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Abstract. If (Ω,Σ) is a measurable space and X a Banach space, we provide sufficient
conditions on Σ and X in order to guarantee that bvca(Σ, X), the Banach space of all
X-valued countably additive measures of bounded variation equipped with the variation
norm, contains a copy of c0 if and only if X does.
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1. Preliminaries

Throughout this paper (Ω, Σ) will be a measurable space and, unless otherwise
stated, X will be a Banach space over the field

�
of real or complex numbers. Our

notation is standard [2]–[4]. So, ca(Σ, X) will denote the Banach space over
�
of

all X-valued countably additive measures F defined on Σ, endowed with the semi-
variation norm ‖F‖, and bvca(Σ, X) will stand for the Banach space of all X-valued
countably additive measures F of bounded variation defined in Σ, equipped with
the variation norm |F |. If µ ∈ ca+(Σ), we shall denote by P(µ, X) the linear space
of all classes of scalarly equivalent weakly µ-measurable X-valued Pettis integrable
functions f defined on Ω, equipped with the norm

‖f‖P(µ,X) = sup
{∫

Ω

|x∗f(ω)| dµ(ω) : x∗ ∈ X∗, ‖x∗‖ 6 1
}

.

A Banach space X is said to have the weak Radon-Nikodým property (WRNP)
with respect to a finite measure space (Ω, Σ, µ) if every µ-continuous measure F :

This work was supported by the project MTM2005-01182 of the Spanish Ministry of
Education and Science, co-financed by the European Community (Feder projects).
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Σ → X of σ-finite variation has a Pettis µ-integrable derivative f : Ω → X , i.e. sat-

isfying that F (E) = (P)
∫

E f dµ for each E ∈ Σ [9]. If X has the WRNP with respect
to every finite measure space, we say that X has the WRNP.
It has been shown [5] that if each nonzero finite positive measure µ ∈ ca(Σ) is

purely atomic, then ca(Σ, X) contains a copy of c0 or `∞ if and only if X contains,
respectively, a copy of c0 or `∞. With the same hypotheses, the same result holds

for bvca(Σ, X) [6]. However, if the range space X is a dual Banach space, then
bvca(Σ, X) contains a copy of c0 or `∞ if and only if X does, without any condition

on ca+(Σ) [10]. If X is not a dual Banach space this last statement is no longer
true [11]. In this paper we deal again with the problem of copies of c0 in bvca(Σ, X)
by proving Theorems 1.1 and 1.2 below. Both of them are based upon Lemma 2.3
and use a mild consequence of the lifting theorem which will be conveniently recalled.

We state our main theorems.

Theorem 1.1. Assume that BX∗ is weak∗ sequentially dense in BX∗∗∗ and Σ =
2Ω. If X is norm-one complemented in X∗∗, then bvca(Σ, X) contains a copy of c0

if and only if X does.

Theorem 1.2. Assume that X∗ contains a norming sequence. If X has

the WRNP with respect to each µ ∈ ca+(Σ), then the space bvca(Σ, X) contains a
copy of c0 if and only if X does.

It should be noted that the conditions imposed on X in Theorem 1.1 imply that

X has the WRNP with respect to each µ ∈ ca+(Σ). So, a natural question arises
whether Theorem 1.1 remains true under this more general setting. A partial answer

to this issue is given by Theorem 1.2, with the additional requirement that X∗ con-
tains a norming sequence. As a counterpart, the restrictions on the measurable

space (Ω, Σ) stated in Theorem 1.1 are waived.

2. Supporting lemmas

If (Ω, Σ, µ) is a complete finite measure space, following [2] we denote by
Lw∗(µ, X∗) the linear space of all µ-essentially bounded functions ϕ : Ω → X∗

which are weak∗ measurable, and represent by bvcaµ(Σ, X∗) the linear subspace of
bvca(Σ, X∗) of all those measures F for which there is a > 0 (which depends of F )
such that ‖F (E)‖ 6 aµ(E) for each E ∈ Σ. We state the lifting theorem in the
way we shall need in the proof of our main theorems (Lemma 2.1), as well as an

averaging result due to Bourgain (Lemma 2.2) that we shall use to prove Lemma 2.3
below.

680



Lemma 2.1 ([2, Theorem 1.5.2]). There is a linear injective map T : bvcaµ(Σ,

X∗) → Lw∗(µ, X∗) such that for each F ∈ bvcaµ(Σ, X∗) the function f = T (F )
satisfies the following two conditions:

1. For each E ∈ Σ and x ∈ X one has

F (E)x =
∫

E

f(ω)x dµ(ω).

2. The function ω → ‖f(ω)‖ is measurable, belongs to L1(µ) and for each E ∈ Σ
satisfies

|F |(E) =
∫

E

‖f(ω)‖ dµ(ω).

Lemma 2.2 ([1], [2, Lemma 2.1.2]). LetX be a seminormed space and let {rn}∞n=0

denote the sequence of Rademacher functions in [0, 1]. If {xn} is a sequence in X

such that inf
n∈ � ‖xn‖ > 0 and

sup
n∈ �

∫ 1

0

∥∥∥∥
n∑

i=1

ri(t)xi

∥∥∥∥ dt < ∞,

then there exists a subsequence {zn} of {xn} which is a c0-sequence in X , i.e., there

are K1 > 0 and K2 > 0 such that

K1 sup
16i6n

|ai| 6
∥∥∥∥

n∑

i=1

aixi

∥∥∥∥ 6 K2 sup
16i6n

|ai|

for all a1, . . . , an ∈ �
and n ∈ � .

Lemma 2.3. Let (Ω, Σ, µ) be a complete finite measure space and X a Banach

space. If there is a sequence {gn} of functions gn : Ω → X such that

(i)
∥∥∥

n∑
i=1

εigi(·)
∥∥∥ ∈ L1(µ) for each finite set of signs {ε1, . . . , εn},

(ii) inf
n∈ �

∫
Ω
‖gn(ω)‖ dµ(ω) > 0 and

(iii) there exists K > 0 with

sup
n∈ �

∫

Ω

∥∥∥∥
n∑

i=1

gi(·)
∥∥∥∥ dµ(ω) < K,

then X contains a copy of c0.
�������
	

. Let us remark that no measurability requirement is imposed on the
functions gn. To start with, let us see that condition (iii) implies that the sequence
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{‖gn(·)‖} is uniformly integrable. This statement is almost contained in the proof
of [2, Theorem 2.1.1], so we just sketch the argument. Assume on the contrary that
{‖gn(·)‖} is not uniformly integrable. Then the scalar measures

∫
(·) ‖gn(ω)‖ dµ(ω)

are not uniformly countably additive, so there are ε > 0, a sequence {An} ⊆ Σ of
pairwise disjoint sets and a subsequence of {gn}, that we shall denote in the same way,
such that

∫
An

‖gn(ω)‖ dµ(ω) > 2ε for each n ∈ � . Defining µn : Σ → � by µn(E) =∫
E ‖gn(ω)‖ dµ(ω) for each n ∈ � , Rosenthal’s disjointification lemma [3, Chapter 7]
determines a strictly increasing sequence {ni} ⊆ � with µni

( ⋃
j∈ � , j 6=i

Anj

)
< ε for

each i ∈ � . Hence
∞∑

j=1, j 6=i

∫
Anj

‖gni(ω)‖ dµ(ω) < ε for each i ∈ � . Since (iii) ensures
∫
Ω

∥∥∥
m∑

i=1

gni(ω)
∥∥∥ dµ(ω) 6 K for each m ∈ � , we have

K >
∫

m⋃
i=1

Ani

∥∥∥∥
m∑

j=1

gnj (ω)
∥∥∥∥ dµ(ω) =

m∑

i=1

∫

Ani

∥∥∥∥
m∑

j=1

gnj (ω)
∥∥∥∥ dµ(ω)

>
m∑

i=1

∫

Ani

‖gni(ω)‖ dµ(ω)−
m∑

i=1

m∑

j=1, j 6=i

∫

Ani

‖gnj (ω)‖ dµ(ω) > mε

for each m ∈ � , a contradiction.
Setting A1 = {ω ∈ Ω: limn→∞‖gn(ω)‖ > 0}, we claim that µ(A1) > 0. Otherwise

lim
n→∞

‖gn(ω)‖ = 0 for almost all ω ∈ Ω and since the sequence {‖gn(·)‖} is uniformly
integrable, it follows from Vitali’s lemma [8, Exercise 13.38] that

lim
n→∞

∫

Ω

‖gn(ω)‖ dµ(ω) = 0,

contradicting condition (ii).

Denote by ∆ the product space {−1, 1} � , by Γ the σ-algebra of subsets of ∆
generated by the n-cylinders of ∆, n = 1, 2, . . ., and by ν the probability measure
∞⊗

i=1

νi on Γ, where νi : 2{−1,1} → [0, 1] satisfies νi(∅) = 0, νi({−1}) = νi({1}) = 1
2

and νi({−1, 1}) = 1 for each i ∈ � . Now consider the non-negative µ-measurable
map ϕn : Ω → � defined by

ϕn(ω) =
∫

∆

∥∥∥∥
n∑

i=1

εigi(ω)
∥∥∥∥ dν(ε)

for n = 1, 2, . . .. Hence (iii) and Fubini’s theorem yield

sup
n∈ �

∫

Ω

ϕn(ω) dµ(ω) 6 K.
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Taking into account that

∫

∆

∥∥∥∥
n∑

i=1

εigi(ω)
∥∥∥∥ dν(ε) =

1
2n

∑

(ε1,ε2,...,εn)∈{−1,1}n

∥∥∥∥
n∑

i=1

εigi(ω)
∥∥∥∥

=
∫ 1

0

∥∥∥∥
n∑

i=1

ri(t)gi(ω)
∥∥∥∥ dt

we have for each ω ∈ Ω

ϕn(ω) =
∫ 1

0

∥∥∥∥
n∑

i=1

ri(t)gi(ω)
∥∥∥∥ dt.

So it follows from [2, Proposition 2.1.2] that {ϕn} is a monotone increasing sequence
of non negative functions. Consequently, the monotone convergence theorem provides
a µ-null set A2 ∈ Σ such that sup

n∈ �
ϕn(ω) < ∞ for each ω ∈ Ω \ A2. Considering the

set A := A1 ∩ (Ω \ A2), it is obvious that µ(A) > 0, hence A 6= ∅. Moreover,
limn→∞‖gn(ω)‖ > 0 and

sup
n∈ �

∫ 1

0

∥∥∥∥
n∑

i=1

ri(t)gi(ω)
∥∥∥∥ dt < ∞

for each ω ∈ A. Choose ω0 ∈ A and a strictly increasing sequence of positive
integers {ni} such that inf

i∈ � ‖gni(ω0)‖ > 0. Then, setting yi := gni(ω0) for each i ∈ �
and using the properties of the measure space, we conclude that

sup
n∈ �

∫ 1

0

∥∥∥∥
n∑

i=1

ri(t)yi

∥∥∥∥dt < ∞.

Since X is a Banach space, according to Lemma 2.2 there is a subsequence of {yn}
which is a basic sequence in X equivalent to the unit vector basis of c0. �

3. Proof of Theorem 1.1

Let us suppose that {Fn} is a normalized basic sequence in bvca(Σ, X) equivalent

to the unit vector basis of c0 and define µ ∈ ca+(Σ) by µ =
∞∑

n=1
2−n|Fn|. We

will assume without loss of generality that the measure space (Ω, Σ, µ) is complete.
Clearly ‖Fn(E)‖ 6 2nµ(E) for each E ∈ Σ and n ∈ � and, if we consider each Fn

as a map from Σ into X∗∗, then span({Fn : n ∈ � }) ⊆ bvcaµ(Σ, X∗∗).
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According to Lemma 2.1 there is a linear injective map T from bvcaµ(Σ, X∗∗)
into Lw∗(µ, X∗∗) satisfying conditions 1 and 2 therein. Therefore, if f := T (F ) with
F ∈ bvcaµ(Σ, X∗∗), then
(a) x∗F (E) =

∫
E

f(ω)x∗ dµ(ω) for each x∗ ∈ X∗ and E ∈ Σ, and
(b) |F |(E) =

∫
E ‖f(ω)‖ dµ(ω) for each E ∈ Σ.

Since BX∗ is weak∗ sequentially dense in BX∗∗∗ , given u ∈ BX∗∗∗ there is a

sequence {x∗n} in BX∗ that converges to u under the weak∗ topology of BX∗∗∗ .
Then, choosing a fixed F ∈ bvcaµ(Σ, X) and setting f := T (F ), the latter implies
that x∗nf(ω) → uf(ω) for each ω ∈ Ω. So, given that |f(ω)x∗n| 6 ‖f(ω)‖ for µ-almost
all ω ∈ Ω and ‖f(·)‖ ∈ L1(µ), we have uf ∈ L1(µ) and

(3.1)
∫

E

x∗nf(ω) dµ(ω) →
∫

E

uf(ω) dµ(ω)

for each E ∈ Σ by virtue of the dominated convergence theorem. This shows that
the map f : Ω → X∗∗ is Dunford integrable in Ω, so that (D)

∫
E f dµ ∈ X∗∗∗∗. Since

(3.1) and condition (a) above imply that

uF (E) =
∫

E

uf(ω) dµ(ω)

for each u ∈ X∗∗∗ and E ∈ Σ, it follows that (D)
∫

E f dµ ∈ X∗∗ and, consequently,
F (E) = (P)

∫
E

f dµ for each E ∈ Σ, i.e. f ∈ P(µ, X∗∗).
As a consequence of the fact that uf ∈ L1(µ) for each u ∈ X∗∗∗, if S is a norm-one

linear projection operator from X∗∗ onto X and x∗ ∈ X∗, the fact that S∗x∗ ∈ X∗∗∗

guarantees that the integral
∫

E

x∗(Sf) dµ =
∫

E

(S∗x∗)f dµ

is well defined, i.e. x∗(Sf) ∈ L1(µ) for each x∗ ∈ X∗. So, keeping in mind that
F (E) ∈ X , one has

〈
x∗, (D)

∫

E

Sf dµ
〉

=
∫

E

x∗(Sf) dµ = 〈S∗x∗, F (E)〉 = 〈x∗, S(F (E))〉 = x∗F (E)

for each x∗ ∈ X∗. This establishes that Sf ∈ P(µ, X) and

(3.2) F (E) = (P)
∫

E

(S ◦ f)(ω) dµ(ω)

for each E ∈ Σ. Using the fact that the mapping ω → ‖Sf(ω)‖ is µ-measurable
(since each set in Ω is µ-measurable), we conclude that (3.2) implies

‖F (E)‖ 6 sup
‖x∗‖61

∫

E

|x∗(S ◦ f)(ω)| dµ(ω) 6
∫

E

‖(Sf)(ω)‖ dµ(ω),
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which leads to the inequality

(3.3) |F | 6
∫

Ω

‖Sf(ω)‖ dµ(ω).

On the other hand, since ‖S‖ = 1, we have

‖Sf(ω)‖ 6 ‖f(ω)‖

for each ω ∈ Ω. Thus, according to property (b) one has

(3.4)
∫

Ω

‖Sf(ω)‖ dµ(ω) 6
∫

Ω

‖f(ω)‖ dµ(ω) = |F |.

On the basis of (3.3) and (3.4) we conclude that

(3.5) |F | =
∫

Ω

‖Sf(ω)‖ dµ(ω).

Summarizing, if F ∈ bvcaµ(Σ, X) and f = T (F ), we have shown that
(i) Sf ∈ P(µ, X),
(ii) F (E) = (P)

∫
E Sf dµ for each E ⊆ Ω and

(iii) |F | =
∫
Ω
‖Sf(ω)‖ dµ(ω).

Let us write gn := ST (Fn) for each positive integer n.

Given that the series
∞∑

n=1
Fn is weakly unconditionally Cauchy there is K > 0 such

that
∣∣∣

n∑
i=1

Fi

∣∣∣ < K for all n ∈ � . So, according to (3.5), we have

∫

Ω

∥∥∥∥
n∑

i=1

εigi(ω)
∥∥∥∥ dµ(ω) =

∫

Ω

∥∥∥∥ST

( n∑

i=1

εiFi

)
(ω)

∥∥∥∥ dµ(ω) =
∣∣∣∣

n∑

i=1

εiFi

∣∣∣∣ < K

for each n ∈ � . This verifies conditions (i) and (iii) of Lemma 2.3. As moreover
∫

Ω

‖gn(ω)‖ dµ(ω) = |Fn| = 1

for each n ∈ � , an application of Lemma 2.3 concludes the proof. �

Remark 3.1. Note that if the dual ball of X is weak∗ dense in BX∗∗∗ and, in

addition, X∗ is separable, then X cannot contain any copy of c0. Otherwise, since
X is separable, Sobczyk’s theorem [3, Chapter 7] ensures that c0 embeds comple-

mentably in X and, consequently, X∗∗ does not contain a copy of `∞. This is a
contradiction since, according to Odell-Rosenthal’s theorem [3, Chapter 8], BX∗∗∗ is

weak∗ sequentially compact.
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Corollary 3.1. Assume that Σ = 2Ω and let X be a Banach space such that

X∗ is separable and contains no copy of `1. If X is norm-one complemented in X∗∗,

then bvca(Σ, X) does not contain a copy of c0.
�������
	

. Another application of Odell-Rosenthal’s theorem guarantees that the

dual ball of X is weak∗ dense in BX∗∗∗ . Hence, the previous remark prevents X from
containing a copy of c0 and Theorem 1.1 applies. �

4. Proof of Theorem 1.2

Let {Fn} be a normalized basic sequence in bvca(Σ, X) equivalent to the unit

vector basis of c0 and define µ ∈ ca+(Σ) by µ =
∞∑

n=1
2−n|Fn|. As in the proof of the

previous theorem, ‖Fn(E)‖ 6 2nµ(E) for each E ∈ Σ and n ∈ � and span({Fn}) ⊆
bvcaµ(Σ, X∗∗) when each Fn is considered as a map from Σ into X∗∗. By Lemma 2.1

there is a linear injective map T from bvcaµ(Σ, X∗∗) into Lw∗(µ, X∗∗) such that
(i) x∗F (E) =

∫
E

TF (ω)x∗ dµ(ω) for each x∗ ∈ X∗ and E ∈ Σ, and
(ii) |F |(E) =

∫
E ‖Tf(ω)‖ dµ(ω) for each E ∈ Σ.

Set hn := TFn for each n ∈ � .
Since X has the WRNP with respect to (Ω, Σ, µ), there exists a sequence {fn} in

P(µ, X) such that Fn(E) = (P)
∫

E fn(ω) dµ(ω) for each E ∈ Σ and n ∈ � . Given
n fixed numbers εi ∈ {−1, 0, 1}, 1 6 i 6 n, it follows from

∫

E

∥∥∥∥
n∑

i=1

εihi

∥∥∥∥ dµ(ω) =
∫

E

∥∥∥∥T

( n∑

i=1

εiFi

)∥∥∥∥ dµ(ω) =
∣∣∣∣

n∑

i=1

εiFi

∣∣∣∣(E)

that

∫

E

∣∣∣∣x∗
( n∑

i=1

εifi

)∣∣∣∣ dµ 6
∥∥∥∥

n∑

i=1

εiFi

∥∥∥∥(E) 6
∣∣∣∣

n∑

i=1

εiFi

∣∣∣∣(E) =
∫

E

∥∥∥∥
n∑

i=1

εihi(ω)
∥∥∥∥ dµ(ω)

for each x∗ ∈ BX∗ and E ∈ Σ. Consequently, for each x∗ ∈ BX∗ there is a

null set N(ε1, . . . , εn, x∗) ∈ Σ such that
∣∣∣x∗

( n∑
i=1

εifi(ω)
)∣∣∣ 6

∥∥∥
n∑

i=1

εihi(ω)
∥∥∥ for all

ω ∈ Ω \ N(ε1, . . . , εn, x∗). If {x∗m} denotes a norming sequence in (the unit sphere
of) X∗, setting N(ε1, . . . , εn) :=

∞⋃
m=1

N(ε1, . . . , εn, x∗m) we have
∣∣∣x∗m

( n∑
i=1

εifi(ω)
)∣∣∣ 6

∥∥∥
n∑

i=1

εihi(ω)
∥∥∥ for each ω ∈ Ω \ N(ε1, . . . , εn) and all m ∈ � . This implies that

∥∥∥
n∑

i=1

εifi(ω)
∥∥∥ 6

∥∥∥
n∑

i=1

εihi(ω)
∥∥∥ for each ω ∈ Ω \ N(ε1, . . . , εn). Therefore, setting
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N :=
∞⋃

n=1

⋃
(ε1,...,εn)

N(ε1, . . . , εn), we conclude that N is a µ-null set such that

∥∥∥∥
n∑

i=1

εifi(ω)
∥∥∥∥ 6

∥∥∥∥
n∑

i=1

εihi(ω)
∥∥∥∥

for each ω ∈ Ω\N and each finite set {ε1, . . . , εn}. Moreover, as each scalarly valued
function ω →

∥∥∥
n∑

i=1

εifi(ω)
∥∥∥ is µ-measurable as a consequence of the fact that

∥∥∥∥
n∑

i=1

εifi(ω)
∥∥∥∥ = sup

m∈ �

∣∣∣∣x∗m
( n∑

i=1

εifi(ω)
)∣∣∣∣

for all ω ∈ Ω, it follows that
∥∥∥

n∑
i=1

εifi(·)
∥∥∥ ∈ L1(µ).

In particular, ‖fn(·)‖ ∈ L1(µ) for all n ∈ � and, consequently,

‖Fn(E)‖ = sup
‖x∗‖61

|x∗F (ω)| 6 sup
‖x∗‖61

∫

E

|x∗fn(ω)| dµ(ω) 6
∫

E

‖fn(ω)‖ dµ(ω)

for each n ∈ � and E ∈ Σ. This implies that

|Fn| 6
∫

Ω

‖fn(ω)‖ dµ(ω) 6
∫

Ω

‖hn(ω)‖ dµ(ω) = |Fn|,

that is,
∫
Ω
‖fn(ω)‖ dµ(ω) = 1 for each n ∈ � .

Since the series
∞∑

n=1
Fn is weak unconditionally Cauchy there is K > 0 such that

∣∣∣
n∑

i=1

εiFi

∣∣∣ < K for all finite set of numbers εi ∈ {−1, 0, 1}. So, according to what we
have established above, we have

∫

Ω

∥∥∥∥
n∑

i=1

εifi(ω)
∥∥∥∥ dµ(ω) 6

∫

Ω

∥∥∥∥
n∑

i=1

εihi(ω)
∥∥∥∥ dµ(ω) =

∣∣∣∣
n∑

i=1

εiFi

∣∣∣∣ < K

for each εi ∈ {−1, 0, 1}, 1 6 i 6 n and n ∈ � . Since ∫
Ω
‖fn(ω)‖ dµ(ω) = 1 for each

n ∈ � , Lemma 2.3 leads to the conclusion. �
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Corollary 4.1. Let X be a real Banach space of infinite dimension whose dual

unit ball has countably many extreme points. If X has the WRNP with respect

to each µ ∈ ca+(Σ), then the space bvca(Σ, X) contains a copy of c0 if and only if

X does.
�������
	

. Since the set K = Ext BX∗ of the extreme points of the dual unit ball

of X is a James boundary for BX∗ [7, Chapter 3], we have ‖x‖ = sup{|x∗x| : x∗ ∈ K}
and, consequently, ExtBX∗ is a norming set for X . Since Ext BX∗ is countable by

hypothesis, the preceding theorem applies. �

Remark 4.1. Let us mention that Theorem 1.2 clearly applies when X is sep-

arable, for X∗ would contain a norming sequence. However, this case was already
contained in [6, Remark], since separability implies that X possesses the Radon-

Nikodým property with respect to each µ ∈ ca+(Σ).

References

[1] J. Bourgain: An averaging result for c0-sequences. Bull. Soc. Math. Belg., Sér. B 30
(1978), 83–87. zbl

[2] P. Cembranos, J. Mendoza: Banach Spaces of Vector-Valued Functions. Lecture Notes
in Mathematics Vol. 1676. Springer-Verlag, Berlin, 1997. zbl

[3] J. Diestel: Sequences and Series in Banach Spaces. Graduate Texts in Mathematics, 92.
Springer-Verlag, New York-Heidelberg-Berlin, 1984. zbl

[4] J. Diestel, J. Uhl: Vector Measures. Mathematical Surveys, No 15. Am. Math. Soc.,
Providence, 1977. zbl

[5] L. Drewnowski: When does ca(Σ, Y ) contain a copy of `∞ or c0? Proc. Am. Math. Soc.
109 (1990), 747–752. zbl

[6] J.C. Ferrando: When does bvca(Σ, X) contain a copy of `∞? Math. Scand. 74 (1994),
271–274. zbl

[7] P. Habala, P. Hájek, and V. Zizler: Introduction to Banach Space. Matfyzpress, Prague,
1996. zbl

[8] E. Hewitt, K. Stromberg: Real and Abstract Analysis. Graduate Texts in Mathemat-
ics 25. Springer-Verlag, New York-Heidelberg-Berlin, 1975. zbl

[9] K. Musial: The weak Radon-Nikodým property in Banach spaces. Stud. Math. 64 (1979),
151–173. zbl

[10] E. Saab, P. Saab: On complemented copies of c0 in injective tensor products. Contemp.
Math. 52 (1986), 131–135. zbl

[11] M. Talagrand: Quand l’espace des mesures a variation bornée est-it faiblement sequen-
tiellement complet? Proc. Am. Math. Soc. 90 (1984), 285–288. (In French.) zbl

Authors’ addresses: ����� � ������� �
��� , Centro de Investigación Operativa, Univer-
sidad Miguel Hernández, E-03202 Elche (Alicante), Spain, e-mail: jc.ferrando@umh.es;�  �  � � �  ! ��"$# % & " , Departamento de Matemática Aplicada, Universidad Politécnica
de Valencia, E-46022 Valencia, Spain, e-mail: lmsr@mat.upv.es.

688


		webmaster@dml.cz
	2020-07-03T16:50:17+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




