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Abstract. In this paper, we prove that a space X is a g-metrizable space if and only
if X is a weak-open, π and σ-image of a semi-metric space, if and only if X is a strong
sequence-covering, quotient, π and mssc-image of a semi-metric space, where “semi-metric”
can not be replaced by “metric”.
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1. Introduction

g-metrizable spaces as a generalization of metric spaces have many important

properties [17]. To characterize g-metrizable spaces as certain images of metric spaces

is an interesting question in the theory of generalized metric spaces, and many “nice”

characterizations of g-metrizable spaces have been obtained ([6], [8], [7], [13], [18],

[19]).

Theorem 1.1. The following are equivalent for a space X .

(1) X is a g-metrizable space.

(2) X is a quotient, π, σ-image of a metric space [6].

(3) X is a compact-covering, quotient, π, σ-image of a metric space [13].

(4) X is a 1-sequence-covering, quotient, σ-image of a metric space [8].

Recently, the following results were given.

This project was supported by NNSF of China (No. 10571151 and 10671173).
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Proposition 1.2. The following are equivalent for a space X .

(1) X is a g-metrizable space.

(2) X is a weak-open, π, σ-image of a metric space [10].

(3) X is a strong sequence-covering, quotient, π, mssc-image of a metric space [9].

Unfortunately, the proposition is not true. In this paper, we give an example to

show that there exists a g-metrizable space which is not a weak-open, π, σ-image of

a metric space and is not a strong sequence-covering, quotient, π, mssc-image of a

metric space. As a further investigation on g-metrizable spaces the following is the

main theorem of this paper.

Theorem 1.3. The following are equivalent for a space X .

(1) X is a g-metrizable space.

(2) X is a weak-open, π, σ-image of a semi-metric space.

(3) X is a strong sequence-covering, quotient, π, mssc-image of a semi-metric space.

Throughout this paper, all spaces are assumed to be regular and T1, all mappings

are continuous and onto.

2. Definitions and remarks

Definition 2.1 [4]. Let X be a space.

(1) P ⊂ X is called a sequential neighborhood of x in X , if each sequence {xn}

converging to x is eventually in P .

(2) A subset U of X is called sequentially open if U is a sequential neighborhood

of each of its points.

(3) X is called a sequential space if each sequential open subset of X is open.

Definition 2.2 [14]. Let P =
⋃

{Px : x ∈ X} be a cover of a space X with

each x ∈
⋂

Px.

(1) P is called a network of X , if for each x ∈ U with U open in X , there exists

P ∈ Px such that P ⊂ U , where Px is called a network at x in X .

(2) P is a cs∗-network of X , if each sequence S converging to a point x ∈ U with

U open in X , is frequently in P ⊂ U for some P ∈ Px.

Definition 2.3. Let P =
⋃

{Px : x ∈ X}, where Px is a network at x in X ,

and satisfies the following condition (∗) for each x ∈ X .

(∗) If P1, P2 ∈ Px, then there exists P ∈ Px such that P ⊂ P1 ∩ P2.

(1) P is called a weak base of X [1], if whenever G ⊂ X and for each x ∈ G there

exists P ∈ Px such that P ⊂ G, then G is open in X , where Px is called a

weak neighborhood base at x in X .
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(2) P is called an sn-network of X [12], if each element of Px is a sequential

neighborhood of x for each x ∈ X , wherePx is called an sn-network at x in X .

Definition 2.4.

(1) A space X is called g-metrizable [17] (resp. sn-metrizable [5]), if X has a σ-

locally finite weak base (resp. sn-network).

(2) A space X is called g-first countable [1] (resp. sn-first countable [5]), if X has

a weak base (resp. an sn-network) P =
⋃

{Px : x ∈ X} such that Px is

countable for each x ∈ X .

Notation 2.5. Let d be a non-negative real valued function defined onX×X such

that d(x, y) = 0 if and only if x = y, and d(x, y) = d(y, x) for all x, y ∈ X . d is called

a d-function on X . For each x ∈ X, n ∈ N, put Sn(x) = {y ∈ X : d(x, y) < 1/n}.

Definition 2.6. Let d be a d-function on a space X . A space (X, d) is called an

sn-symmetric space (resp. a symmetric space, a semi-metric space), if d satisfies the

following condition (A) (resp. (B), (C)), where d is called an sn-symmetric (resp. a

symmetric, a semi-metric) on X .

(A) {Sn(x)} is an sn-network at x in X for each x ∈ X .

(B) {Sn(x)} is a weak neighborhood base at x in X for each x ∈ X .

(C) {Sn(x)} is a neighborhood base at x in X for each x ∈ X .

Remark 2.7. Each weak base of a space is an sn-network, and each sn-network

of a sequential space is a weak base [12]. Thus

(1) g-metrizable spaces ⇐⇒ Sequential and sn-metrizable spaces.

(2) Symmetric spaces ⇐⇒ Sequential and sn-symmetric spaces.

(3) g-first countable spaces ⇐⇒ Sequential and sn-first countable.

(4) Semi-metric spaces ⇐⇒ First countable and sn-symmetric spaces.

Definition 2.8 ([15], [18]). Let (X, d) be an sn-symmetric (resp. symmetric,

semi-metric, metric) space. A mapping f : X → Y is called a π-mapping with

respect to d, if for each y ∈ U with U open in Y , d(f−1(y), X − f−1(U)) > 0.

Definition 2.9. Let f : X → Y be a mapping.

(1) f is called a 1-sequence-covering mapping [12], if for each y ∈ Y there exists

x ∈ f−1(y) such that whenever {yn} is a sequence converging to y in Y , there

exists a sequence {xn} converging to x in X with each xn ∈ f−1(yn).

(2) f is called a strong sequence-covering mapping [9], if whenever {yn} is a con-

vergent sequence in Y , there exists a convergent sequence {xn} in X with each

f(xn) = yn.
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(3) f is called a sequentially quotient mapping [2], if whenever S is a convergent

sequence in Y , there exists a convergent sequence L in X such that f(L) is a

subsequence of S.

(4) f is called a weak-open mapping [20] if there exists a weak base
⋃

{Py : y ∈ Y }

of Y such that for each y ∈ Y , there exists x ∈ f−1(y), such that whenever U

is a neighborhood of x in X , then P ⊂ f(U) for some P ∈ Py.

(5) f is called a σ-mapping [13], if there exists a base B of X such that f(B) is

σ-locally-finite in Y .

(6) f is called anmssc-mapping [13], if X is a subspace of the product space
∏

n∈NXn

in which eachXn is metrizable, and for each y ∈ Y , there exists a sequence {Vn}

of open neighborhoods of y in Y such that each pn(f−1(Vn)) is a compact subset

of Xn, where pn :
∏

i∈NXi → Xn is the projection.

Remark 2.10.

(1) “Strong sequence-covering mappings” in Definition 2.9(2) were called “sequence-

covering mappings” in [7], [12], [16], [18], [19], [20].

(2) Quotient mappings from sequential spaces are sequentially quotient [2].

(3) Sequentially quotient mappings onto sequential spaces are quotient [2].

(4) Weak-open mappings from first countable spaces are equivalent to 1-sequence-

covering, quotient mappings [20].

(5) mssc-mappings are σ-mappings [13].

3. The main results

The following example shows that Proposition 1.2 is not true.

Example 3.1. There exists a g-metrizable space which is not a strong sequence-

covering, π-image of a metric space.

P r o o f. Let Cn be a convergent sequence containing its limit point pn for each

n ∈ N, where Cn ∩Cm = ∅ if n 6= m. Let Q = {qn : n ∈ N} be the set of all rational
numbers of the real line R. Put M = (

⊕

{Cn : n ∈ N}) ⊕ R, and let X be the

quotient space obtained from M by identifying each pn in Cn with qn in R. Then
(1) X is a quotient, compact image of a separable metric space M from [18,

Example 2.14(3)]. So X has a countable weak base from [12, Corollary 4.7], thus X

is g-metrizable, hence X is symmetric.

Recall that a symmetric space (Y, d) is a Cauchy space if for each convergent

sequence {yn} in Y and each ε > 0, there exists k ∈ N such that d(yn, ym) < ε for
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all n, m > k. Y. Tanaka[18] proved that a space is a Cauchy space if and only if it

is a strong sequence-covering, quotient, π-image of a metric space.

(2) X is not a Cauchy space from [11, Example 3.1.13(2)], so X is not a strong

sequence-covering, quotient, π-image of a metric space by Tanaka’s result. X is not

a strong sequence-covering, π-image of a metric space from Remark 2.10(3).

The mistake in the papers [9, 10] is the following lemma: Suppose (X, d) is a

metric space and f : X → Y is a quotient mapping. Then Y is a symmetric space if

and only if f is a π-mapping with respect to d. The example 16 in [13] shows that

there exists a metric space (M, d) and a quotient mapping f : M → X such that X

is a symmetric space, but f is not a π-mapping with respect to d. �

The following Lemma is due to the proof of [12, Theorem 4.4].

Lemma 3.2. Let f : X → Y be a mapping. If {Bn} is a decreasing network

at some x in X , and each f(Bn) is a sequential neighborhood of f(x) in Y , then

whenever {yn} is a sequence converging to f(x) in Y , there is a sequence {xn}

converging to x in X with each xn ∈ f−1(yn).

P r o o f. Let {yn} be a sequence converging to y = f(x) in Y . For each k ∈ N,
there exists nk ∈ N such that yn ∈ f(Bk) for each n > nk. Thus f−1(yn) ∩ Bk 6= ∅

for each n > nk. Without loss of generality, we can assume 1 < nk < nk+1 for each

k ∈ N. For each n ∈ N, pick
xn ∈

{

f−1(yn), n < n1,

f−1(yn) ∩ Bk, nk 6 n < nk+1.

Then each xn ∈ f−1(yn). We show that {xn} converges to x as follows. Let U be

a neighborhood of x. There exists k ∈ N such that x ∈ Bk ⊂ U . For each n > nk,

there exists k′ > k such that nk′ 6 n < nk′+1, so xn ∈ Bk′ ⊂ Bk ⊂ U . This proves

that {xn} converges to x. �

Lemma 3.3. Let f : M → X be a mapping with sn-symmetric d on M .

(1) If X is an sn-symmetric space, then f is a π-mapping with respect to some

sn-symmetric on M .

(2) If f is a sequentially quotient, π-mapping, then X is an sn-symmetric space.

P r o o f. (1) Let (X, d′) be an sn-symmetric space. Put δ(a, b) = d(a, b) +

d′(f(a), f(b)) for a, b ∈ M . It is clear that δ is a d-function on M . Let a ∈ M, x ∈ X

and n ∈ N; we denote {b ∈ M : δ(a, b) < 1/n}, {b ∈ M : d(a, b) < 1/n} and

{y ∈ X : d′(x, y) < 1/n} by Sn(a), S1
n(a) and S2

n(x) respectively.
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Claim 1. {Sn(a)} is a network at a in M for each a ∈ M .

Let a ∈ U with U open inM . Since d is an sn-symmetric onM , there exists n ∈ N
such that S1

n(a) ⊂ U . Since d(a, b) 6 δ(a, b) for each b ∈ M , Sn(a) ⊂ S1
n(a) ⊂ U .

Hence {Sn(a)} is a network at a in M .

Claim 2. Sn(a) is a sequential neighborhood of a for each a ∈ M, n ∈ N.
Let {ak} be a sequence converging to a in M . Then {f(ak)} converges to f(a) in

X . There exist k0 ∈ N such that d(a, ak) < 1/2n and d′(f(a), f(ak)) < 1/2n for all

k > k0. Then δ(a, ak) = d(a, ak) + d′(f(a), f(ak)) < 1/n for each k > k0. That is

ak ∈ Sn(a) for all k > k0. So {ak} is eventually in Sn(a), and Sn(a) is a sequential

neighborhood of a in M .

By Claim 1 and Claim 2, δ is an sn-symmetric on M .

Claim 3. f is a π-mapping with respect to δ.

Let x ∈ U with U open in X . There exists n ∈ N such that S2
n(x) ⊂ U . If

a ∈ f−1(x), b ∈ M − f−1(U), then f(b) 6∈ U , and d′(x, f(b)) > 1/n, thus δ(a, b) >

d′(f(a), f(b)) = d′(x, f(b)) > 1/n. So δ(f−1(x), M − f−1(U)) > 1/n.

(2) Let f be a sequentially quotient, π-mapping. Put d′(x, y) = d(f−1(x), f−1(y))

for each x, y ∈ X . It is clear that d′ is a d-function on X . Let a ∈ M, x ∈ X and

n ∈ N; we denote {b ∈ M : d(a, b) < 1/n} and {y ∈ X : d′(x, y) < 1/n} by Sn(a)

and S′

n(x) respectively.

Claim 1. {S′

n(x)} is a network at x in X for each x ∈ X .

Let U be an open neighborhood of x in X . There exists n ∈ N such that
d(f−1(x), M − f−1(U)) > 1/n. If y 6∈ U , then f−1(y) ⊂ M − f−1(U), hence

d′(x, y) = d(f−1(x), f−1(y)) > d(f−1(x), M − f−1(U)) > 1/n, so y 6∈ S′

n(x). This

proves that S′

n(x) ⊂ U .

Claim 2. S′

m(x) is a sequential neighborhood of x for each x ∈ X, m ∈ N.
Let {xn} be a sequence converging to x. Since f is sequentially quotient, there

exists a sequence {ak} converging to a ∈ f−1(x) such that each f(ak) = xnk
.

There exists k0 ∈ N such that d(a, ak) < 1/m for all k > k0. So d′(x, xnk
) =

d(f−1(x), f−1(xnk
)) 6 d(a, ak) < 1/m for all k > k0, that is, xnk

∈ S′

m(x) for all

k > k0. Thus {xn} is frequently in S′

m(x). It is easy to check that S′

m(x) is a

sequential neighborhood of x.

By Claim 1 and Claim 2, d′ is an sn-symmetric on X . �

Corollary 3.4. Each sn-metrizable space is an sn-symmetric space.

P r o o f. Let X be an sn-metrizable space. Then X is a sequentially quotient,

π, σ-image of a metric space from [6, Theorem 3.4]. Thus (X, d) is an sn-symmetric

space by Lemma 3.3(2). �
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Theorem 3.5. The following are equivalent for a space X .

(1) X is an sn-metrizable space.

(2) X is a 1-sequence-covering, π, mssc-image of a semi-metric space.

(3) X is a sequentially quotient, π, σ-image of an sn-symmetric space.

P r o o f. Since each mssc-mapping is a σ-mapping by Remark 2.10(5), we only

need to prove that (1) =⇒ (2) and (3) =⇒ (1).

(1) =⇒ (2). Suppose that X has a σ-locally-finite sn-network P =
⋃

{Px : x ∈

X} =
⋃

{Pn : n ∈ N}, where each Px is an sn-network at x in X and each Pn =

{Pβ : β ∈ An} is a locally finite family of subsets of X . Without loss of generality, we

can suppose that eachPn is closed under finite intersections and X ∈ Pn ⊂ Pn+1.

Each An is endowed the discrete topology. Put

M = {b = (βn) ∈
∏

n∈NAn : {Pβn
} is a network at some point xb in X}.

Then M is a metric space, and f : M → X defined by f(b) = xb is a mapping.

Claim 1. f is a 1-sequence-covering mapping.

Let x ∈ X . For each n ∈ N, there exists βn ∈ An such that Pβn
=

⋂

{P ∈

Pn P ∈ Px} ∈ Px. Thus {Pβn
} is a network at x in X . Put b = (βn), then

b ∈ f−1(x). Let Bn = {(γk) ∈ M : γk = βk for k 6 n} for each n ∈ N. We prove
that f(Bn) =

⋂

k6n

Pβk
∈ Px for each n ∈ N as follows.

In fact, let c = (γk) ∈ Bn. Then f(c) ∈
⋂

k∈NPγk
⊂

⋂

k6n

Pβk
, so f(Bn) ⊂

⋂

k6n

Pβk
.

On the other hand, let y ∈
⋂

k6n

Pβk
. Then there exists c′ = (γ′

k) ∈ M such that

f(c′) = y. For each k ∈ N, put γk = βk if k 6 n, and γk = γ′

k−n if k > n. Then

{Pγk
} is a network at y in X . Let c = (γk), then c ∈ Bn and f(c) = y, so y ∈ f(Bn).

Thus
⋂

k6n

Pβk
⊂ f(Bn).

It is obvious that {Bn} is a decreasing neighborhood base at b in M . Thus f is a

1-sequence-covering mapping by Lemma 3.2.

Claim 2. f is an mssc-mapping.

For each x ∈ X, n ∈ N, there exists an open neighborhood Vn of x in X such that

Vn only meets with finite by many elements inPn becausePn is locally finite in X .

Let Λn = {β ∈ An : Pβ ∩ Vn 6= ∅}, then Λn is finite in An and pn(f−1(Vn)) ⊂ Λn is

compact. Hence f is an mssc-mapping.

Claim 3. f is a π-mapping with respect to some semi-metric on M .

X is an sn-symmetric space from Corollary 3.4. Thus f is a π-mapping with

respect to some semi-metric on M from Lemma 3.3(1) and Remark 2.7(4).
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(3) =⇒ (1). Let M be an sn-symmetric space, and f : M → X a sequentially

quotient, π, σ-mapping. Then X is an sn-symmetric space from Lemma 3.4(2).

Thus X is sn-first countable. Since a space is sn-metrizable if and only if it is an

sn-first countable space with a σ-locally finite cs∗-network [6], to complete the proof

it suffices to prove that X has a σ-locally finite cs∗-network. Since f is a σ-mapping,

there exists a base B of M such that f(B) is a σ-locally-finite family in X . Let S

be a sequence converging to x ∈ U with U open in X . There exists a sequence L

converging to some a ∈ f−1(x) such that f(L) is a subsequence of S. Thus there

exists B ∈ B such that a ∈ B ⊂ f−1(U). So L is eventually in B, hence f(L)

is eventually in f(B) ⊂ U . Thus S is frequently in f(B) ∈ f(B). So f(B) is a

cs∗-network of X . �

We have the following main theorem of this paper by Remarks 2.7, 2.10 and

Theorem 3.5.

Theorem 3.6. The following are equivalent for a space X .

(1) X is a g-metrizable space.

(2) X is a weak-open, π, mssc-image of a semi-metric space.

(3) X is a weak-open, π, σ-image of a semi-metric space.

(4) X is a strong sequence-covering, quotient, π, mssc-image of a semi-metric space.

(5) X is a strong sequence-covering, quotient, π, σ-image of a semi-metric space.

Remark 3.7. By Example 3.1, “semi-metric” in Theorem 3.6 can not be replaced

by “metric”.

References
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