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Abstract. In this paper we deal with weakly homogeneous direct factors of lattice or-
dered groups. The main result concerns the case when the lattice ordered groups under
consideration are archimedean, projectable and conditionally orthogonally complete.
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1. Introduction

A lattice ordered group is weakly homogeneous if whenever a1, bi ∈ G (i = 1, 2)

and a1 < a2, b1 < b2, then card[a1, b1] = card[a2, b2].

The weak homogeneity of Boolean algebras or of MV -algebras is defined analo-

gously.

Weakly homogeneous direct factors of a complete lattice ordered group were in-

vestigated in [4].

Earlier, weak homogeneity of direct factors of a complete Boolean algebra was

dealt with by Sikorski [11], §25.

The notion of weak homogeneity of a Boolean algebra is a particular case of f -

homogeneity which is defined by means of a cardinal property f (cf. Pierce [9], [10]).

The above mentioned result of Sikorski [11] and a result of Pierce [9] on complete

Boolean algebras were generalized in [8] to MV -algebras which are archimedean,

projectable and orthogonally complete.
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In this context the natural question arises whether similar conditions enable one to

generalize the results of [4] concerning complete lattice ordered groups to a broader

class of lattice ordered groups.

We denote by C0 the class of all lattice ordered groups which are archimedean,

projectable and conditionally orthogonally complete.

Each complete lattice ordered group belongs to C0, but not conversely. E.g., the

additive group Q of all rationals with the natural linear order belongs to C0 and it

fails to be complete. The same holds for any direct product of lattice ordered groups

which are isomorphic to Q.

Let R be the additive group of all reals with the natural linear order. We denote
by G1 the class of all lattice ordered groups G1 such that G1 is isomorphic to some

ℓ-subgroup of R.
In this paper we prove the following result.

(W) Let G be a lattice ordered group belonging to C0. Then G can be represented

as a complete subdirect product of lattice ordered groups Gi (i ∈ I) such that

for each i ∈ I, either Gi ∈ G1 or Gi is weakly homogeneous. If, moreover,

G is orthogonally complete, then the representation turns out to be a direct

product decomposition of G.

This generalizes a result of [4].

If G has a strong unit, then the assertion of (W) can be deduced from a result of

[8] concerning MV -algebras; cf. Section 3.

If G is not assumed to have a strong unit the result of [8] cannot be applied and the

proof is longer. We show that, similarly as in the case of Boolean algebras or MV -

algebras, (W) is a consequence of a stronger result concerning f -homogeneity, where

f is an increasing cardinal property. We generalize the main results of Section 1 in

[4] dealing with f -homogeneity of complete lattice ordered groups to lattice ordered

groups belonging to C0.

2. Preliminaries

The group operation in a lattice ordered group will be written additively (cf. Birk-

hoff [1] and Conrad [3]).

Let G be a lattice ordered group. G is complete if each nonempty upper-bounded

subset of G possesses the supremum in G. In that case, also the corresponding dual

condition is satisfied. An indexed system (xi)i∈I of elements of G+ is orthogonal if

xi(1) ∧ xi(2) = 0 whenever i(1) and i(2) are distinct elements of I.

G is (conditionally) orthogonally complete if each (upper-bounded) orthogonal

system of elements of G has the supremum in G.
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G is archimedean if, whenever g1, g2 ∈ G+ and ng1 6 g2 for each n ∈ N, then
g1 = 0.

The direct product
∏

i∈I

Gi of lattice ordered groups Gi is defined in the usual way.

If I = {1, 2, . . . , n}, then we apply the notation G1 × . . .×Gn.

Let H1 and H2 be convex ℓ-subgroups of G. Assume that for each g ∈ G there

exist uniquely defined elements h1 ∈ H1, h2 ∈ H2 with g = h1 + h2 such that,

whenever for g′ ∈ G we have the analogous representation g′ = h′1 + h′2, then

g ◦ g′ = (h1 ◦ h
′
1) + (h2 ◦ h

′
2)

for each operation ◦ ∈ {+,∧,∨}. In that case, the mapping ϕ : g → (h1, h2) is an

isomorphism of G onto the direct product H1 × H2. We call H1 and H2 internal

direct factors of G; the mapping ϕ is an internal direct product decomposition of G.

For g ∈ G and i ∈ {1, 2}, hi is the component of g in Hi.

Assume that (Hi)i∈I is an indexed system of internal direct factors of G. For

g ∈ G and i ∈ I let gi be the component of g in Hi. Suppose that the mapping

ψ : G→
∏

i∈I

Hi

defined by ψ(g) = (gi)i∈I is an isomorphism of G onto
∏

i∈I

Hi. Then ψ is called an

internal direct product decomposition of G. (In the case I = {1, 2, }, this definition

obviously coincides with that given above.) We often express this situation by writing

(1) G =
∏

i∈I

Hi.

More generally, let {Hi}i∈I be an indexed system of internal direct factors of a

lattice ordered group G0. For g ∈ G0 put ψ(g) = (gi)i∈I and suppose that

(i) ψ(G0) is an ℓ-subgroup of
∏

i∈I

Hi;

(ii) ψ is an isomorphism of G0 onto ψ(G0).

Then G0 is said to be a complete subdirect product of lattice ordered groups Hi

(i ∈ I). In this situation we write G0 = (s)
∏

i∈I

Hi.

In particular, if (1) is valid and G0 is a convex ℓ-subgroup of G such that Hi ⊆ G0

for each i ∈ I, then G0 is a complete subdirect product of Hi (i ∈ I). The notion of

the complete subdirect product of lattice ordered groups goes back to Šik [12].

We denote by F (G) the system of all internal direct factors of a lattice ordered

group G. The system F (G) is partially ordered by the set-theoretical inclusion. It

is well-known that F (G) is a Boolean algebra.
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For X ⊆ G we put

Xδ = {g ∈ G : |g| ∧ |x| = 0 for each x ∈ X}.

Xδ is a polar of G.

G is projectable if for each one-element subset X of G, Xδ is an internal direct

factor of G.

3. Unital lattice ordered groups

A lattice ordered group G is called unital if it has a strong unit. We will deal with

a fixed strong unit u of G.

For MV -algebras we apply the notation as in the monograph [8].

For the notion of projectability of an MV -algebra cf. [6]. The orthogonal com-

pleteness of an MV -algebra is defined analogously as in the case of lattice ordered

groups.

We denote by C the class of allMV -algebras which are archimedean, orthogonally

complete and projectable. This class is studied in [8].

In the present section we apply the results from [5] concerning weak homogeneity

of MV -algebras for investigating the weak homogeneity of unital lattice ordered

groups.

Let G and u be as above. Consider the MV -algebra A = Γ(G, u).

The underlying set of A (i.e., the interval [0, u] of G) will be denoted by A. We

have A = {0} if and only if G = {0}. For our purposes, this case is trivial. Thus we

will suppose that A 6= {0}; we say that A is a nonzero MV -algebra.

Lemma 3.0. Assume that A is an internal direct product
∏

i∈I

Ai. For i ∈ I let

Gi be the ℓ-subgroup of G generated by the set Ai. Then G = (s)
∏

i∈I

Gi.

P r o o f. Let i ∈ I. According to [7], Gi is an internal direct factor of G and for

each a ∈ A, the component of a in Ai coincides with the component of a in Gi.

For g ∈ G let gi be the component of g in Gi. Hence the mapping ϕ : g → (gi)i∈I

is a homomorphism of G into
∏

i∈I

Gi = G′ and ϕ(G) is an ℓ-subgroup of G′.

If ϕ fails to be an isomorphism of G onto G′ then there exists 0 < g ∈ G with

ϕ(g) = 0. Put a = g ∧ u. Then 0 < a ∈ A and ϕ(a) = 0. Hence ai = 0 for each

i ∈ I. This yields a = 0, which is a contradiction. Therefore g = (s)
∏

i∈I

Gi. �
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It is well-known that G is archimedean if and only if A is archimedean (i.e.,

semisimple). Further, it is easy to verify that the following conditions are equivalent:

(i) G is conditionally orthogonally complete;

(ii) A is orthogonally complete.

Lemma 3.1 (Cf. [6]). A is projectable if and only if G is projectable.

Summarizing, we obtain

Lemma 3.2. The lattice ordered group G belongs to C0 if and only if A ∈ C .

Consider the following condition for A :

(∗) For each 0 < a ∈ A, card[0, a] is infinite.

Lemma 3.3 (Cf. [8], Theorem (C)). The following conditions are equivalent:

(i) A is weakly homogeneous and satisfies the condition (∗);

(ii) G is weakly homogeneous.

Theorem 3.4 (Cf. [8]). Let A be an MV -algebra belonging to the class C .

Then A can be represented as an internal direct product
∏

i∈I

Ai such that for each

i ∈ I, some of the following conditions is valid:

(i) Ai is weakly homogeneous;

(ii) Ai is a finite chain.

Theorem 3.5. Let G be a unital lattice ordered group belonging to the class

C0. Then G can be represented as a complete subdirect product (s)
∏

i∈I

Gi such that

for each i ∈ I, some of the following conditions is satisfied:

(i) Gi is weakly homogeneous;

(ii) Gi ≃ Z.

P r o o f. In view of the assumption, there exists a strong unit u in G. Put

A = Γ(G, u). Since G ∈ C0, in view of 3.2 we have A ∈ C . Thus the assertion of

3.4 holds for A . Let Ai (i ∈ I) be as in 3.4 and let Ai be the underlying set of Ai.

We denote by Gi the ℓ-subgroup of G generated by Ai. Then for each i ∈ I we have

(1) Ai = Γ(Gi, ui),

where ui is the greatest element of Ai.
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From 3.4 and from 3.0 we obtain

G = (s)
∏

i∈I

Gi.

Without loss of generality we can suppose that Ai 6= {0} for each i ∈ I. If i ∈ I and

if Ai is finite, then in view of (1) we conclude that Gi ≃ Z.

Let i ∈ I and assume that Ai is infinite. Then according to 3.4, Ai is weakly

homogeneous. It is clear that in this case the condition (∗) must be satisfied. Hence

in view of 3.3, Gi is weakly homogeneous. This completes the proof. �

We have verified that for unital lattice ordered groups the assertion of (W) (in

fact, a slightly stronger result) is valid.

4. Increasing cardinal properties

Assume that C1 is a nonempty class of lattice ordered groups which is closed with

respect to isomorphisms. We denote by IntC1 the class of all lattices L having the

property that there exist G ∈ C1 and an interval [a1, a2] of G such that L ≃ [a1, a2].

Let f be a rule that assigns to each L ∈ IntC1 a cardinal fL such that, whenever

L′ ∈ IntC1 and L′ ≃ L, then fL′ = fL. We say that f is a cardinal property on the

class C1.

For other types of ordered algebraic structures we can apply analogous definitions.

The cardinal property f is increasing (decreasing) if, whenever L ∈ IntC1 and L1

is a subinterval of L, then fL1 6 fL2 (or fL1 > fL, respectively).

A lattice ordered group G ∈ C1 is f -homogeneous if, whenever ai, bi ∈ G (i = 1, 2)

and a1 < a2, b1 < b2, then f [a1, a2] = f [b1, b2].

A lattice L ∈ IntC1 is said to be f -homogeneous if for each subinterval L1 of L

with cardL1 > 1 we have fL1 = fL. Increasing cardinal properties on the class of

complete lattice ordered groups were investigated in the author’s paper [4].

Earlier, Pierce [9] studied increasing cardinal properties on the class of complete

Boolean algebras. For the case of MV -algebras, cf. the author’s paper [8].

In Section 6 we generalize some results of [4] concerning increasing cardinal prop-

erties on the class of complete lattice ordered groups for the larger class C0.

Let f be an increasing cardinal property on C1. We will use the following condi-

tions for f :

(c1) If G ∈ C1, ti ∈ G, 0 < ti (i = 1, 2), f [0, t1] = f [0, t2] and if [0, t1], [0, t2] are

f -homogeneous, then f [0, t1 + t2] = f [0, t1].

(c2) If G ∈ C1, tn ∈ G (n = 1, 2, . . .), 0 < t1 6 t2 6 . . .,
∨

n∈N tn = t and if all the

intervals [0, tn] are f -homogeneous, then f [0, t] = f [0, t1].
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Lemma 4.1. Under the above notation, let f satisfy the condition (c1). Let

G, t1 and t2 be as in (c1). Then the interval [0, t1 + t2] of G is f -homogeneous.

P r o o f. Denote f [0, t1] = α. Let x1, x2 ∈ [0, t1 + t2], x1 < x2. We put

x = x2 − x1. Since [0, x] ≃ [x1, x2], we have f [x1, x2] = f [0, x]. From 0 < x 6 t1 + t2
we get f [0, x] 6 f [0, t1 + t2] = α. There exist t′1, t

′
2 ∈ G such that 0 6 t′i 6 ti for

i = 1, 2 and x = t′1 + t′2. Hence either t
′
1 > 0 or t′2 > 0. Suppose, e.g., that 0 < t′1.

In view of the f -homogeneity of [0, t1] we get f [0, t′1] = α. Then f [0, x] > f [0, t1].

Therefore f [0, x] = α and hence f [x1, x2] = α. �

Lemma 4.2. Under the above notation, let f satisfy the condition (c2). Let

G, tn (n ∈ N) and t be as in (c2). Then the interval [0, t] of G is f -homogeneous.

P r o o f. Put f [0, t1] = α. Similarly as in the proof of 4.1 it suffices to verify

that for each 0 < x 6 t we have f [0, x] = α. From t =
∨

n∈N tn we obtain
x = x ∧ t =

∨

n∈N(x ∧ tn).

Hence there exists n ∈ N with x ∧ tn > 0. Since [0, tn] is f -homogeneous, we get

f [0, x ∧ tn] = α and thus f [0, x] > α. On the other hand, from x 6 t and from (c2)

we get f [0, x] 6 f [0, t] = α, whence f [0, x] = α. �

5. Auxiliary results

An element e of a lattice ordered group G is a weak unit of G if e∧ g > 0 for each

0 < g ∈ G.

Lemma 5.1. Let G be an archimedean lattice ordered group and let e be a weak

unit of G. Then

(1)
∞
∨

n=1

(ne ∧ g) = g

for each 0 6 g ∈ G.

P r o o f. Let us denote by G1 the Dedekind completion of G. In view of 1.19 in

[4], the relation (1) is valid in the lattice ordered group G1. Since the elements ne

and g belong to G, we infer that (1) holds also in G. �

We denote by a(G) the set of all elements 0 < a ∈ G such that the interval [0, a]

of G is a chain.
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Lemma 5.2 (Cf. [5]). Let G be an archimedean lattice ordered group.

(i) For each a1 ∈ a(G) there exists an element G(a1) of F (G) such that a1 ∈

G(a1) and G(a1) is linearly ordered.

(ii) Let a1, a2 ∈ a(G). Then either G(a1) = G(a2) or G(a1) ∩G(a2) = {0}.

Lemma 5.3. Let G be a lattice ordered group and 0 < e ∈ G. Then e is a weak

unit of the lattice ordered group {e}δδ.

P r o o f. Let 0 < g ∈ {e}δδ. If a∧g = 0, then g ∈ {a}δ. Since {e}δ∩{e}δδ = {0},

we obtain g = 0, which is a contradiction. �

Lemma 5.4. Let G be an archimedean lattice ordered group and let 0 < e ∈ G.

Let f be an increasing cardinal property on the class of all archimedean lattice

ordered groups satisfying the conditions (c1) and (c2). Assume that the interval

[0, e] is f -homogeneous. Then the lattice ordered group {e}δδ is f -homogeneous.

P r o o f. By applying 4.1 and induction we obtain that for each n ∈ N, the
interval [0, ne] is f -homogeneous. Put f [0, g] = α. It suffices to verify that for each

0 < g ∈ {e}δδ we have f [0, g] = α.

In view of 5.3 and 5.1, the relation (1) is valid. Further, 0 < ne∧g for each n ∈ N.
Thus f [ne ∧ g] = α for each n ∈ N. From 4.2 we infer that f [0, g] = α. �

An indexed system (Gi)i∈I of elements of F (G) is orthogonal if Gi(1)∩Gi(2) = {0}

whenever i(1) and i(2) are distinct elements of I.

Assume that the lattice ordered group G is conditionally orthogonally complete

and that (Gi)i∈I is an orthogonal indexed system of elements of F (G). Let H0 be

the set of all elements h of G+ which can be expressed in the form

(2) h =
∨

i∈I

hi,

where hi ∈ G+
i for each i ∈ I.

Lemma 5.5. H0 is an ideal of the lattice G
+; further, H0 is closed with respect

to the operation +.

P r o o f. a) Let h be as above. Analogously, let h1 =
∨

i∈I

hi
1, h

i
1 ∈ G+

i . Then we

have

h ∨ h1 =
∨

i∈I

(hi ∨ hi
1)

with hi ∨ hi
1 ∈ G+

i . Thus h ∨ h1 ∈ H0.
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b) Let h be as above and h2 ∈ G+, h2 6 h. Then

h2 = h2 ∧ h =
∨

i∈I

(h2 ∧ h
i)

and h2 ∧ hi ∈ G+
i for each i ∈ I. Hence h2 ∈ H0. We have verified that H0 is an

ideal of G+.

c) Let h and h1 be as in a). Then

h+ h1 =
(

∨

i∈I

hi
)

+
(

∨

j∈I

hj
1

)

=
∨

i∈I

∨

j∈I

(hi + hj
1).

If i = j, then hi + hj
1 ∈ Gi. If i 6= j, then hi ∧ hj

1 = 0, whence hi + hj
1 = hi ∨ hj

1.

Therefore

h+ h1 =
∨

i∈I

(hi + hi
1)

and thus h+ h1 ∈ H0. �

We denote by H1 the set of all g ∈ G having the property that there exist h, h1 ∈

H0 with −h 6 g 6 h1. By a simple calculation we obtain from 5.5

Lemma 5.6. H1 is a convex ℓ-subgroup of G.

Lemma 5.7. Let 0 < g ∈ G. Then the set {h ∈ H0 : h 6 g} has the greatest

element.

P r o o f. For i ∈ I let gi be the component of g in Gi. Hence gi ∈ G+
i for

each i ∈ I and the indexed system (gi)i∈I is orthogonal. Also, gi 6 g for each

i ∈ I. Thus there exists g0 =
∨

i∈I

gi in G. In view of the definition of H0 we have

g0 ∈ H0. Clearly, g0 6 g. We want to show that g0 is the greatest element of the set

{h ∈ H0 : h 6 g} = K.

By way of contradiction, assume that g0 fails to be the greatest element of the set

K. Then there exists k ∈ K with g0 < k.

If (2) is valid and i ∈ I, then the component hi of h in Gi is equal to hi. Hence

(g0)i = gi for each i ∈ I. Since g0 < k, there exists i(1) ∈ I such that (g0)i(1) < ki(1).

Further, from k ∈ K we get k 6 g, whence ki(1) 6 gi(1). We obtain gi(1) < ki(1) 6

gi(1), which is a contradiction. �

From 5.6 and 5.7 we infer
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Lemma 5.8. H1 is an internal direct factor of G.

For each i ∈ I we have Gi ⊆ H1. If H2 ∈ F (G) is such that Gi ⊆ H2 for each

i ∈ I, then from the definition of H0 we get H0 ⊆ H2; this yields that H1 ⊆ H2.

Therefore the relation

(3) H1 =
∨

i∈I

Gi

is valid in F (G). Thus each orthogonal indexed system of F (G) has the sumpremum

in F (G). This property will be called, similarly as for lattice ordered groups, the

orthogonal completeness of F (G).

It is well-known that each orthogonally complete Boolean algebra is complete.

Thus we have

Theorem 5.9. If G is a conditionally orthogonally complete lattice ordered

group, then the Boolean algebra F (G) is complete.

Lemma 5.10. Let (Gi)i∈I be as above and let H1 be as in 5.8. Then H1 =

(s)
∏

i∈I

Gi.

P r o o f. This is a consequence of 5.6 and of the fact that Gi ⊆ H1 for each

i ∈ I. �

6. f-homogeneous direct factors

In this section we assume that G 6= {0} is a lattice ordered group belonging to C0

and that f is an increasing cardinal property on the class C such that the conditions

(c1) and (c2) are satisfied.

We recall the notation introduced in [4].

Let A be the set of all cardinals α such that f [a, b] = α for some non-trivial

interval [a, b] of G. For any α ∈ A we put

Xα = {x ∈ G : x > 0, f [0, x] 6 α} ∪ {0};

Yα = {y ∈ G : y > 0, f [0, y] < α} ∪ {0};

Zα = (Yα)δ, Aα = Xα ∩ Zα.

Further, we set

Bα = {g ∈ G : −t1 6 g 6 t2 for some t1, t2 ∈ A},

Āα =
{

g ∈ G : g =
∨

j∈J

tj for some {tj}j∈J ⊆ Aα

}

,

Bα = {g ∈ G : −t1 6 g 6 t2 for some t1, t2 ∈ Āα}.
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Though the main results of Section 1 in [4] are formulated for complete lattice

ordered groups several auxiliary results proved in that section remain valid without

the assumption of completeness. We will freely use such results in the present paper.

Lemma 6.1 (Cf. [4], 1.4). Let α ∈ A . Then Bα is an ℓ-ideal of G and f [a, b] = α

for each non-trivial interval of Bα. If β ∈ A , β 6= α, then Bα ∩Bβ = {0}.

Lemma 6.2 (Cf. [4], 1.7.1). Let α ∈ A . Then Bα is an ℓ-ideal of G. If β ∈ A ,

β 6= α, then Bα ∩Bβ = {0}.

Let H be a lattice ordered group and let {hi}i∈I be an orthogonal subset of H

such that

(i) 0 < hi for each i ∈ I;

(ii) if h ∈ H and h ∧ hi = 0 for each i ∈ I, then h = 0.

Under these conditions we say that {hi}i∈I is a maximal orthogonal subset of H .

From the Axiom of Choice it follows that if H 6= {0}, then there exists a maximal

orthogonal system in H .

In view of [4], p. 91 we have

Lemma 6.3. Let {ai}i∈I be a maximal orthogonal subset of Bα. Then {ai}i∈I

is a maximal orthogonal subset of Bα.

Let (ai)i∈I be as in 6.3. For each i ∈ I we put Gi = {ai}
δδ. From 6.3 we obtain

that the indexed system (Gi)i∈I is orthogonal.

Because G belongs to C0 it is projectable and hence Gi ∈ F (G) for each i ∈ I.

Let H1 be as in Section 5. In view of 5.8, H1 is an element of F (G); moreover, by

virtue of the relation (3) in Section 5, H1 is the join of the system (Gi)i∈I in F (G).

Consider the convex ℓ-subgroups H1 and Bα of G.

Lemma 6.4. Bα = H1.

P r o o f. In view of the definitions of Bα and H1 we have H1 ⊆ Bα.

By way of contradiction, assume that H1 ⊂ Bα. Then there exists 0 < b ∈ Bα

such that b /∈ H1. Since H1 ∈ F (G) there is H ′
1 in F (G) such that G = H1 × H ′

1.

From the relation b /∈ H1 we obtain b(H ′
1) > 0. Clearly b(H ′

1) 6 b, hence b(H ′
1) ∈ Bα.

Then b(H ′
1) ∧ h1 = 0 for each 0 < h1 ∈ H1. In particular, b(H ′

1) ∧ ai = 0 for each

i ∈ I. According to 6.3, we have arrived at a contradiction. �

From 6.4 and 5.10 we get
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Corollary 6.5. For each α ∈ A , Bα ∈ F (G). Moreover, under the above

notation, Bα is a complete subdirect product of lattice ordered groups Gi (i ∈ I).

Let α ∈ A and g ∈ G+. In view of 6.5, there exists the component g(Bα) = gα of

g in Bα. It is easy to verify that

gα = sup{0 < t ∈ Bα : t 6 g}.

Since (Bα)+ = Āα, we have also

(1) gα = sup{0 < t ∈ Āα : t 6 g}.

Now we apply to G ∈ C0 the argument from 1.8–1.15 in [4]. (The completeness of

G was used only in 1.10; at that place it was applied for showing that G is abelian.

In our present case, the commutativity of G is a consequence of the archimedean

property.)

Hence, looking at 1.15 in [4] we obtain

Theorem 6.6. Let G 6= {0} be a lattice ordered group belonging to the class

C0. Assume that f is a cardinal property on C0 satisfying the conditions (c1) and

(c2). For α ∈ A let Bα be as above. Then G = (s)
∏

α∈A

Bα. If, moreover, G is

orthogonally complete, then G is an internal direct product of lattice ordered groups

Bα (α ∈ A ).

This generalizes Theorem 1.15 of [4].

Let us now slightly modify the notation applied in 6.4 and in 5.10. In 6.4, we

write now Hα
1 instead of H1. Analogously, in 5.10 we write Gα

i instead of Gi and

I(α) instead of I; we get

Lemma 6.7. Let α ∈ A . Then Bα is a complete subdirect product of lattice

ordered groups Gα
i (i ∈ I(α)).

In view of 6.6 and 6.7, for G ∈ C0 we obtain

(2) G = (s)
∏

α∈A

∏

i∈I(α)

Gα
i .
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Lemma 6.8. For each α ∈ A and each i ∈ I(α), the lattice ordered group Gα
i

is f -homogeneous.

P r o o f. Let α ∈ A and i ∈ I. In view of the definition of Gα
i , there exists

aα
i ∈ Aα such that

Gα
i = {aα

i }
δδ.

According to the assertion 1.1 of [4], the interval [0, aα
i ] of G is f -homogeneous.

Hence 5.4 yields that Gα
i is f -homogeneous. �

From 6.6, (2) and 6.8 we obtain

Theorem 6.9. Let G 6= {0} be a lattice ordered group belonging to the class

C0. Assume that f is a cardinal property on C0 satisfying the conditions (c1) and

(c2). Then G can be prepresented as a complete subdirect product (2), where all

factors Gα
i are f -homogeneous. If, moreover, G is orthogonally complete, then (2) is

an internal direct product decomposition of G.

This generalizes theorem 1.21 of [4].

7. Weakly homogeneous direct factors

In this section we apply the results of Section 6 for dealing with weak homogeneity

of lattice ordered groups which belong to C0 and are not assumed to be unital.

Again, assume that G 6= {0} is a lattice ordered group belonging to C0. Let G1 be

as in Section 1.

Lemma 7.1. Let G ∈ C0. Then G can be expressed as an internal direct product

A×B such that

(i) A is the complete subdirect product of linearly ordered groups belonging to

G1;

(ii) if 0 < b ∈ B, then the interval [0, b] of B fails to be a chain.

P r o o f. This is a consequence of 5.2, 5.8 and 5.10. �

From 7.1 we conclude that for proving the assertion (W) of Section 1 it suffices to

deal with the lattice ordered group B. If B = {0}, then the assertion of (W) is valid

for G; assume that B 6= {0}.

In view of 7.1 we have card[0, b] > ℵ0 for each 0 < b ∈ B. Moreover, it is easy to

verify that [0, b] contains an infinite orthogonal subset.
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In [4], Section 3 the cardinal function f3 was considered on the class of all bounded

lattices defined by

f3[a, b] = max{card[a, b],ℵ0}

for any non-trivial interval [a, b]; in the case a = b we put f3[a, b] = 0. We can apply

f3 to the class C0. If [a, b] is a nontrivial interval of B, then we have

(1) f3[a, b] = card[a, b].

Lemma 7.2. Let 0 < b ∈ B and assume that the interval [0, b] is f3-

homogeneous, f3[0, b] = α. Then αℵ0 = α.

P r o o f. Since the interval [0, b] has an infinite orthogonal subset we can apply

the argument used in the proof of 3.5 in [4]. �

We say that f3 satisfies (c2) with regard to B if, whenever all the elements con-

sidered in (c2) belong to B, then the assertion of (c2) is valid.

Lemma 7.3. f3 satisfies the condition (c2) with regard to B.

P r o o f. It suffices to apply 7.2 and the argument applied in the proof of 3.6

from [4]. �

According to 3.1 in [4], f3 satisfies the condition (c1). From this and from 7.3 we

conclude that we can apply the assertion of 6.9 to the lattice ordered group G and

to the cardinal property f3. In view of (1), for intervals of B the f3-homogeneity

is the same as weak homogeneity. Further, if G is orthogonally complete, then B is

orthogonally complete as well. Hence we have

Theorem 7.4. Let G ∈ C0 and let B be as in 7.1. Then B can be represented

as a complete subdirect product of weakly homogeneous lattice ordered groups. If,

moreover, G is orthogonally complete, then the just mentioned complete subdirect

product turns out to be an internal direct product.

The assertion (W) of Section 1 is a consequence of 7.1 and 7.4.

We remark that if G is a complete lattice ordered group and if G1 is some of

linearly ordered groups mentioned in the assertion (i) of 7.1, then G1 is complete,

thus G1 ∈ {{0,Z,R}. In the cases G1 = {0} or G1 = R we obtain that G1 is weakly

homogeneous. Hence 7.2 and 7.4 yield a generalization of Theorem 3.7 of [4].
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