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SOME INEQUALITIES INVOLVING UPPER BOUNDS FOR SOME
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R. Lashkaripour, D. Foroutannia, Zahedan
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Abstract. In this paper we consider the problem of finding upper bounds of certain matrix
operators such as Hausdorff, Nörlund matrix, weighted mean and summability on sequence
spaces lp(w) and Lorentz sequence spaces d(w, p), which was recently considered in [9] and
[10] and similarly to [14] by Josip Pecaric, Ivan Peric and Rajko Roki. Also, this study is
an extension of some works by G.Bennett on lp spaces, see [1] and [2].
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1. Introduction

We study the norm of some matrix operators on lp(w) and Lorentz sequence
spaces d(w, p), p > 1, which is considered in [1], [2], [3], [4] and [5] on lp spaces
and in [10] and [11] on lp(w) and d(w, p) for some matrix operators such as Cesàro,
Copson, Hilbert, Hausdorff, Nörlund, weighted mean and summability. The problem
of finding a lower bound of such matrices on weighted sequence spaces considered by

authors in a companion paper [13].
Let lp be the normed linear space of all sequences x = (xn) with finite norm ‖x‖p,

where

‖x‖p =
( ∞∑

n=1

|xn|p
)1/p

.

Suppose that w = (wn) is a sequence with non-negative entries. For p > 1, we define
the weighted sequence space lp(w) as

lp(w) =
{

(xn) :
∞∑

n=1

wn|xn|p < ∞
}

,
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with the norm ‖ · ‖p,w, defined as:

‖x‖p,w =
( ∞∑

n=1

wn|xn|p
)1/p

.

Also, if w = (wn) is a decreasing sequence of non-negative numbers such that

lim
n→∞

wn = 0 and
∞∑

n=1
wn = ∞, then the Lorentz sequence space d(w, p) is defined as

d(w, p) =
{

(xn) :
∞∑

n=1

wnx∗
p

n < ∞
}

,

where (x∗n) is the decreasing rearrangement of (|xn|). In fact d(w, p) is the space of
null sequences x for which x∗ is in lp(w), with the norm ‖x‖d(w,p) = ‖x∗‖p,w.

We write ‖A‖p,w for the norm of A as an operator on lp(w), and ‖A‖p for the
norm of A as an operator on lp, and ‖A‖d(w,p) for the norm of A as an operator on

d(w, p).
Our objective in Section 2 is to give a generalization of some results obtained by

Bennett [1], [2] and Jameson and Lashkaripour [10] for Hausdorff matrix operators
on the weighted sequence space. In Section 3 we try to solve the problem of finding

the norm of summability operators on the Lorentz sequence space d(w, 1), while
in Section 4 we consider the same problem on the weighted sequence space lp(w).
Summability operators on lp were considered in [1], [2], [3], [4]. Finally, in Section 5,
we get an estimate for a certain matrix operator on the Lorentz sequence space

d(w, p).

2. Hausdorff matrix operator on lp(w) and d(w, p)

In this section, we consider the Hausdorff matrix operatorH(µ) = (hj,k) such that

hj,k =





(
j − 1
k − 1

)
∆j−kak if 1 6 k 6 j,

0 if k > j,

where ∆ is the difference operator; that is,

∆ak = ak − ak+1

and (ak) is a sequence of real numbers, normalized so that a1 = 1.
If

ak =
∫ 1

0

θk dµ(θ) (k = 1, 2, . . .),
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where µ is a probability measure on [0, 1], then for all j, k = 1, 2, . . ., we have

hj,k =





(
j − 1
k − 1

) ∫ 1

0

θk−1(1− θ)j−k dµ(θ) if 1 6 k 6 j,

0 if k > j.

The Hausdorff matrix is contained in famous classes of matrices. These classes are
as follows:

i) The choice dµ(θ) = α(1− θ)α−1 dθ gives the Cesàro matrix of order α.
ii) The choice dµ(θ) = point evaluation at θ = α gives the Euler matrix of order α.

iii) The choice dµ(θ) = |log θ|α−1/Γ(α) dθ gives the Hölder matrix of order α.
iv) The choice dµ(θ) = αθα−1 dθ gives the Gamma matrix of order α.

The Cesàro, Hölder and Gamma matrices have non-negative entries whenever
α > 0, also the Euler matrix is non-negative when 0 6 α 6 1. So that, if we obtain
the norm of the Hausdorff matrix, then it is also an upper bound for the above

matrices.
Note that, if T is an operator with non-negative entries on lp(w) (or d(w, p)), then

we can get the norm of T by non-negative sequences, since ‖Tx‖p,w 6 ‖T |x|‖p,w (or
‖Tx‖d(w,p) 6 ‖T |x|‖d(w,p)).

It is a much more delicate problem to find conditions under which the norm
is determined by decreasing sequences x. The following statements give us some

conditions adequate for the operators considered below, ensuring that ‖T‖d(w,p) is
determined by decreasing, non-negative sequences.

Proposition 2.1 ([11], Proposition 1.4.1). Let p > 1 and let T = (ti,j) be an
operator with non-negative entries. If for all subsetsM, N of natural numbers having

m, n elements respectively, we have

(1)
∑

i∈M

∑

j∈N

ti,j 6
m∑

i=1

n∑

j=1

ti,j ,

then ‖T (u)‖d(w,p) 6 ‖T (u∗)‖d(w,p) for all non-negative elements u of d(w, p). Hence
decreasing, non-negative elements are sufficient for ‖T‖d(w,p) to be determined.

Proposition 2.2 ([9], Lemma 1). Let p > 1 and let T = (ti,j) be an operator
with non-negative entries. Also, let T map d(w, p) into itself. If we set Tu = v for

u ∈ d(w, p) where vi =
∞∑

j=1

ti,juj , then the following conditions are equivalent:

(a) v1 > v2 > . . . > 0 when u1 > u2 > . . . > 0.

(b) ri,n =
n∑

j=1

ti,j decreases with i for each n.
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The following theorem is needed for the main result. Let µ be a Borel probability

measure on [0, 1] with µ(0) = µ(0+) = 0.

Theorem 2.1 ([6], Theorem 216). Let (xn) be a non-negative sequence and p > 1.
Then ∞∑

m=1

( m∑

n=1

(
m− 1
n− 1

)
∆m−nanxn

)p

<

( ∫ 1

0

θ−1/p dµ(θ)
)p ∞∑

n=1

xp
n,

unless xn = 0 for all n or the transformation reduces to the identity.

Theorem 2.2. Let H(µ) be the Hausdorff matrix operator and p > 1. Let (wn)

be a non-negative decreasing sequence such that
∞∑

n=1
wn/n = ∞. Then the Hausdorff

matrix operator maps lp(w) into itself, and

‖H‖p,w =
∫ 1

0

θ−1/p dµ(θ).

���������
. Let x be a non-negative sequence. Then since (wn) is decreasing,

applying Theorem 2.1 we have

‖Hx‖p
p,w =

∞∑

j=1

wj

( j∑

k=1

(
j − 1
k − 1

)( ∫ 1

0

θk−1(1− θ)j−k dµ(θ)
)

xk

)p

6
∞∑

j=1

( j∑

k=1

(
j − 1
k − 1

)( ∫ 1

0

θk−1(1− θ)j−k dµ(θ)
)

w
1/p
k xk

)p

6
( ∫ 1

0

θ−1/p dµ(θ)
)p ∞∑

j=1

wjx
p
j =

( ∫ 1

0

θ−1/p dµ(θ)
)p

‖x‖p
p,w.

Hence

‖Hx‖p,w 6
( ∫ 1

0

θ−1/p dµ(θ)
)
‖x‖p,w,

and so

‖H‖p,w 6
∫ 1

0

θ−1/p dµ(θ).

It remains to prove that the value
∫ 1

0 θ−1/p dµ(θ) is the best possible. To show this,
we follow an argument of Hardy ([5], page 47) with some slight modifications. For

any ε ∈ (0, 1), choose α and N such that

(
1 +

1
α

)−2/p

> 1− ε,

∫ 1

α/n

θ−1/p dµ(θ) > (1− ε)
∫ 1

0

θ−1/p dµ(θ) (n > N).
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For ε and N mentioned above, there exists δ such that 0 < δ < 1/p and

ε

∞∑

n=1

wnn−1−pδ >

N−1∑

n=1

wnn−1−pδ,

(because, if ε
∞∑

n=1
wnn−1−pδ 6

N−1∑
n=1

wnn−1−pδ for any δ > 0 by letting δ tend to 0, we

deduce that
∞∑

n=1
wn/n is convergent, which contradicts the assumption

∞∑
n=1

wn/n =

∞). Taking
s =

1
p

+ δ, xn = n−s,

we obtain ∞∑

n=N

wnxp
n > (1− ε)

∞∑

n=1

wnxp
n.

Since (xn) ∈ lp and 0 < wn 6 w1, we deduce that (xn) ∈ lp(w). If we set

en(θ) =
n∑

m=1

(
n− 1
m− 1

)
θm−1(1− θ)n−mxm,

then

xn =
1

Γ(s)

∫ ∞

0

e−ntts−1 dt, en(θ) =
1

Γ(s)

∫ ∞

0

e−tts−1(1− θ + θe−t)n−1 dt.

For t > 0 and 0 < θ < 1 we have 1− θ + θe−t > e−θt. Hence

en(θ) > 1
Γ(s)

∫ ∞

0

ts−1e−(1−θ+nθ)t dt = (1− θ + nθ)−s.

If α/n < θ < 1, then

(1− θ + nθ)−s > n−sθ−s(1 + 1
α )−s > θ−1/p(1 + 1

α )−2/pxn > (1− ε)θ−1/pxn,

therefore
en(θ) > (1− ε)θ−1/pxn.

For n > N we have

(Hx)n =
∫ 1

0

en(θ) dµ(θ) >
∫ 1

α/n

en(θ) dµ(θ)

> (1− ε)xn

∫ 1

α/n

θ−1/p dµ(θ) > (1− ε)2xn

∫ 1

0

θ−1/p dµ(θ)
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and

∞∑

n=1

wn(Hx)p
n >

∞∑

n=N

wn(Hx)p
n > (1− ε)2p

( ∫ 1

0

θ−1/p dµ(θ)
)p ∞∑

n=N

wnxp
n

> (1− ε)2p+1

( ∫ 1

0

θ−1/p dµ(θ)
)p ∞∑

n=1

wnxp
n.

Therefore

‖H‖p,w > (1− ε)2+1/p

∫ 1

0

θ−1/p dµ(θ).

Since ε is arbitrary, letting ε −→ 0 we have

‖H‖p,w >
( ∫ 1

0

θ−1/p dµ(θ)
)

,

and this completes the proof of the statement.

Corollary 2.1. Suppose that p > 1 and p∗ = p/(p− 1). If (wn) is a non-negative

decreasing sequence and
∞∑

n=1
wn/n is divergent, then Cesàro, Hölder, Gamma and

Euler operators map lp(w) into itself. Also, we have:

‖C(α)‖p,w =
Γ(α + 1)Γ(1/p∗)

Γ(α + 1/p∗)
(α > 0);

‖H(α)‖p,w =
1

Γ(α)

∫ 1

0

θ−1/p|log θ|α−1 dθ (α > 0);

‖G(α)‖p,w =
αp

αp− 1
(αp > 1);

‖E(α)‖p,w = α−1/p (0 < α < 1).

���������
. It is elementary. �

Corollary 2.2 ([10], Proposition 5.1). If u, w are non-negative sequences, w is

decreasing and
∞∑

n=1
wn/n is divergent, then

∞∑

n=1

wn

(
1
n

n∑

i=1

ui

)p

6 p∗p

( ∞∑

n=1

wnup
n

)
.

The value of p∗p is the best possible.
���������

. Apply Corollary 2.1 for Cesàro operator with α = 1. �
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Remark 2.1. By taking wn = 1 for all n, we deduce that Hausdorff, Cesàro,

Holder, Gamma and Euler operators map lp into itself.

We now state the extension of the Hardy inequality to the weighted sequence
space. The following lemma is needed for the main result.

Lemma 2.3. Suppose that an, bn are non-negative numbers such that
∞∑

n=1
an is

divergent and lim
n→∞

bn = 0. Then

m∑
n=1

anbn

m∑
n=1

an

→ 0 as m →∞.

���������
. It is elementary. �

Theorem 2.3. Suppose that p > 1, w = (wn) is a decreasing sequence with

non-negative entries and
∞∑

n=1
wn/n is divergent. Let N > 0 and let CN = (cN

n,k) be

the matrix with

cN
n,k =





1
n + N

for n > k,

0 for n < k.

Then ‖CN‖p,w = p∗.
���������

. C0 is the Cesàro matrix of order α = 1 and 0 6 cN
n,k 6 c0

n,k for all

n, k > 1. Since w = (wn) is a decreasing sequence, by Corollary 2.2 we have

‖CN‖p,w 6 ‖C0‖p,w = p∗.

Fix m such that m > N , and let

xn =

{
(n + m)−1/p for 1 6 n 6 m,

0 for n > m.

Then
∞∑

n=1

wnxp
n =

m∑
n=1

wn/(n + m). Also, for n 6 m,

Xn >
∫ n

1

(t + m)−1/p dt = p∗((n + m)1/p∗ − (m + 1)1/p∗),

so that

yn =
Xn

n + N
> p∗

(n + m)1/p

(
1−

(m + 1
n + m

)1/p∗)
.
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Since (1− t)p > 1− pt for 0 < t < 1, we have

yp
n > (p∗)p

n + m

(
1− p

(m + 1
n + m

)1/p∗)
,

and hence

m∑

n=1

wnyp
n > (p∗)p

m∑

n=1

wn

n + m
− p(p∗)p(m + 1)1/p∗

m∑

n=1

wn

(n + m)1+1/p∗
.

Since (wn) is a decreasing sequence, wn > wn+m and

∞∑

n=1

wn

n + m
>

∞∑

n=1

wn+m

n + m
=

∞∑

n=m+1

wn

n
= ∞.

Therefore
∞∑

n=1
wn/(n + m) is divergent, so that setting an = wn/(n + m), bn =

1/(n + m)1/p∗ and applying Lemma 2.1 we obtain the statement.

3. Summability operator on d(w, 1)

In this part we consider the upper bound problem for summability matrix opera-

tors. These are lower triangular matrices with entries of the form
(i) dj,k > 0;
(ii) dj,k = 0 if k > j;

(iii)
j∑

k=1

dj,k = 1.

It is natural to ask what can be said about the norm of an arbitrary summability

matrix on d(w, 1). We give an interesting answer to this question in the following
statement.

Theorem 3.1. Suppose D = (di,j) is a summability matrix operator satisfying
condition (1) of Proposition 2.1. If

sup
Sn

Wn
< ∞,

where Sn = s1 + . . . + sn and sn =
∞∑

k=n

wkdk,n and Wn = w1 + . . . + wn, then D is a

bounded operator from d(w, 1) into itself, and

‖D‖d(w,1) = sup
n

Sn

Wn
.
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���������
. By Proposition 2.1, it is sufficient to consider decreasing, non-negative

sequences. Let x be in d(w, 1) such that x1 > x2 > . . . > 0. Then

‖Dx‖d(w,1) =
∞∑

n=1

wn

( n∑

k=1

dn,kxk

)
=

∞∑

n=1

snxn =
∞∑

n=1

Sn(xn − xn+1).

Also, we have

‖x‖d(w,1) =
∞∑

n=1

Wn(xn − xn+1).

Let M = sup
n

Sn/Wn. Then

‖Dx‖d(w,1) 6 M

∞∑

n=1

wnxn.

Hence

‖D‖d(w,1) 6 M.

To show that the constant M is the best possible, we take x1 = x2 = . . . = xn = 1
and xk = 0 for all k > n + 1. Then

‖x‖d(w,1) = Wn, ‖Dx‖d(w,1) = Sn.

Therefore

‖D‖d(w,1) = M.

We now state some consequences of the above theorem.

Let (dn) be a non-negative sequence with d1 > 0, and Dn = d1 + . . . + dn. The
Nörlund matrix Nd = (dn,k) is defined as follows:

dn,k =





dn−k+1

Dn
, 1 6 k 6 n,

0 k > n,

Further, the weighted mean matrix Dd = (dn,k) is defined by

dn,k =





dk

Dn
, 1 6 k 6 n,

0 k > n.

We note that the Hausdorff matrix, Nörlund mean matrix and weighted mean matrix
are summability matrices so that we have the following statement.
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Corollary 3.1. Suppose D = (di,j) is a Hausdorff (Nörlund mean or weighted
mean) matrix operator satisfying condition (1). If

sup
n

Sn

Wn
< ∞,

then D is a bounded operator from d(w, 1) into itself, and

‖D‖d(w,1) = sup
n

Sn

Wn
.

Proposition 3.1. Suppose dn is a non-negative, increasing sequence and for all

n < i we have
1
Di

n∑

k=1

di−k+1 > 1
Di+1

n∑

k=1

di−k+2.

If

sup
Sn

Wn
< ∞,

then Nd is a bounded operator from d(w, 1) into itself, and

‖Nd‖d(w,1) = sup
n

Sn

Wn
.

���������
. The Nörlund mean operator, Nd, satisfies condition (1). So, applying

Corollary 3.1 we have the statement. �

Proposition 3.2. Suppose dn is a non-negative, decreasing sequence. If

sup
n

Sn

Wn
< ∞,

then Dd is a bounded operator from d(w, 1) into itself, and

‖Dd‖d(w,1) = sup
n

Sn

Wn
.

���������
. Since dn is a non-negative, decreasing sequence, the weighted mean

matrix operator Dd satisfies condition (1). If we apply Corollary 3.1, then we have
the statement. �
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As we mentioned in the previous section, the Hausdorff matrix is contained in the

class of the famous Cesàro and Gamma matrices. Also, for α > 0, the Cesàro matrix
C(α) and the Gamma matrix G(α) are the Nörlund matrix Nd and the Weighted
mean matrix Dd, respectively, with

dn =
(

n + α− 2
n− 1

)
.

If α = 1, then G(1) = C(1). Hence for wn = 1/np, where 0 < p 6 1, by ([12],
Theorem 6) we have

‖G(1)‖d(w,1) = ‖C(1)‖d(w,1) = ζ(1 + p),

where ζ is Riemann’s zeta function.

In the next statement we give the norm of C(2) on d(w, 1). It is enough to consider
the sequence (sn/wn) instead of (Sn/Wn), because of the well-known fact listed in
the following lemma.

Lemma 3.1. If m 6 sn/wn 6 M for all n, then m 6 Sn/Wn 6 M for all n.

���������
. It is elementary. �

Proposition 3.3. If wn = 1/n, then C(2) is a bounded operator from d(w, 1)
into itself, and

‖C(2)‖d(w,1) = 2.

���������
. We note that sn/wn 6 s1/w1 for all n. Therefore, applying Lemma

3.1, we deduce that Sn/Wn 6 S1/W1 = s1, and by Corollary 3.1 we have

‖C(2)‖d(w,1) = 2.

Since

s1 =
∞∑

k=1

1
1
2k(k + 1)

= 2,

we have for all n

sn

wn
= n

∞∑

k=n

1
1
2k(k + 1)

k − n + 1
k

6 2n

∞∑

k=n

1
k(k + 1)

= 2n
1
n

= 2 = s1.

This completes the proof of the proposition.
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Let D = (dn,k) be a summability matrix operator defined as before, and let its
transpose be Dt which is defined as

(Dtx)n =
∞∑

k=n

dk,nxk.

Dt is a quasi-summability matrix.

Note: If D is a Summability matrix satisfying condition (1), then Dt is so.

Theorem 3.2. Suppose D is a summability matrix operator on d(w, 1) satisfying
condition (1). If

M = sup
n

Rn

Wn
< ∞,

where Rn = r1 + . . . + rn, rn =
n∑

k=1

wkdn,k and Wn = w1 + . . . + wn, then Dt is a

bounded operator from d(w, 1) into d(w, 1) and we have

‖Dt‖d(w,1) = M.

���������
. Applying Proposition 2.1 and the above note, it is sufficient to consider

decreasing, non-negative sequences. Let x be in d(w, 1) such that x1 > x2 > . . . > 0.
Then

‖Dtx‖d(w,1) =
∞∑

n=1

wn

( ∞∑

k=n

dk,nxk

)
=

∞∑

n=1

rnxn =
∞∑

n=1

Rn(xn − xn+1).

Hence

‖Dtx‖d(w,1) 6 M‖x‖d(w,1).

To show that this constant is the best possible, we take x1 = x2 = . . . = xn = 1 and
xk = 0 for all k > n + 1. Then

‖x‖d(w,1) = Wn, ‖Dtx‖d(w,1) = Rn.

Therefore

‖Dt‖d(w,1) = M.

Using the above notation, we have the following statement. �
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Corollary 3.2. Suppose D = (di,j) is a Hausdorff (Nörlund mean or weighted
mean) matrix operator satisfying condition (1). If

M = sup
n

Rn

Wn
< ∞,

then Dt is a bounded operator from d(w, 1) into itself, and we have

‖Dt‖d(w,1) = M.

If α = 1, then Gt(1) = Ct(1). Hence for wn = 1/np, where 0 < p 6 1, applying ([12],
Theorem 9) we deduce that

Gt(1)‖d(w,1) = ‖Ct(1)‖d(w,1) =
1

1− p
.

4. Summability matrix operator on lp(w)

In this section we consider the upper bound problem for summability matrix opera-

tors. It is natural to ask what can be said about the norm of an arbitrary summability
matrix on lp(w) (or d(w, p)).
First, we compare the norm of the quasi-summability matrix with that of the

Copson matrix. Then we give an estimate for the quasi-matrix, where the Copson
matrix is the transpose of the Cesàro matrix.

Let p, q > 1. We write ‖A‖p,q,w for the norm of A as an operator from lp(w) into
lq(w).

Lemma 4.1. Let p > 1 and let u, v and w be non-negative sequences. If v, w are

decreasing and
n∑

i=1

vi 6
n∑

i=1

ui (n = 1, 2, . . .),

then
∞∑

i=1

wiv
p
i 6

∞∑

i=1

wiu
p
i .

���������
. It is elementary. �
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Lemma 4.2. Suppose p, q > 1 and A = (ai,j), D = (di,j) are matrices with
non-negative entries. Let (wn) be a decreasing sequence. If the columns of D are

decreasing, i.e.

(I) dk,j > dk+1,j (j, k = 1, 2, . . .),

and also

(II)
k∑

i=1

ai,j >
k∑

i=1

di,j (j, k = 1, 2, . . .),

then

‖A‖p,q,w > ‖D‖p,q,w.

���������
. Let x be a sequence of non-negative entries. We define u and v by

uk =
∞∑

i=1

dk,ixi, vk =
∞∑

i=1

ak,ixi, (k = 1, 2, . . .).

It is clear from (I) that uk decreases with k, and by (II) we have

n∑

k=1

uk 6
n∑

k=1

vk (n = 1, 2, . . .).

Hence applying Lemma 4.1 we deduce that

∞∑

k=1

wkup
k 6

∞∑

k=1

wkvp
k .

Therefore ‖Dx‖q,w 6 ‖Ax‖q,w, and so

‖A‖p,q,w > ‖D‖p,q,w.

�
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Theorem 4.1. Suppose p, q > 1 and A = (ai,j) is a summability matrix. If
C = (ci,j) is the Cesàro matrix of order α = 1 and the rows of A are decreasing, then

‖At‖p,q,w > ‖Ct‖p,q,w.

���������
. We apply Lemma 4.1 for At and Ct. It is clear that (I) holds for Ct.

We show that
k∑

i=1

at
i,j >

k∑

i=1

ct
i,j (j, k = 1, 2, . . .),

or
k∑

i=1

aj,i >
k∑

i=1

cj,i (j, k = 1, 2, . . .).

When k > j, it is easy to see that we have the above inequality. When k < j, we

have
k∑

i=1

aj,i > k

j
(j = 1, 2, . . .)

because the jth row of A is decreasing, therefore the average

1
k

k∑

i=1

aj,i

decreases with k, and the jth term of this average is precisely 1/j.
We now state a consequence of Theorem 4.1.

Corollary 4.1. Suppose p > 1 and A = (ai,j) is a summability matrix with
decreasing rows. If 0 6 β < 1 and w is defined either by wn = 1/nβ or by Wn =

n∑
k=1

wk = n1−β, then

‖At‖p,w > p

1− β
.

���������
. Let C be the Cesàro matrix of order α = 1. By Theorem 4.2 of [10],

we have
‖Ct‖p,w =

p

1− β
.

This completes the proof of the statement. �

In the following, we extend the so-called Maximal Theorem of Hardy and Little-
wood to lp(w) spaces, and then we establish an upper bound for the summability
matrix with increasing rows.
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Theorem 4.2. If p > 1 and x, w are non-negative sequences and w is decreasing,

then
∞∑

j=1

wj max
16i6j

(
1

j − i + 1

j∑

k=i

xk

)p

6 (p∗)p
∞∑

k=1

wkxp
k .

���������
. If we set ak = w

1/p
k xk in Theorem 8 of [7], then we have

∞∑

j=1

max
16i6j

(
1

j − i + 1

j∑

k=i

w
1/p
k xk

)p

6 (p∗)p
∞∑

k=1

wkxp
k.

Since w is decreasing, we deduce that

∞∑

j=1

wj max
16i6j

(
1

j − i + 1

j∑

k=i

xk

)p

6 (p∗)p
∞∑

k=1

wkxp
k .

The next statement is an easy consequence of the previous theorem. �

Corollary 4.2 ([1], Corollary 1.15). If p > 1 and x is a sequence of non-negative

terms, then
∞∑

j=1

max
16i6j

(
1

j − i + 1

j∑

k=i

xk

)p

6 (p∗)p
∞∑

k=1

xp
k.

In the following statement, we give an upper bound for the summability matrix

operator. Let D be a summability matrix with increasing rows, that is; for all j we

have

dj,1 6 dj,2 6 . . . 6 dj,j .

Theorem 4.3. Let p > 1, and let D be a summability matrix with increasing

rows. Then

‖D‖p,w 6 p∗.

���������
. Let x be a non-negative sequence and let j be fixed. Setting

M = max
{xj

1
,
xj + xj−1

2
, . . . ,

xj + . . . + x1

j

}
,

we have for all k with 1 6 k 6 j

xj + . . . + xj−k+1 6 M(1 + . . . + 1) (k terms).
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Since 0 6 dj,1 6 . . . 6 dj,j , applying Lemma 4.1, we obtain

j∑

k=1

dj,kxk 6 M

j∑

k=1

dj,k = M.

Since

M = max
16i6j

(
1

j − i + 1

j∑

k=i

xk

)
= max

16i6j

(
1
i

j∑

k=j−i+1

xk

)
,

applying Theorem 4.2, we deduce that

‖Dx‖p
p,w =

∞∑

j=1

wj

( j∑

k=1

dj,kxk

)p

6
∞∑

j=1

wj max
16i6j

(
1
i

j∑

k=j−i+1

xk

)p

6 (p∗)p
∞∑

k=1

wkxp
k = (p∗)p‖x‖p

p,w,

and so ‖D‖p,w 6 p∗.

Let Dd and Nd be the weighted mean matrix and the Nörlund matrix respectively.

We state some consequences of Theorem 4.3.

Corollary 4.3. Let p > 1. If (dn) is an increasing sequence, then

‖Dd‖p,w 6 p∗.

Corollary 4.4. If p > 1. If (dn) is a decreasing sequence, then

‖Nd‖p,w 6 p∗.

5. Matrix operator with

∞∑
i=1

|ai,j | 6 1 for all j and
∞∑

j=1

|ai,j | 6 1 for all i

In this section we consider some operators satisfying the above conditions. We
apply some results of the majorization principle to show that such operators are

bounded on the Lorentz sequence spaces d(w, p). In the following, we state some
lemmas which are needed throughout this section.
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Lemma 5.1. Let A = (ai,j) be a matrix operator with entries of the form

i)
∞∑

i=1

|ai,j | 6 1 for all j;

ii)
∞∑

j=1

|ai,j | 6 1 for all i.

Let x = (xi) be a null sequence and y = Ax. Then we have:

n∑

i=1

y∗i 6
n∑

i=1

x∗i (n = 1, 2, . . .).

���������
. We may assume |x1| > |x2| . . .. So for all j we have x∗j = |xj |. Let for

all ry∗r = |yir |. Then

y∗r =
∣∣∣∣
∞∑

j=1

air ,jxj

∣∣∣∣ 6
∞∑

j=1

|air ,j |x∗j .

Therefore
n∑

r=1

y∗r 6
∞∑

j=1

bjx
∗
j ,

where bj =
n∑

r=1
|air ,j |. Let Bk = b1 + . . . + bk, then for all k we have: Bk 6 k. Also,

for k > n,

Bk =
n∑

r=1

k∑

j=1

|air ,j | 6 n.

By the Abel summation, we have

∞∑

j=1

bjx
∗
j =

∞∑

j=1

Bj(x∗j − x∗j+1) 6
n∑

j=1

j(x∗j − x∗j+1) + n

∞∑

j=n+1

(x∗j − x∗j+1) =
n∑

j=1

x∗j .

This completes the proof of the statement. �

Lemma 5.2. Let 1 6 p 6 q and let x = (xi) be a sequence in d(w, p). If w1 = 1,
then

‖x‖d(w,q) 6 ‖x‖d(w,p).

���������
. Let the sequence x be such that x1 > x2 > . . . > 0. Write yi = xp

i .

Since w1 = 1, by Proposition 1.3.2 of [11] we have

∞∑

i=1

wix
p
i =

∞∑

i=1

wiyi >
( ∞∑

i=1

wiy
q/p
i

)p/q

=
( ∞∑

i=1

wix
q
i

)p/q

.

This completes the proof of the proposition. �

570



Theorem 5.1. Suppose A = (ai,j) is a matrix operator with entries of the form

i)
∞∑

i=1

|ai,j | 6 1 for all j;

ii)
∞∑

j=1

|ai,j | 6 1 for all i.

Let 1 6 p 6 q. If w1 = 1, then A is a bounded operator from d(w, p) into d(w, q),
and we have

‖A‖p,q,w 6 1.

���������
. Let x be in d(w, p) and y = Ax. Since x convergents to zero, applying

Lemma 5.1 we obtain

n∑

i=1

y∗i 6
n∑

i=1

x∗i (n = 1, 2, . . .).

Applying Lemma 4.1 we deduce that

‖Ax‖q
d(w,q) =

∞∑

n=1

wn(y∗n)q 6
∞∑

n=1

wn(x∗n)q = ‖x‖q
d(w,q).

Hence by Lemma 5.2, ‖Ax‖d(w,q) 6 ‖x‖d(w,p), and so

‖A‖p,q,w 6 1.

�
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