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WITH BOOLEAN CONGRUENCE LATTICES
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Abstract. This paper grew out from attempts to determine which modular lattices of
finite height are locally order affine complete. A surprising discovery was that one can go
quite far without assuming the modularity itself. The only thing which matters is that the
congruence lattice is finite Boolean. The local order affine completeness problem of such
lattices L easily reduces to the case when L is a subdirect product of two simple lattices L1
and L2. Our main result claims that such a lattice is locally order affine complete iff L1
and L2 are tolerance trivial and one of the following three cases occurs:
1) L = L1 × L2,
2) L is a maximal sublattice of the direct product,
3) L is the intersection of two maximal sublattices, one containing 〈0, 1〉 and the other

〈1, 0〉.
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1. Introduction

A lattice L is called (locally) order affine complete if every congruence and order

preserving function on L is a (local) polynomial function. The present paper is a

result of an attempt to describe locally order affine complete modular lattices of finite

height. Since modular subdirectly irreducible lattices of finite height are known to

be simple, every modular lattice L of finite height is a subdirect product of simple

lattices of finite height and therefore its congruence lattice is finite Boolean. Let

L 6sd L1 × . . . × Ln where the subdirect factors Li are simple and let Lij be 2-

fold coordinate projections of L, i, j = 1, . . . , n, i 6= j. Now, since lattices admit

a majority term, the well-known Baker-Pixley Lemma says that the lattice L is
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determined by the Lij . Moreover, it is quite easy to show that L is locally order

affine complete iff so are all Lij (for finite L this result is due to R. Wille [9]).

Therefore the question reduces to the case of a subdirect product of two simple

modular lattices of finite height. Quite surprisingly, it turned out that at this stage

of work the modularity was not relevant at all. Our main result describes which

subdirect products of two simple lattices of finite height are locally order affine

complete. Recall that a lattice is called tolerance trivial (tolerance simple) if it

has no other tolerances than the congruence relations (if it is tolerance trivial and

simple, that is, it has only two nontrivial tolerance relations). A subdirect product

L 6sd L1 × L2 is called nontrivial if none of the two canonical projections is an

isomorphism. Assuming that the lattices L1 and L2 are bounded, we denote by L01

the subuniverse of L1×L2 generated by L and 〈0, 1〉. The subuniverse L10 is defined

similarly. It is known ([4]) that L = L01 ∩L10 for every L 6sd L1 ×L2. This implies

that every maximal sublattice of L1 × L2 contains either 〈0, 1〉 or 〈1, 0〉.

Now we state the main result of the present paper.

Theorem 1.1. Let L1 and L2 be simple lattices of finite height and let L be

a nontrivial subdirect product in L1 × L2. Then L is locally order affine complete

if and only if L1 and L2 are tolerance trivial and one of the following three cases

occurs:

(1) L = L1 × L2;

(2) L is a maximal sublattice of L1 × L2;

(3) L is the intersection of two maximal sublattices of L1×L2, one containing 〈0, 1〉

and the other 〈1, 0〉.

We wish to emphasize that the assumption that L must be the subdirect product

of L1 and L2 is relevant. One can easily find two maximal sublattices of L1 × L2,

one containing 〈0, 1〉 and the other 〈1, 0〉 such that their intersection is not subdirect

in L1 × L2. Such intersection need not be locally order affine complete.

2. Order affine completeness and tolerances

A tolerance of a lattice L is a subuniverse of L2 which is reflexive and symmetric

as a binary relation. The set TolL of all tolerances of a lattice L is a lattice under set

theoretic inclusion. Clearly the meet operation of this lattice is the usual intersection.

The join operation of the tolerance lattice will be denoted by ⊔. Throughout the

paper, we denote the identity relation and the all relation on a set A by ∆A and

∇A, respectively. The following lemma gives an elementary but important property

of tolerances of lattices that will be used throughout the paper, usually without

reference.
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Lemma 2.1 ([1]). Let L be a lattice and T ∈ TolL. Then 〈x, y〉 ∈ T if and only

if [x ∧ y, x ∨ y]2 ⊂ T .

The order functionally complete (in other words, order polynomially complete)

lattices were first studied by D. Schweigert [7]. M. Kindermann proved in [6] that

a finite lattice is order functionally complete iff it is tolerance simple. R. Wille’s

characterization of finite order affine complete lattices [9] was given in terms of

decreasing join endomorphisms. However, there is a natural 1-1 correspondence

between decreasing join endomorphisms and tolerances. Therefore one can say that

Wille gave his characterization in terms of tolerances.

When writing the book [5], the first author observed that practically everything

that had been earlier proved about order functional or order affine completeness of

finite lattices, remained true in the case of lattices of finite height, just after adding

the adjective “locally”. So for example, aforementioned Kindermann’s result can

be translated to a result “A lattice L of finite height is locally order functionally

complete iff it is tolerance simple”.

In order to characterize locally order affine complete lattices of finite height in

terms of tolerance relations, the notion of symmetrized product was introduced in [5].

The aim was to modify the usual relational product so that the product of two

tolerance relations of a lattice would be a tolerance again.

Let S and T be arbitrary binary relations on a lattice L. Then the symmetrized

product of S and T is the binary relation S ∗ T of L defined by

S ∗ T = {〈a, c〉 ∈ L2 : 〈a ∨ c, a ∧ c〉 ∈ S ◦ T }.

The next lemma lists the basic properties of the symmetrized product operation

on TolL. They all are easy to prove.

Lemma 2.2. The following are true for any lattice L:

(1) the symmetrized product operation is associative on TolL;

(2) given two tolerances S and T of L, the symmetrized product S ∗T is a tolerance

of L containing both S and T ;

(3) if S is a congruence of a lattice L then S ∗ S = S;

(4) the symmetrized product operation on TolL distributes over the intersection

operation, that is, if S, T, U ∈ TolL then

S ∗ (T ∩ U) = (S ∗ T ) ∩ (S ∗ U) and (S ∩ T ) ∗ U = (S ∗ U) ∩ (T ∗ U).

We shall call a tolerance of a lattice L congruence generated if it can be obtained

from congruences of L using the operations of symmetrized product and intersection.
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It follows from Lemma 2.2 that every congruence generated tolerance of a lattice L

can be represented as the meet of symmetrized products of congruences of L. Now

we state a result from [5, Theorem 5.3.8] which is our main tool in the present paper.

Theorem 2.3. A lattice L of finite height is locally order affine complete if f every

finitely generated tolerance T of L is congruence generated.

In [5] we raised the question (Problem 5.3.31) whether the class of all locally order

affine complete lattices is closed with respect to homomorphic images. Now we show

that in the special case of lattices of finite height the affirmative answer easily follows

from Theorem 2.3.

Theorem 2.4. Let L be a locally order affine complete lattice of finite height.

Then every homomorphic image of L is locally order affine complete, too.

P r o o f. Let ϕ : L → L
′ be a surjective homomorphism of lattices and let

T ′ ∈ TolL′ be the tolerance relation of L′ generated by a finite subset X ′ ⊂ L′ ×

L′. We pick in L × L a finite subset X such that ϕ(X) = X ′ and consider the

tolerance relation T of L generated by X . Since L is locally order affine complete,

the tolerance T is congruence generated, that is, there are congruences ̺ij of L such

that

(1) T =

m⋂

i=1

̺i1 ∗ . . . ∗ ̺i,ni
.

Since ϕ is surjective, all ̺′ij = ϕ(̺ij) are congruences of L
′ and obviously ϕ(T ) = T ′.

Now (1) easily implies

T ′ =

m⋂

i=1

̺′i1 ∗ . . . ∗ ̺′i,ni
,

that is, T is congruence generated. �

The analog of Theorem 2.3 for finite lattices was proved by R. Wille in [9]. The

next result which was stated without proof in [5] has also its counterpart in [9].

Theorem 2.5. Let L be a subdirect product of lattices L1, . . . ,Ln of finite height.

The lattice L is locally order affine complete if f all the 2-fold coordinate projec-

tions Lij of L are locally order affine complete.

P r o o f. The necessity part of the theorem directly follows from Theorem 2.4.

We prove sufficiency by induction on n. Suppose that n > 3 and the claim holds

if the number of subdirect factors is less than n. Let f be a k-ary congruence and
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order preserving function on L. Since f is congruence preserving, f can be identified

with the n-tuple 〈f1, . . . , fn〉 of coordinate functions. This means that, given any

a1, . . . , ak ∈ L where ai = 〈ai
1, . . . , a

i
n〉, a

i
j ∈ Lj, i = 1, . . . , k, we have

f(a1, . . . , ak) = 〈f1(a
1
1, . . . , a

k
1), . . . , fn(a1

n, . . . , ak
n)〉.

Clearly every fi is a congruence and order preserving function on Li.

Let X be a finite subset of L. Then there are finite subsets Xj ⊂ Lj, j = 1, . . . , n,

such that X ⊂ X1 × . . . × Xn. We assume that the sets Xi are minimal possible;

hence X projects onto every Xi, i = 1, . . . , n.

We first show that there exist polynomial functions pi of Li such that pi interpo-

lates fi at Xi, i = 2, . . . , n. Let π : L1 × . . . × Ln → L2 × . . . × Ln be the natural

projection map and L′ = π(L). Then clearly L′
ij = Lij for every 2 6 i < j 6 n. Since

f ′ = 〈f2, . . . , fn〉 is a congruence and order preserving function on L
′, by induction

hypothesis there exists a polynomial function p′ of L′ which interpolates f ′ at π(X).

Obviously the function p′ is induced by a suitable polynomial function p of L. This

means, in other words, that pi, the i’th coordinate function of p, interpolates fi

at Xi, for i = 2, 3, . . . , n.

Similarly, there exist polynomial functions q and r of L such that:

1) qi, the i’th coordinate function of q, interpolates fi at Xi for i = 1, 3, 4, . . . , n;

2) ri, the i’th coordinate function of r, interpolates fi at Xi for i = 1, 2, 4, 5, . . . , n.

To conclude it remains to take the majority term m(x, y, z) and notice that the

polynomial function m(p, q, r) interpolates f at X . �

Using the results stated above, we are now able to reduce the study of modular

locally order affine complete lattices of finite height to the investigation of subdirect

products of two tolerance simple lattices. As we shall see soon, in the latter case

there is a satisfactory answer even without the modularity assumption.

Theorem 2.6. A modular lattice L of finite height is locally order affine complete

if f it is subdirect in L1 × . . . × Ln where all Li are tolerance simple and all Lij are

locally order affine complete.

P r o o f. As we have mentioned already, there exist simple lattices L1, . . . ,Ln

such that

L 6sd L1 × . . . × Ln.

Now the neccessity part of the theorem follows from Theorem 2.4 and the sufficiency

part is a direct consequence of Theorem 2.5. �
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3. Subdirect products of two lattices and their tolerances

We first state without proof an elementary but useful lemma.

Lemma 3.1. Let a lattice L be a subdirect product of lattices L1 and L2, and let

〈a, b〉, 〈a, c〉 ∈ L where b 6 c. Then L also contains all pairs 〈a, y〉 where b 6 y 6 c.

Throughout this section we assume that L1 and L2 are lattices of finite height,

L 6sd L1 × L2, πi : L → Li is a projection map and ̺i = Kerπi, i = 1, 2.

Always, every element x ∈ L is represented as the pair x = 〈x1, x2〉 where xi ∈ Li,

i = 1, 2. It will turn out that in the lattice Tol L a very special role is played by

the join ̺1 ⊔ ̺2. Therefore we introduce a special symbol for that tolerance: let

ΣL = ̺1 ⊔ ̺2. It follows from [3, Lemma 3.8], that ΣL = (̺1 ◦ ̺2) ∩ (̺2 ◦ ̺1). We

now give a few more characterizations of ΣL.

Lemma 3.2. The tolerance ΣL can be characterized as follows; in particular, it

is congruence generated:

ΣL = (̺1 ∗ ̺2) ∩ (̺2 ∗ ̺1) = {〈x, y〉 ∈ L2 : 〈y1, x2〉, 〈x1, y2〉 ∈ L}.

P r o o f. By Lemma 2.2, we have ΣL ⊂ (̺1 ∗ ̺2) ∩ (̺2 ∗ ̺1). Let 〈x, y〉 ∈

(̺1 ∗ ̺2) ∩ (̺2 ∗ ̺1). Then, in particular, 〈x ∨ y, x ∧ y〉 ∈ ̺1 ◦ ̺2 which implies

〈x1 ∨ y1, x2 ∧ y2〉 ∈ L. Since L is a sublattice, we also have 〈x1 ∨ y1, x2 ∨ y2〉 ∈ L.

Now, because of x2 ∧ y2 6 y2 6 x2 ∨ y2, Lemma 3.1 yields 〈x1 ∨ y1, y2〉 ∈ L. Using

a similar argument one easily gets 〈x1, x2 ∨ y2〉 ∈ L. Consequently

〈x1, y2〉 = 〈x1 ∨ y1, y2〉 ∧ 〈x1, x2 ∨ y2〉 ∈ L.

The proof of 〈y1, x2〉 ∈ L is similar. We have proved the inclusions

ΣL ⊂ (̺1 ∗ ̺2) ∩ (̺2 ∗ ̺1) ⊂ {〈x, y〉 ∈ L2 : 〈y1, x2〉, 〈x1, y2〉 ∈ L}.

So it remains to prove that {〈x, y〉 ∈ L2 : 〈y1, x2〉, 〈x1, y2〉 ∈ L} is contained in ΣL.

Let x, y ∈ L be such that 〈y1, x2〉, 〈x1, y2〉 ∈ L. By definition of ΣL we have

〈〈x1, x2〉, 〈x1, y2〉〉, 〈〈x1, x2〉, 〈y1, x2〉〉 ∈ ΣL,

hence also

〈x, x ∨ y〉 = 〈〈x1, x2〉, 〈x1 ∨ y1, x2 ∨ y2〉〉 ∈ ΣL.

Similarly one can prove 〈x ∨ y, y〉 ∈ ΣL but then

〈x, y〉 = 〈x, x ∨ y〉 ∧ 〈x ∨ y, y〉 ∈ ΣL.

�

1054



Corollary 3.2.1. If 〈x, z〉 ∈ ΣL, y ∈ L1 × L2 and x 6 y 6 z then y ∈ L.

P r o o f. By Lemma 3.2 we have 〈x1, z2〉, 〈z1, x2〉 ∈ L. Then using Lemma 3.1

we first get 〈x1, y2〉, 〈y1, x2〉 ∈ L and finally

y = 〈x1, y2〉 ∨ 〈y1, x2〉 ∈ L.

�

Definition 1. Given arbitrary sets A1 and A2 and a = 〈a1, a2〉 ∈ A1 × A2, the

subset ({a1} × A2) ∪ (A1 × {a2}) of A1 × A2 is called an a-cross.

In the next section we shall show that every nontrivial subdirect product of tol-

erance simple lattices contains a cross. Now we derive several conclusions from the

assumption that L contains a cross. We start with an elementary lemma which will

be needed in the sequel.

Lemma 3.3. If L contains a u-cross then L also contains all elements of L1 ×L2

comparable with u.

P r o o f. Let x ∈ L1 × L2 be such that x 6 u. Then 〈x1, u
2〉, 〈u1, x2〉 ∈ L, hence

also

x = 〈x1, u2〉 ∧ 〈u1, x2〉 ∈ L.

The case x > u can be handled similarly. �

Lemma 3.4. Assume that L contains a u-cross and let T be a tolerance of L such

that ΣL 6 T . Then, given any 〈x, y〉 ∈ T , we have 〈x ∧ u, u ∨ y〉 ∈ T .

P r o o f. By assumption, 〈u1, y2〉, 〈y1, u2〉 ∈ L, hence

〈〈u1, u2〉, 〈u1, y2〉〉 ∈ ̺1 6 ΣL 6 T

and

〈〈u1, u2〉, 〈y1, u2〉〉 ∈ ̺2 6 ΣL 6 T,

which implies 〈u, u∨y〉 ∈ T . Similarly, using 〈u1, x2〉, 〈x1, u2〉 ∈ L, we get 〈x, u∨x〉 ∈

T , which together with 〈x, y〉 ∈ T gives 〈x, u ∨ x ∨ y〉 ∈ T and by Lemma 2.1,

〈x, u ∨ y〉 ∈ T . Now

〈x ∧ u, u ∨ y〉 = 〈x, u ∨ y〉 ∧ 〈u, u ∨ y〉 ∈ T.

This completes the proof. �
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Now we are going to show that if L is bounded and contains a cross then there

is a very strong connection between tolerances of L and subuniverses of L1 × L2

containing L. For this purpose we introduce two mappings:

Φ: ↑ΣL → ↑L, Ψ: ↑L → ↑ΣL

where

Φ(T ) = LT = {y ∈ L1 × L2 : ∃x, z ∈ L, 〈x, z〉 ∈ T, x 6 y 6 z}

and

Ψ(K) = (ΣK)|L

for an arbitrary T ∈ TolL and a subuniverse K of L1 × L2 containing L. Note that

here ↑ΣL is the principal filter of TolL generated by ΣL and ↑L is the principal filter

of the subuniverse lattice of L1 × L2 generated by L. It is straightforward to check

that LT is a subuniverse of L1 × L2 and the reflexivity of T implies L ⊂ LT .

Theorem 3.5. Let L be a subdirect product of bounded lattices L1 and L2 and

assume that L contains a cross. Then the mappings Φ and Ψ defined above realize

an isomorphism between the lattices ↑ΣL and ↑L. Moreover, Φ−1 = Ψ.

P r o o f. Assume that L contains a u-cross. Clearly both Φ and Ψ are order

preserving. Therefore the theorem will be proved when we show that Φ−1 = Ψ.

We first show that Ψ(Φ(T )) = T for any tolerance T ∈ ↑ΣL. Let 〈x, y〉 ∈ T . Then

x, y ∈ L ⊂ LT . On the other hand, 〈x∧y, x∨y〉 ∈ T and x∧y 6 〈x1, y2〉 6 x∨y, which

gives 〈x1, y2〉 ∈ LT . Since one gets similarly 〈y1, x2〉 ∈ LT , we have 〈x, y〉 ∈ ΣLT
.

Thus we have proved the inclusion T ⊂ ΣLT
which clearly implies T ⊂ (ΣLT

)|L, that

is, T ⊂ Ψ(Φ(T )).

Now we prove that also Ψ(Φ(T )) ⊂ T . Assume that

〈x, y〉 ∈ Ψ(Φ(T )) = (ΣLT
)|L.

By Lemma 2.1 we may assume, without loss of generality, that x 6 y. Applying

Lemma 3.4 with (ΣLT
)|L in the role of T , we get 〈u ∧ x, u ∨ y〉 ∈ (ΣLT

)|L. Then by

definition of LT we have

〈u1 ∧ x1, u2 ∨ y2〉, 〈u1 ∨ y1, u2 ∧ x2〉 ∈ LT .

Hence there exist a, b, c, d ∈ L such that 〈a, b〉, 〈c, d〉 ∈ T and

a 6 〈u1 ∧ x1, u2 ∨ y2〉 6 b, c 6 〈u1 ∨ y1, u2 ∧ x2〉 6 d.

Note that by Lemma 3.4 we may assume that a 6 u 6 b and c 6 u 6 d.
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Since 〈〈u1, 0〉, 〈u1, 1〉〉 ∈ ̺1 6 ΣL 6 T , we get

〈〈a1, 0〉, 〈u1, b2〉〉 = 〈〈a1, a2〉, 〈b1, b2〉〉 ∧ 〈〈u1, 0〉, 〈u1, 1〉〉 ∈ T .

Now the inequalities

〈a1, 0〉 6 〈u1 ∧ x1, 0〉 6 〈u1, u2 ∨ y2〉 6 〈u1, b2〉

imply

(2) 〈〈u1 ∧ x1, 0〉, 〈u1, u2 ∨ y2〉〉 ∈ T.

By a similar argument, starting from 〈〈0, u2〉, 〈1, u2〉〉 ∈ ̺2, one gets

(3) 〈〈0, u2 ∧ x2〉, 〈u1 ∨ y1, u2〉〉 ∈ T.

The formulas (2) and (3) yield 〈u ∧ x, u ∨ y〉 ∈ T . Since u ∧ x 6 x 6 y 6 u ∨ y, we

also have 〈x, y〉 ∈ T .

Next we show that Φ(Ψ(K)) = K for any K ∈ ↑L. If x ∈ K then 〈x ∧ u, u ∨ x〉 ∈

ΣK by Lemma 3.4 . On the other hand, by Lemma 3.3, x ∧ u, u ∨ x ∈ L. Since

x∧u 6 x 6 u∨x, we have x ∈ L(ΣK)|L = Φ(Ψ(K)). This proves K ⊂ Φ(Ψ(K)). For

the converse, let x ∈ Φ(Ψ(K)). Then there exist a, b ∈ L such that a 6 x 6 b and

〈a, b〉 ∈ ΣK. It remains to apply Corollary 3.2.1. �

4. Proof of the main result

In this section we focus on the problem when a nontrivial subdirect product of

two tolerance simple lattices of finite height is locally order affine complete. We first

prove that these subdirect products contain crosses. Actually this result is an analog

of one obtained in [2] for functionally complete algebras.

Lemma 4.1. Let a lattice L of finite height be a nontrivial subdirect product of

two tolerance simple lattices L1 and L2. Then L contains a cross.

P r o o f. Nontriviality of a subdirect product means that none of the two pro-

jection maps πi : L → Li is injective. In particular, there exist 〈a, b〉, 〈a, c〉 ∈ L such

that b 6= c. Since then also 〈a, b∧ c〉, 〈a, b∨ c〉 ∈ L, we may assume that b < c. Since

L is of finite height, so is L2, in particular, 0, 1 ∈ L2. We consider the mapping

f : L2 → L2 such that f(x) = 0 for x 6 b and f(x) = 1 otherwise. Obviously

f is order preserving and by simplicity of L2 it is also congruence preserving. By
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Theorem 2.3, L2 is locally order functionally complete. Hence there exists a unary

polynomial function p2 of L2 such that p2(b) = f(b) = 0 and p2(c) = f(c) = 1. Let

p2(x) = t(x, d1, . . . , dn) where t is a lattice term and d1, . . . , dn ∈ L2. Since L is sub-

direct in L1×L2, there exist a1, . . . , an ∈ L1 such that 〈ai, di〉 ∈ L, i = 1, . . . , n. Now

consider the polynomial function p(x) = t(x, 〈a1, d1〉, . . . , 〈an, dn〉) of the lattice L.

Denoting a′ = t(a, a1, . . . , an), we see that

〈a′, 0〉 = 〈t(a, a1, . . . , an), t(b, d1, . . . , dn)〉

= t(〈a, b〉, 〈a1, d1〉, . . . , 〈an, dn〉)

= p(〈a, b〉) ∈ L

and similarly 〈a′, 1〉 = p(〈a, c〉) ∈ L. Now Lemma 3.1 implies {a′} × L2 ⊂ L.

Changing the roles of L1 and L2, one immediately gets that L also contains a subset

L1 × {b′}, for a suitable b′ ∈ L2. This completes the proof. �

In Introduction we introduced the lattices L
01 and L

10 determined by a given

sublattice L of the direct product of two bounded lattices. The following lemma is

a special case of [4, Lemma 4.7]. It gives elementwise characterizations of L01 and

L
10 and shows that L equals their intersection, provided L is subdirect in L1 × L2.

Lemma 4.2. Let L be a subdirect product of bounded lattices L1 and L2. Then:

(1) L01 = {x ∈ L1 × L2 : ∃ y ∈ L, x1 6 y1, x2 > y2};

(2) L10 = {x ∈ L1 × L2 : ∃ y ∈ L, x1 > y1, x2 6 y2};

(3) L = L01 ∩ L10.

The following lemmas show that in the situation we are interested in, all tolerances

of L can be easily described and, in particular, ̺1 ∗ ̺2 and ̺2 ∗ ̺1 are exactly the

tolerances corresponding to the subuniverses L01 and L10, respectively.

Lemma 4.3. Let L be a subdirect product of bounded lattices L1 and L2 and

assume that L contains a cross. Then L01 = L̺1∗̺2
and L10 = L̺2∗̺1

.

P r o o f. Clearly, it suffices to prove the first of the two equalities. Take an

arbitrary element x ∈ L̺1∗̺2
. Then there exist y, z ∈ L such that y 6 x 6 z and

〈y, z〉 ∈ ̺1 ∗̺2. This means that 〈z, y〉 ∈ ̺1 ◦̺2, hence 〈z
1, y2〉 ∈ L. Now Lemma 3.1

implies 〈z1, x2〉, 〈x1, y2〉 ∈ L. Consequently,

x = (〈0, 1〉 ∧ 〈z1, x2〉) ∨ 〈x1, y2〉 ∈ L01.

This proves the inclusion L̺1∗̺2
⊂ L01. Note that so far we have not used the

assumption that L contains a cross.
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In order to prove the opposite inclusion assume that L contains a u-cross. Then

〈u1, 1〉, 〈0, u2〉 ∈ L and 〈〈u1, 1〉, 〈0, u2〉〉 ∈ ̺1 ∗ ̺2. Hence 〈0, u2〉 6 〈0, 1〉 6 〈u1, 1〉

implies 〈0, 1〉 ∈ L̺1∗̺2
. This proves L01 ⊂ L̺1∗̺2

. �

Lemma 4.4. Let L1 and L2 be tolerance simple lattices and let L 6sd L1 × L2.

Then for any T ∈ TolL, either T ∈ {∆L, ̺1, ̺2} or T > ΣL.

P r o o f. Let T ∈ TolL \ {∆L, ̺1, ̺2}. We denote Ti = πi(T ), i = 1, 2. The

surjectivity of πi implies that Ti ∈ TolLi, i = 1, 2. Since L1 is tolerance simple, we

have T1 ∈ {∆L1
,∇L1

}.

Assume that T1 = ∇L1
and let us show that then ̺2 6 T . Let 〈x, y〉 ∈ ̺2. Since

T1 = ∇L1
, there exist z, w ∈ L such that z1 = x1, w1 = y1 and 〈z, w〉 ∈ T . Then

also 〈(z ∨ x) ∧ y, (w ∨ x) ∧ y〉 ∈ T , which due to the equalities x2 = y2, z1 = x1 and

w1 = y1 gives

(4) 〈〈x1 ∧ y1, x2〉, 〈y1, y2〉〉 ∈ T.

Since 〈x1 ∧ y1, x2〉 6 x 6 y, (4) yields 〈x, y〉 ∈ T . Together with T 6= ̺2 this gives

T 66 ̺2, which easily implies T2 6= ∆L2
. Since L2 is tolerance simple, the only

possibility is T2 = ∇L2
. As above, the latter yields ̺1 6 T which together with

̺2 6 T gives ΣL 6 T . �

Lemma 4.5. Let L1 and L2 be tolerance simple lattices of finite height and let

L be a subdirect product in L1 × L2 containing a cross. Then

̺1 ∗ ̺2 ∗ ̺1 = ̺2 ∗ ̺1 ∗ ̺2 = (̺1 ∗ ̺2) ⊔ (̺2 ∗ ̺1) = ∇L.

P r o o f. Assume that L contains a u-cross. Since

〈0, u2〉, 〈1, u2〉, 〈u1, 0〉, 〈u1, 1〉 ∈ L,

we have

〈〈0, 0〉, 〈1, 1〉〉 ∈ (̺1 ∗ ̺2 ∗ ̺1) ∩ (̺2 ∗ ̺1 ∗ ̺2).

Thus ̺1 ∗ ̺2 ∗ ̺1 = ̺2 ∗ ̺1 ∗ ̺2 = ∇L.

To prove that (̺1 ∗ ̺2)⊔ (̺2 ∗ ̺1) = ∇L, we use Theorem 3.5 and show that in the

filter ↑L the equality

(5) L̺1∗̺2
∨ L̺2∗̺1

= L1 × L2

holds. By Lemma 4.3 we have 〈0, 1〉, 〈1, 0〉 ∈ L̺1∗̺2
∨ L̺2∗̺1

and obviously

〈0, 0〉, 〈1, 1〉 ∈ L̺1∗̺2
∨ L̺2∗̺1

. Hence the equality (5) follows from Lemma 3.1. �
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Now we are able to prove our main result.

P r o o f of Theorem 1.1. Assume that L is locally order affine complete. Then

by Theorem 2.4 the lattices L1 and L2 are locally order affine complete, too, and

due to their simplicity they are actually locally order functionally complete. Thus,

by Theorem 5.3.40 of [5], the lattices L1 and L2 are tolerance simple.

Furthermore, by Theorem 2.3 all finitely generated tolerances of L must be con-

gruence generated, hence by Lemma 4.5 the finitely generated tolerances of L are

contained in the set

F = {∆L, ̺1, ̺2, ΣL, ̺1 ∗ ̺2, ̺2 ∗ ̺1,∇L}.

Since F is a subuniverse of the lattice TolL and every tolerance of L is a join of

finitely generated tolerances of L, we conclude that TolL = F and

(6) ↑ΣL = {ΣL, ̺1 ∗ ̺2, ̺2 ∗ ̺1,∇L}.

Hence Theorem 3.5 and Lemma 4.3 imply

(7) ↑L = {L, L01, L10, L1 × L2}.

This means that both L01 and L10 either coincide with L1 ×L2 or are maximal sub-

universes of L1×L2. Thus the necessity part of the theorem follows from Lemma 4.2.

For the proof of sufficiency assume that the lattices Li, i = 1, 2, are tolerance

simple. Then by Lemma 4.1 L contains a cross. By Theorem 2.3 we have to prove

that every finitely generated tolerance T of L is congruence generated. By Lemma 4.4

we may restrict ourselves to the case T > ΣL. Clearly we shall be done if we prove (6),

which by Theorem 3.5 and Lemma 4.3 is equivalent to (7).

Now obviously the two cases (L = L1 × L2 or L is a maximal subuniverse of

L1 ×L2) are trivial. For the remaining case assume that L is the intersection of two

maximal subuniverses K1 and K2 of L1×L2, the first containing 〈0, 1〉 and the other

〈1, 0〉. As the first step, we show that K1 = L01 and K2 = L10. Obviously it suffices

to prove only one of these equalities.

Clearly, L01 ⊂ K1. Take an arbitrary x ∈ K1. Since L is subdirect in L1 × L2,

there exists y ∈ L such that x2 = y2. Since L ⊂ K1, we have 〈x
1 ∨ y1, x2〉 ∈ K1. On

the other hand, by Lemma 3.1 〈1, 0〉, 〈1, 1〉 ∈ K2 implies 〈1, x2〉 ∈ K2 and similarly

〈y1, y2〉, 〈1, y2〉 ∈ K2 implies 〈x
1 ∨ y1, y2〉 ∈ K2. Hence 〈x

1 ∨ y1, x2〉 ∈ K1 ∩ K2 = L

and x ∈ L01 directly follows from Lemma 4.2.

Now let K be a subuniverse of L1 ×L2 containing L. Then obviously L01 ⊂ K01,

L10 ⊂ K10 and the maximality of L01 and L10 yields

K01 ∈ {L01, L1 × L2}, K10 ∈ {L10, L1 × L2}.
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Finally, Lemma 4.2 implies

K ∈ {L, L01, L10, L1 × L2}.

�

5. Examples

Example 1. We first consider the simplest situation when one of the two subdirect

factors is the two-element lattice D2. Let L be a subdirect product of D2 and an

arbitrary tolerance simple lattice of finite height M. This subdirect product can be

trivial only if M ≃ D2 and in this case it is obviously locally order affine complete.

If L is not a trivial subdirect product in D2 × M then it can be locally order affine

complete only if it contains a cross. However, it follows from |D2| = 2 that if

L contains a cross then it certainly contains one of the “corners” 〈0, 1〉 or 〈1, 0〉. Now

it is easy to see that a sublattice of D2 × M is maximal iff it has one of the forms

{〈x, y〉 : y = 1 or x 6 c} or {〈x, y〉 : y = 0 or x > a} where a and c are an atom and

a coatom ofM, respectively. We conclude that a nontrivial subdirect product of D2

and M is locally order affine complete iff it is either the full direct product or has

one of the two forms described above.

Let now M = M3, the five-element simple modular lattice. In Fig. 1 we have

exhibited the latticeD2×M3 and two of its maximal sublattices, one containing 〈0, 1〉

and the other 〈1, 0〉. One can easily check that K1 and K2 are up to isomorphism

the only maximal sublattices of D2 ×M3. Hence, the lattices given in Fig. 1 are up

to isomorphism all order affine complete lattices that are subdirect products of D

andM3.

In the sequel, in all lattice diagrams, the symbols ◭ and ◮ denote the elements

〈0, 1〉 and 〈1, 0〉, respectively.

D× M3 K1 K2

r

rr r

◭

◮

r r r

r

r

rr r

◭

r

r

r

r

◮

r r r

r

Figure 1. Subdirect products in D×M3.
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Example 2. Now we describe all maximal sublattices ofM3×M3 given in Fig. 2.

r

rr r

◭

r r r

r

r

r

r r r

r

r

r r r

r

◮

r r r

r

Figure 2. M3 ×M3.

There are two different types of maximal sublattices K in M3 × M3. In one of

these cases the sublattice K contains only one cross (〈0, 1〉-cross or 〈1, 0〉-cross). One

of such sublattices K3 is exhibited in Figs. 3 and 7.

r

rr r

◭

r

r

r

r

r

r

r

Figure 3. Maximal sublattice K3 of M3 ×M3.

In the second case the sublattice contains more than one cross. In Figs. 4 and 5

we exhibit two of such maximal sublattices K4 and K5, one containing 〈0, 1〉 and

the other 〈1, 0〉. Note that actually these lattices are isomorphic.
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r

rr r

◭

r r r

r

r

r

r

r

r

r

r

Figure 4. Maximal sublattice K4 in M3 ×M3.

r

r

r r r

r

r

r

r

r

r

◮

r r r

r

Figure 5. Maximal sublattice K5 in M3 ×M3.

In Figs. 6 and 7 we exhibit the intersection of sublattices K4 and K5. Since it

contains a cross (whose elements are denoted by ), it is order affine complete.

Example 3. We conclude the paper by a series of examples of locally order affine

complete lattices which generalize, in a sense, the lattice K3. One can easily observe

that the set K3 is exactly the order relation of M3 × M3, that is, 〈x, y〉 ∈ K3 iff

x 6 y. Thus the order relation ofM3 is a maximal subuniverse ofM3×M3. We are

going to show that the same is true in the case of all atomic latticesM satisfying the

following condition (∗): for every two distinct atoms p and q of M there exists an

atom r ofM such that r 6 p∨q but r 6∈ {p, q}. Clearly all modular simple geometric

lattices satisfy this condition.
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r

r

Figure 6. Intersection of K4 and K5.

r

r rr

rr r r

rr

r

r

r

r

K3 K4 ∩ K5

Figure 7.

Let M be an atomistic lattice satisfying the condition (∗) and let K be its order

relation 6. Obviously K is subdirect in M × M . Assume that L is a subuniverse of

M × M such that K ⊂ L ⊂ M × M and K 6= L. Since K contains ∆M , it easily

follows that L contains a pair 〈a, b〉 such that a > b. SinceM is atomistic, there exists

an atom p of M such that p 6 a but p 66 b. By Lemma 3.1, 〈a, b〉, 〈b, b〉 ∈ L implies

〈b ∨ p, b〉 ∈ L, hence also 〈p, 0〉 = 〈b ∨ p, b〉 ∧ 〈p, p〉 ∈ L. Now let q be an arbitrary

atom ofM, p 6= q, and take an atom r ofM such that r 6 p∨q but r 6∈ {p, q}. Then

〈p, 0〉 ∈ L implies 〈p ∨ q, q〉 ∈ L and consequently 〈q, 0〉 = 〈p ∨ q, q〉 ∧ 〈r, r〉 ∈ L. We

have proved that L contains all pairs 〈q, 0〉 where q is an atom of M. Since M is

atomistic, it must also contain the pair 〈1, 0〉. Now 〈0, 1〉, 〈1, 0〉 ∈ L easily implies

L = M × M .
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