
Czechoslovak Mathematical Journal

Sabine Klinkenberg; Lutz Volkmann
On the order of certain close to regular graphs without a matching of given size

Czechoslovak Mathematical Journal, Vol. 57 (2007), No. 3, 907–918

Persistent URL: http://dml.cz/dmlcz/128215

Terms of use:
© Institute of Mathematics AS CR, 2007

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/128215
http://dml.cz


Czechoslovak Mathematical Journal, 57 (132) (2007), 907–918

ON THE ORDER OF CERTAIN CLOSE TO REGULAR GRAPHS

WITHOUT A MATCHING OF GIVEN SIZE

Sabine Klinkenberg, Lutz Volkmann, Aachen

(Received July 5, 2005)

Abstract. A graph G is a {d, d+k}-graph, if one vertex has degree d+k and the remaining
vertices of G have degree d. In the special case of k = 0, the graph G is d-regular. Let
k, p > 0 and d, n > 1 be integers such that n and p are of the same parity. If G is a
connected {d, d+ k}-graph of order n without a matching M of size 2|M | = n− p, then we
show in this paper the following: If d = 2, then k > 2(p+ 2) and

(i) n > k + p+ 6.
If d > 3 is odd and t an integer with 1 6 t 6 p+ 2, then

(ii) n > d+ k + 1 for k > d(p+ 2),
(iii) n > d(p+ 3) + 2t+ 1 for d(p+ 2− t) + t 6 k 6 d(p+ 3− t) + t − 3,
(iv) n > d(p+ 3) + 2p+ 7 for k 6 p.

If d > 4 is even, then
(v) n > d+ k + 2− η for k > d(p+ 3) + p+ 4 + η,
(vi) n > d+ k + p+ 2− 2t = d(p+ 4) + p+ 6 for k = d(p+ 3) + 4 + 2t and p > 1,
(vii) n > d+ k + p+ 4 for d(p+ 2) 6 k 6 d(p+ 3) + 2,
(viii) n > d(p+ 3) + p+ 4 for k 6 d(p+ 2)− 2,

where 0 6 t 6 1
2
p − 1 and η = 0 for even p and 0 6 t 6 1

2
(p − 1) and η = 1 for odd p.

The special case k = p = 0 of this result was done by Wallis [6] in 1981, and the case
p = 0 was proved by Caccetta and Mardiyono [2] in 1994. Examples show that the given
bounds (i)–(viii) are best possible.
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We shall assume that the reader is familiar with standard terminology on graphs

(see, e.g., Chartrand and Lesniak [3]). In this paper, all graphs are finite and simple.

The vertex set of a graph G is denoted by V (G). The neighborhood NG(x) = N(x)

of a vertex x is the set of vertices adjacent with x, and the number dG(x) = d(x) =

|N(x)| is the degree of x in the graph G. We denote by Kn the complete graph of

order n. A graph G is a {d, d + k}-graph, if one vertex has degree d + k and the
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remaining vertices of G have degree d. In the special case of k = 0, we speak of a

d-regular graph. If G is a graph and A ⊆ V (G), then we denote by q(G − A) the

number of odd components in the subgraph G − A.

The proof of our main theorem is based on the following generalization of Tutte’s

famous 1-factor theorem [4] by Berge [1] in 1958, and we call it the Theorem of

Tutte-Berge (for a proof see, e.g., [5]).

Theorem of Tutte-Berge (Berge [1], 1958). Let G be a graph of order n. If

M is a maximum matching of G, then

n − 2|M | = max
A⊆V (G)

{q(G − A) − |A|}.

Theorem 2. Let k, p > 0 and d, n > 1 be integers such that n and p are of the

same parity. If G is a connected {d, d + k}-graph of order n without a matching M

of size 2|M | = n − p, then the following holds:

If d = 2, then k > 2(p + 2) and

(i) n > k + p + 6.

If d > 3 is odd and t an integer with 1 6 t 6 p + 2, then

(ii) n > d + k + 1 for k > d(p + 2),

(iii) n > d(p + 3) + 2t + 1 for d(p + 2 − t) + t 6 k 6 d(p + 3 − t) + t − 3,

(iv) n > d(p + 3) + 2p + 7 for k 6 p.

If d > 4 is even, then

(v) n > d + k + 2 − η for k > d(p + 3) + p + 4 + η,

(vi) n > d+k+p+2−2t = d(p+4)+p+6 for k = d(p+3)+4+2t and p > 1,

(vii) n > d + k + p + 4 for d(p + 2) 6 k 6 d(p + 3) + 2,

(viii) n > d(p + 3) + p + 4 for k 6 d(p + 2) − 2,

where 0 6 t 6 1
2p− 1 and η = 0 for even p and 0 6 t 6 1

2 (p− 1) and η = 1 for odd p.

P r o o f. The bounds (ii) and (v) are immediate. By the hypotheses and the

Theorem of Tutte-Berge, it follows that there exists a non-empty set A ⊂ V (G) such

that q(G − A) > |A| + p + 1. However, since n and p are of the same parity, it is

straightforward to verify that this even leads to the better bound

(1) q(G − A) > |A| + p + 2.

(i): Since d = 2 is even, k is even, and hence each odd component of G − A is

connected by an even number of edges with A. If u ∈ V (G) with dG(u) = k + 2,
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then we observe that

2q(G − A) 6 2|A| + k when u ∈ A,(2)

2q(G − A) 6 2|A| when u 6∈ A.(3)

If u 6∈ A, then the inequalities (1) and (3) yield the contradiction 2|A| > 2|A|+2(p+

2).

Thus u ∈ A, and (1) and (2) lead to k > 2q(G − A) − 2|A| > 2(p + 2), as desired.

Now, suppose to the contrary that there exists such a graph with n 6 k+p+5. Since

dG(u) = k+2, we deduce that n = k+3+r with 0 6 r 6 p+2. If we define by α the

number of vertices in A not adjacent with u, and by β the number of vertices in G−A

not adjacent with u, then we observe that r = α + β. Since every vertex of G − A

has degree 2, each odd component of G − A is a path. Hence each odd component

of G−A with at least three vertices contains at least one vertex not adjacent with u.

The definition of β thus shows that G − A has at most β odd components of order

three or more and therefore at least q(G − A) − β components of order one. This

implies that there are at least q(G − A) − β edges from the components of order

one to A − {u}. But since u ∈ A is adjacent to |A| − 1 − α vertices in A, there

can be at most |A| − 1 − α + 2α = |A| − 1 + α edges going out of A − {u} and so

q(G − A) − β 6 |A| − 1 + α. According to (1), we obtain

|A| + p + 2 − β 6 q(G − A) − β 6 |A| − 1 + α.

This leads to the contradiction p + 3 6 α + β = r 6 p + 2, and the proof of (i) is

complete.

(iii) and (iv) Let u ∈ V (G) such that dG(u) = k + d. The hypotheses that d is

odd and that n and p are of the same parity, show that k, n, and p are of the same

parity. Since (ii) is valid, it remains to investigate the case of k 6 d(p+2)− 2. Now,

suppose to the contrary that there exists such a graph with

(a) n 6 d(p + 3) + 2t − 1 for d(p + 2 − t) + t 6 k 6 d(p + 3 − t) + t − 3 with

1 6 t 6 p + 2,

(b) n 6 d(p + 3) + 2p + 5 for k 6 p.

The odd components of G−A are classified into three groups according to order.

We let:

α1 := the number of odd components of G − A of order at most d − 2,

α2 := the number of odd components of G − A of order d,

α3 := the number of odd components of G − A of order at least d + 2.
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This leads to

(4) n > |A| + α1 + α2d + α3(d + 2)

and (1) yields

(5) α1 + α2 + α3 = q(G − A) > |A| + p + 2.

It is easy to verify that there are at least d edges of G joining each odd component

of G − A of order at most d with A. Since G is connected, we deduce that

d(α1 + α2) + α3 6 d|A| + k,(6)

d(α1 + α2) + α3 6 d|A| when u 6∈ A.(7)

In the case α3 > p + 3, the inequality (4) yields the following contradiction to

assumption (a) as well as to assumption (b).

n > |A| + α1 + α2d + α3(d + 2)

> 1 + (p + 3)(d + 2)

= (p + 3)d + 2p + 7.

If α3 6 p+2, then (5) leads to d(α1+α2) > d(|A|+p+2−α3). In the case that u 6∈ A,

the inequality (7) gives d(|A|+p+2−α3) 6 d|A|−α3 and thus d(p+2) 6 (d−1)α3,

a contradiction to α3 6 p + 2. It follwows that u ∈ A. Combining (5) and (6), we

obtain d(|A| + p + 2 − α3) 6 d|A| + k − α3 and so

(8) k > d(p + 2) − α3(d − 1).

Because of α3 6 p + 2, we conclude that k > p + 2. This means that (iv) is proved.

For the proof of (iii) we distinguish different cases.

Case 1. Assume that α3 = p + 2. The inequality (5) shows that α1 + α2 >

|A| + p + 2 − α3 > 1. Hence there exists at least one odd component U of G − A

with at most d vertices. Since N(x) ⊆ V (U) ∪ A for x ∈ V (U), we observe that

|A| + |V (U)| > d + 1. This leads to the following contradiction to assumption (a):

n > |A| + |V (U)| + α3(d + 2)

> d + 1 + (p + 2)(d + 2)

= (p + 3)d + 2p + 5

> (p + 3)d + 2t + 1.
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Case 2. Assume that α3 6 p + 1 and p + 2 6 k 6 (p + 2)d− 2. The inequality (8)

is equivalent with

(9) α3 >
d(p + 2) − k

d − 1
.

Combining this with the condition α3 6 p+1, we find that k > d+p+1. This shows

that t = p + 2 is not possible. Hence we assume in the following that 1 6 t 6 p + 1.

Furthermore, the inequality (9) and the hypothesis k 6 d(p + 3 − t) + t − 3 leads to

α3 >
d(p + 2) − d(p + 3 − t) − t + 3

d − 1
= t −

d − 3

d − 1
> t − 1

and thus 1 6 t 6 α3 6 p + 1. If s is an integer with α3 = p + 1 − s, then we observe

that 0 6 s 6 p + 1 − t. We deduce from (5) that

(10) α1 + α2 > |A| + p + 2 − p − 1 + s = |A| + s + 1 > s + 2.

Subcase 2.1. Assume that α2 > s + 2. The inequality (4) implies the following

contradiction to assumption (a):

n > |A| + α1 + α2d + α3(d + 2)

> 1 + (s + 2)d + (p + 1 − s)(d + 2)

= (p + 3)d + 2(p + 1 − s) + 1

> (p + 3)d + 2t + 1.

Subcase 2.2. Assume that α2 = s + 1. In view of (10), we conclude that α1 >

|A| > 1. Hence there exists at least one odd component U of G − A with at most

d − 2 vertices. It follows that |A| + |V (U)| > d + 1, and this leads to

n > |A| + |V (U)| + α2d + α3(d + 2)

> d + 1 + (s + 1)d + (p + 1 − s)(d + 2)

= (p + 3)d + 2(p + 1 − s) + 1

> (p + 3)d + 2t + 1,

a contradiction to assumption (a).

Subcase 2.3. Assume that α2 6 s. Let α2 = s − r with an integer 0 6 r 6 s.

According to (5), we have

(11) α1 > |A| + p + 2 − α2 − α3 = |A| + r + 1.
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In addition, there are at least d− 1 edges of G joining each odd component of G−A

of order at most d − 2 with A − {u}. Applying (11), we obtain

d(|A| − 1) > α1(d − 1) > (|A| + r + 1)(d − 1).

This yields |A| > (r + 2)d − r − 1 and (11) implies α1 > |A| + r + 1 > (r + 2)d.

Combining the last inequalities with (4), we arrive at

n > |A| + α1 + α2d + α3(d + 2)

> (r + 2)d − r − 1 + (r + 2)d + (s − r)d + (p + 1 − s)(d + 2)

= (p + r + 5)d + 2p− 2s − r + 1

> (p + r + 5)d + 2p− 2(p + 1 − t) − r + 1

= (p + r + 5)d + 2t− r − 1

> (p + 3)d + 2t + 1,

a contradiction to assumption (a). Since we have discussed all possible cases, the

proof of (iii) is complete.

(vi)–(viii) Let u ∈ V (G) such that dG(u) = k + d. The hypothesis that d is even

implies that k is also even. Since (v) is valid, it remains to investigate the case of

k 6 d(p + 3) + p + 2 + η.

Now we call an odd component of G − A large if it has more than d vertices and

small otherwise. If we denote by β1 and β2 the number small and large components,

respectively, then we deduce that

(12) n > |A| + β1 + (d + 1)β2.

In addition, (1) yields

(13) β1 + β2 = q(G − A) > |A| + p + 2.

It is easy to verify that there are at least d edges of G joining each small component

of G − A with A. Since G is connected, there are at least 2 edges of G joining each

large component of G − A with A. We therefore deduce that

dβ1 + 2β2 6 d|A| + k,(14)

dβ1 + 2β2 6 d|A| when u 6∈ A.(15)

(viii) Let k 6 d(p + 2) − 2 and suppose to the contrary that there exists such a

graph with

(16) n 6 d(p + 3) + p + 2.
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If β2 > p+3, then (12) leads to the following contradiction to the assumption (16):

n > |A| + β1 + (d + 1)β2

> 1 + (d + 1)(p + 3)

= d(p + 3) + p + 4.

If β2 = p+2, then the inequality (13) shows that β1 > |A| > 1. Hence there exists

at least one odd component U of G − A with at most d − 1 vertices. It follows that

|A| + |V (U)| > d + 1, and this leads to

n > |A| + |V (U)| + (d + 1)β2

> d + 1 + (d + 1)(p + 2)

= d(p + 3) + p + 3,

a contradiction to the assumption (16).

If β2 6 p + 1, then it follows from (13) that dβ1 > d(|A| + 1). In the case that

u 6∈ A, inequality (15) yields the contradiction

d(|A| + 1) 6 dβ1 + 2β2 6 d|A|.

Assume next that u ∈ A.

If β2 = 0, then (13) gives β1 > |A| + p + 2 and thus (14) leads to

d|A| + k > dβ1 > d(|A| + p + 2).

This implies k > d(p + 2), a contradiction to the hypothesis k 6 d(p + 2) − 2.

There it remains the case of 1 6 β2 6 p + 1. Let β2 = s + 1 with an integer

0 6 s 6 p. We deduce from (13) the inequality

(17) β1 > |A| + p + 1 − s.

If we count the edges between G − A and A − {u}, then we obtain the inequality

chain

d(|A| − 1) > (d − 1)β1 + β2

> (d − 1)(|A| + p + 1 − s) + s + 1.
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This leads to |A| > d(p + 2 − s) − p + 2s. Applying (12), (17), and the hypothesis

d > 4, we arrive at the following contradiction to our assumption (16):

n > |A| + β1 + (d + 1)β2

> |A| + |A| + p + 1 − s + (d + 1)(s + 1)

> 2d(p + 2 − s) − 2p + 4s + p + 1 − s + d(s + 1) + s + 1

= d(p + 3) + p + 4 + (p − s)(d − 4) + 2p + 2d − 2

> d(p + 3) + p + 4.

(vii) Let d(p +2) 6 k 6 d(p + 3)+2 and suppose to the contrary that there exists

such a graph with

n 6 d + k + p + 2.

Since n > d + k + 2 − η, we can assume that

n = d + k + p + 2 − 2s

with an integer s such that 0 6 s 6 1
2 (p + 1) when p is odd and 0 6 s 6 1

2p when

p is even. Hence there exist p + 1 − 2s vertices in G which are not adjacent with u.

Assume that u 6∈ A. The inequality (13) implies that G−A contains at least p+3

odd components. Because of u 6∈ A, we conclude that u is non-adjacent with at least

p + 3 vertices of G. However, this gives the contradiction

dG(u) 6 n − p − 3 = d + k − 1 − 2s < d + k.

Assume next that u ∈ A. Let α 6 p + 1 − 2s be the number of vertices in A not

adjacent with u. If we count the number of edges between G−A and A− {u}, then

we obtain

(d − 1)β1 + β2 6 (|A| − 1)(d − 1) + α

6 (|A| − 1)(d − 1) + p + 1 − 2s.

This inequality chain shows that

β1 6 |A| − 1 +
p + 1 − 2s − β2

d − 1
.

Therefore (13) leads to

|A| + p + 2 − β2 6 β1 6 |A| − 1 +
p + 1 − 2s − β2

d − 1
.
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This yields

β2 > p + 3 +
2 + 2s

d − 2

and thus β2 > p + 4. Applying (12), we arrive at

d + k + p + 2 − 2s = n > |A| + β1 + (d + 1)β2

> 1 + (d + 1)(p + 4).

This implies k > d(p+3)+3+2s, a contradiction to the hypothesis k 6 d(p+3)+2.

(vi) Let p > 1 and k = d(p + 3) + 4 + 2t with 0 6 t 6 1
2p − 1 when p is even and

0 6 t 6 1
2 (p − 1) when p is odd. Suppose to the contrary that there exists such a

graph with

n 6 d + k + p − 2t.

Let n = d + k + p − 2r with an integer r such that t 6 r 6 1
2p − 1 when p is

even and t 6 r 6 1
2 (p − 1) when p is odd. If we define r = s − 1, then we obtain

n = d + k + p + 2 − 2s with t + 1 6 s 6 1
2p when p is even and t + 1 6 s 6 1

2 (p + 1)

when p is odd. Analogously to the proof of (vii), we arrive at the contradiction

k > d(p + 3) + 3 + 2s

= d(p + 3) + 3 + 2(r + 1)

= d(p + 3) + 5 + 2r

> d(p + 3) + 5 + 2t.

Since we have discussed all possible cases, the proof of Theorem 2 is complete. �

For p = k = 0, the statements (iv) and (viii) of Theorem 2 immediately lead to

the following 1981 result by Wallis [6].

Corollary 3 (Wallis [6], 1981). If G is a d-regular graph of order n with no perfect

matching and no odd component, then

(i) n > 3d + 7 when d > 3 is odd,

(ii) n > 3d + 4 when d > 4 is even.

For p = 0 and k > 1, the statements (i), (ii), (iii), (v), (vii), and (viii) of Theorem 2

yield the following 1994 result by Caccetta and Mardiyono [2].
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Corollary 4 (Caccetta, Mardiyono [2], 1994). If G is a connected {d, d+k}-graph

of even order n without a perfect matching, then the following holds:

(i) If d = 2 then k > 4 and n > k + 6.

If d > 3 is odd, then

(ii) n > d + k + 1 for k > 2d,

(iii) n > 3d + 3 for d + 1 6 k 6 2d − 2,

(iv) n > 3d + 5 for 2 6 k 6 d − 1.

If d > 4 is even, then

(v) n > d + k + 2 for k > 3d + 4,

(vi) n > d + k + 4 for 2d 6 k 6 3d + 2,

(vii) n > 3d + 4 for 2 6 k 6 2d − 2.

The following examples show that the various bounds in Theorem 2 are best

possible.

Example 5. Let p > 0 and k > 2(p + 2) be integers such that k is even. In

addition, let Pi = xi
1x

i
2x

i
3 for i = 1, 2, . . . , p + 3 and Wj = y

j
1y

j
2 for j = 1, 2, . . . ,

1
2 (k − 2(p + 2)) be p + 3 paths of length two and 1

2 (k − 2(p + 2)) paths of length

one, respectively. If u is a further vertex, then we define the graph G as the disjoint

union of P1, P2, . . . , Pp+3 and W1, W2, . . . , W 1

2
(k−2(p+2)) together with the edge sets

{uxi
1 : 1 6 i 6 p + 3}, {uxi

3 : 1 6 i 6 p + 3}, {uy
j
1 : 1 6 j 6 1

2 (k − 2(p + 2))},

{uy
j
2 : 1 6 j 6 1

2 (k − 2(p + 2))}. The resulting {2, 2 + k}-graph G is connected of

order n = k + p + 6 without a matching M of size 2|M | = n− p = k + 6. This shows

that Theorem 2 (i) is best possible.

In the next examples we make use of the following notations.

Let R(n, m) be an m-regular graph of order n.

Let H(n1, n2; d, d−1) be a graph of order n1 +n2 with n1 vertices of degree d and

n2 vertices of degree d − 1.

Example 6. Let d > 3, k > 0 and p > 0 be integers such that d is odd and k and

p are of the same parity.

Case 1. Let k > d(p + 2), and let G0 consist of the disjoint union of p + 2 copies

of the complete graph Kd and a graph R(k−d(p+1), d−1). If u is a further vertex,

then we join u with the k + d vertices of G0 having degree d − 1. The resulting

{d, d + k}-graph G is connected of order n = k + p + 1 without a matching M of size

2|M | = n − p. This shows that Theorem 2 (ii) is best possible.

Case 2. Let k = d(p + 2 − t) + t + 2s with 0 6 s 6 1
2 (d − 3) and 1 6 t 6 p + 2.

In addition, let G0 consist of the disjoint union of p + 3 − t copies of the complete

graphKd and t−1 copies ofH(d+1, 1; d, d−1) and a graphH(d+1−2s, 2s+1; d, d−1).

If u is a further vertex, then we join u with the k+d vertices of G0 having degree d−1.
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The resulting {d, d + k}-graph G is connected of order n = d(p + 3)+ 2t + 1 without

a matching M of size 2|M | = n− p. This shows that Theorem 2 (iii) is best possible.

Case 3. Let k 6 p and d > p+3−k. In addition, letG0 consist of the disjoint union

of p+2 copies of H(d+1, 1; d, d−1) and a graph H(p+4−k, d+k−p−2; d, d−1). If

u is a further vertex, then we join u with the k+d vertices of G0 having degree d−1.

The resulting {d, d + k}-graph G is connected of order n = d(p +3)+2p+ 7 without

a matching M of size 2|M | = n− p. This shows that Theorem 2 (iv) is best possible.

Example 7. Let d > 4, k > 0 and p > 0 be integers such that d and k are even.

In addition, let η = 1 when p is odd and η = 0 when p is even.

Case 1. Let k > d(p + 3) + p + 4 + η, and let G0 consist of the disjoint union of

p+3 copies ofH(d, 1; d−1, d−2) and a graphH(k−d(p+3), d−(p+3)−η; d−1, d−2).

If u and v are two further vertices, then we join u with all vertices of G0 and v with

all vertices of G0 having degree d − 2. If p is odd, then we add also the edge uv.

The resulting {d, d + k}-graph G is connected of order n = k + d + 2 − η without a

matching M of size 2|M | = n − p. Thus Theorem 2 (v) is best possible.

Case 2. Let p > 1 and k = d(p+3)+4+2t with 0 6 t 6 1
2p−1 when p is even and

0 6 t 6 1
2 (p−1) when p is odd and d > 2t+4. In addition, letG0 consist of the disjoint

union of p−2t+η copies of H(1, d; d, d−1) and 3+2t−η copies of H(d, 1; d−1, d−2)

and a graph H(4+2t, d−3−2t; d−1, d−2). If u and v are two further vertices, then

we join u with all vertices of G0 having degree less than d and v with all vertices

of G0 having degree d − 2. If p is odd, then we add also the edge uv. The resulting

{d, d + k}-graph G is connected of order n = d + k + p + 2 − 2t = d(p + 4) + p + 6

without a matching M of size 2|M | = n − p. Thus Theorem 2 (vi) is best possible.

Case 3. Let d(p + 2) 6 k 6 d(p + 3) + 2, and let G0 consist of the disjoint union

of p + 2 copies of H(1, d; d, d − 1) and a graph H(1, k − d(p + 1); d, d − 1). If u is

a further vertex, then we join u with the k + d vertices of G0 having degree d − 1.

The resulting {d, d + k}-graph G is connected of order n = d + k + p + 4 without a

matching M of size 2|M | = n − p. Thus Theorem 2 (vii) is best possible.

Case 4. Let k 6 d(p + 2) − 2.

Subcase 4.1. Let d(p+1)+2 6 k 6 d(p+2)− 2, and let G0 consist of p+2 copies

of H(1, d; d, d − 1) and a graph H(d(p + 2) − k + 1, k − d(p + 1); d, d − 1). If u is a

further vertex, then we join u with the k + d vertices of G0 having degree d− 1. The

resulting {d, d + k}-graph G is connected of order n = d(p + 3) + p + 4 without a

matchingM of size 2|M | = n−p. Thus Theorem 2 (viii) is best possible in this case.

Subcase 4.2. Let k 6 d(p + 1). Assume that d + k > 2(p + 3). In addition, let

G1 consist of p + 3 copies of H(d − 1, 2; d, d − 1). The graph G0 originates from G1

by deleting a matching of size 1
2 (d + k − 2(p + 3)) such that each vertex in G0 has

degree at least d − 1. If u is a further vertex, then we join u with the k + d vertices
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of G0 having degree d − 1. The resulting {d, d + k}-graph G is connected of order

n = d(p+3)+p+4without a matchingM of size 2|M | = n−p. Thus Theorem 2 (viii)

is best possible in this case.
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