

1
t

)

∼ C3(ε)tΦ
(
log

1
t

)
,

where we have used Lemma 4 (i) and (ii). Thus, by assumption (ii) in Theorem 2,

the desired inequality (16) follows. �

4.2. Proof of (i) ⇒ (ii)
�������
	

. Assume that condition (ii) in Theorem 2 is false. We show that this
implies that (i) is false too.

Pick a decreasing sequence {ti}∞1 , converging to 0, such that

(18)
g(ti)

Φ(log 1/ti)
→∞,

as i→∞. Let si = log 1/ti, and define

fi(ϕ) = ψβi

( 1
ti + |ϕ|

)
· χ{|ϕ|<h(ti)},

where β−1
i = tiϕ(si).

Using Φ(ψβ(x)) ∼ (x/β) · ψβ(x), we get

‖fi‖Φ .
∫ h(ti)

0

ψβi

(
(ti + ϕ)−1)

)

βi(ti + ϕ)
dϕ

=
1
βi

∫ 1/(βiti)

1/(βi(ti+h(ti)))

ψ(y)
y

dy

6 ti · ϕ(si)
∫ ϕ(si)

0

ψ(y)
y

dy

. ti · ϕ(si)si . ti · Φ(si).

Now, using the above estimate, we get

h(ti)
‖fi‖Φ

> C
g(ti)
Φ(si)

.

363



Thus, by (18), we have
h(ti)
‖fi‖Φ

→∞,

as i→∞.
Copying the proof of Theorem 1, we now see that it suffices to prove that

1
log 1/tj

∫ sj

ψ(1)

xϕ′(x)
ϕ(x)

dx > C,

for some constant C > 0, to disprove convergence. However, by Definition 2 (iii), we
have

1
log 1/tj

∫ sj

ψ(1)

xϕ′(x)
ϕ(x)

dx > 1
log 1/tj

∫ sj

0

C0 dx = C0.

We are done. �
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