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SLIM GROUPOIDS
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Abstract. Slim groupoids are groupoids satisfying x(yz) ≈ xz. We find all simple slim
groupoids and all minimal varieties of slim groupoids. Every slim groupoid can be embedded
into a subdirectly irreducible slim groupoid. The variety of slim groupoids has the finite
embeddability property, so that the word problem is solvable. We introduce the notion of a
strongly nonfinitely based slim groupoid (such groupoids are inherently nonfinitely based)
and find all strongly nonfinitely based slim groupoids with at most four elements; up to
isomorphism, there are just two such groupoids.
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We are going to investigate groupoids (algebras with one binary operation) satis-

fying the equation x(yz) ≈ xz. Since every term operation of such a groupoid can be

represented by a slim term (a term that is a product of a finite sequence of variables

with all parentheses grouped to the left), these groupoids are called slim. Similarly

to the case of semigroups, a free object in the variety of slim groupoids is the set

of words over a given set of generators; only the multiplication of words differs from

that in a free semigroup.

One can expect that the variety of slim groupoids will have similar properties as

the variety of semigroups. In some cases it is true. We will see, however, that in

the variety of slim groupoids the word problem is solvable and the variety has the

strong amalgamation property.

The purpose of this paper is to introduce and investigate basic properties of the

variety of slim groupoids. We are particularly interested in the existence of finite,

nonfinitely based slim groupoids. It has been shown by McKenzie [2] that the finite

basis problem for equations of finite algebras is unsolvable: there is no algorithm

The work is a part of the research project MSM0021620839 financed by MSMT.
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deciding for an arbitrary finite algebra, or a finite groupoid, whether it has a finite

basis for its equations. For many varieties, like those of groups or lattices, the

problem is solvable in a trivial way: every finite algebra in such a variety has a finite

basis. So, it is desirable to look for (natural) examples of varieties with the finite

basis problem solvable but in a nontrivial way. Such a variety should be in some

sense reasonably small and in another sense reasonably large. Perhaps the variety of

slim (or idempotent slim) groupoids could be a good candidate. We introduce the

notion of a strongly nonfinitely based slim groupoid! (such groupoids are inherently

nonfinitely based) and find all strongly nonfinitely based slim groupoids with at most

four elements; up to isomorphism, there are just two such groupoids.

For the notation and basic notions of universal algebra the reader is referred to [3].

We will work with groupoids, algebras with one binary operation. In most cases,

without mentioning it, the operation is denoted multiplicatively: the product of two

elements a, b of a groupoid is denoted by a · b or just ab. For elements a1, a2, . . . , an

of a groupoid we write a1 . . . an = (((a1a2)a3) . . .)an. (The parentheses are grouped

to the left.) For n > 1 we put an = a1 . . . an where ai = a for all i.

1. Slim groupoids: first concepts

By a slim groupoid we mean a groupoid satisfying the equation x(yz) ≈ xz.

Let X be a nonempty set. By a term overX we mean an element of the absolutely

free groupoid over X . For a term t denote by κ(t) the element of X occurring in t

at the rightmost position. (The inductive definition: κ(x) = x for x ∈ X ; κ(uv) =

κ(v).) By a slim term we mean any term x1 . . . xk (k > 1) where x1, . . . , xk ∈ X .

Every term can be uniquely expressed as xu1 . . . un for an element x of X and some

terms u1, . . . , un (n > 0). For a term t = xu1 . . . un expressed in this way put

t∗ = xκ(u1) . . . κ(un). So, t∗ is a slim term for any term t.

Theorem 1.1. The equational theory of slim groupoids can be described by its

normal form function t 7→ t∗:

(1) for any term t, the equation t∗ ≈ t is satisfied in all slim groupoids;

(2) an equation t ≈ u is satisfied in all slim groupoids if and only if t∗ = u∗;

(3) t∗∗ = t∗ for any term t.

P r o o f. This follows easily from the fact that the set of slim terms, considered

as a groupoid with respect to the operation ◦ defined by (x1 . . . xn) ◦ (y1 . . . ym) =

x1 . . . xnym, satisfies x ◦ (y ◦ z) = x ◦ z. �

Let X be a nonempty set. By a word over X we mean a nonempty finite sequence

of elements of X . A word 〈x1, . . . , xn〉 (xi ∈ X) can be written as x1x2 . . . xn (and
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thus identified with a slim term, or also with an element of a free semigroup). We

denote by F (X) the groupoid defined in this way: its underlying set is the set of

words over X ; multiplication is given by (x1 . . . xn)(y1 . . . ym) = x1 . . . xnym.

Theorem 1.2. For a nonempty set X , the groupoid F (X) is the free slim

groupoid over X .

P r o o f. It follows from 1.1. �

For a slim groupoid A we define a binary relation βA on A as follows: 〈a, b〉 ∈ βA

if and only if there exists an element c ∈ A with ca = cb.

Theorem 1.3. Let A be a slim groupoid. Then

(1) 〈a, b〉 ∈ βA implies ca = cb for all c ∈ A;

(2) βA is a congruence of A;

(3) 〈ab, b〉 ∈ βA for all a, b ∈ A, so that the factor A/βA satisfies xy ≈ y;

(4) every block of βA is a subgroupoid of A satisfying xy ≈ xz.

P r o o f. (1) If 〈a, b〉 ∈ βA then da = db for some d ∈ A, so that ca = c(da) =

c(db) = cb for all c ∈ A.

(2) It follows from (1) that βA is an equivalence. If 〈a, b〉 ∈ βA then for any c ∈ A

we have 〈ca, cb〉 ∈ βA, since c(ca) = ca = cb = c(cb); and for any c ∈ A we have

〈ac, bc〉 ∈ βA, since c(ac) = cc = c(bc). So, βA is a congruence.

(3) For a, b ∈ A we have a(ab) = ab, so that 〈ab, b〉 ∈ βA.

(4) In particular, 〈aa, a〉 ∈ βA. Thus the block of βA containing an arbitrary

element a ∈ A is a subgroupoid. Since any two elements of this subgroupoid are

βA-related, the subgroupoid satisfies xy ≈ xz. �

Now we are going to describe a general construction of arbitrary slim groupoids.

Denote by Φ the class of ordered triples 〈A, β, ϕ〉 such that A is a nonempty set, β

is an equivalence on A and ϕ is a mapping of A × A/β into A with ϕ(a, B) ∈ B for

any 〈a, B〉 ∈ A × A/β. For every such triple we define a groupoid GA,β,ϕ with the

underlying set A by ab = ϕ(a, b/β) for all a, b ∈ A.

Theorem 1.4. A groupoid is slim if and only if it is the groupoid GA,β,ϕ for a

triple 〈A, β, ϕ〉 ∈ Φ.

P r o o f. Clearly, GA,β,ϕ is a slim groupoid. Now let C be an arbitrary slim

groupoid. It is easy to check that C = GA,β,ϕ where A = C, β = βA and ϕ is defined

by ϕ(a, a/β) = ab. �
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2. Simple slim groupoids and minimal varieties

Lemma 2.1. The following assertions are equivalent for a groupoid A:

(1) A is slim and βA = idA,

(2) A satisfies xy ≈ y.

P r o o f. (1) implies (2) by 1.3. The converse is clear. �

Lemma 2.2. The following assertions are equivalent for a groupoid A:

(1) A is slim and βA = A × A,

(2) A satisfies xy ≈ xz.

P r o o f. (1) implies (2) by 1.3. The converse is clear. �

Theorem 2.3. The following assertions are up to isomorphism the only simple

slim groupoids:

(1) the two-element groupoid satisfying xy ≈ x,

(2) the two-element groupoid satisfying xy ≈ y,

(3) the two-element groupoid satisfying xy ≈ zu,

(4) for every prime number p, the groupoid with elements 0, 1, . . . , p − 1 and mul-

tiplication ◦ given by x ◦ y = x + 1 mod p.

P r o o f. It is easy to check that all these groupoids are slim and simple. Let

A be a simple slim groupoid. Then βA is either idA or A × A. If βA = idA then A

satisfies xy ≈ x by 1.3, and then A has just two elements because it is simple. If

βA = A×A then A satisfies xy ≈ xz by 1.3, so that A is essentially an algebra with

one unary operation; the description of simple algebras with one unary operation

belongs to folklore. �

Theorem 2.4. The variety of slim groupoids has just three minimal subvarieties:

(1) the variety determined by xy ≈ x,

(2) the variety determined by xy ≈ y,

(3) the variety determined by xy ≈ zu.

P r o o f. This follows from 2.3, since every minimal variety contains (and thus

is generated by) a simple groupoid. The groupoids 2.3(4) do not generate minimal

varieties. They generate varieties determined by xy ≈ xz and xp+1 ≈ x, and these

contain the variety determined by xy ≈ x. �
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3. Subdirectly irreducible slim groupoids

Theorem 3.1. Every slim groupoid A can be embedded into a subdirectly irre-

ducible slim groupoid B such that the monolith of B has only singleton blocks and

one two-element block, and such that B is finite if A is finite.

P r o o f. Let A be a slim groupoid. Let o be a fixed element of A. For i ∈ A

put ai = 〈a, 1〉 and bi = 〈a, 2〉. Put B = A ∪ {ai : i ∈ A} ∪ {bi : i ∈ A} and define

multiplication on B in the following way:

(i) for i, j ∈ A, ij in B is the same as ij in A,

(ii) for i ∈ A put iai = ibi = ai,

(iii) for i, j ∈ A with i 6= j put jai = jbi = bi,

(iv) for i, j ∈ A put aij = bij = ij,

(v) for i, j ∈ A put bjai = bjbi = bi,

(vi) for i ∈ A put aiai = aibi = ai,

(vii) for i ∈ A put aiao = aibo = ao,

(viii) for i, j ∈ A with i 6= j and j 6= o put aiaj = aibj = bj.

It is easy to check that B is a slim groupoid and that the relation µ = {〈ao, bo〉,

〈bo, ao〉} ∪ idB is a congruence of B. Let ∼ be a congruence of B. In order to prove

that µ is the monolith of B, we have to show that whenever two distinct elements of

B are ∼-related then ao ∼ bo. This follows from the following claims. Let i, j, k, m

run over elements of A,

C l a i m 1. If i ∼ j where i 6= j then ai ∼ bi. Indeed, ai = iai ∼ jai = bi.

C l a i m 2. If i ∼ aj then k ∼ bj for some k. Indeed, take an element m ∈ A

different from j and put k = mi; we have k = mi ∼ maj = bj.

C l a i m 3. If i ∼ bj then ai ∼ bi. Indeed, ai = ibi ∼ bjbi = bi.

C l a i m 4. If ai ∼ bj then ao ∼ bo. Indeed, ao = aiao ∼ bjao = bo.

C l a i m 5. If ai ∼ aj where i 6= j and j 6= o then aj ∼ bj . Indeed, bj = aiaj ∼

ajaj = aj .

C l a i m 6. If bi ∼ bj where i 6= j and j 6= o then ai ∼ bj . Indeed, ai = aibi ∼

aibj = bj. �

4. Partial groupoids

By a homomorphism of a partial groupoid A into a partial groupoid B we mean a

mapping f : A → B such that whenever a, b are elements of A such that ab is defined

then f(a)f(b) is also defined and f(ab) = f(a)f(b). We say that A is embeddable

into B if there exists an injective homomorphism of A into B. For a groupoid B and
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a nonempty subset S of B we define a partial groupoid B ↾ S with the underlying set

S as follows: for a, b ∈ S the product ab is defined in B ↾ S if and only if this product

in B belongs to S, and in this case the product in B ↾ S is equal to the product

in B. We say that a partial groupoid A is strongly embeddable into a groupoid B if

it is isomorphic to B ↾ S for a nonempty subset S of B.

Clearly, if a partial groupoid A is strongly embeddable into a slim groupoid, then

it satisfies the following two conditions:

(P1) whenever a, b, c ∈ A are such that bc and a(bc) are defined then ac is also defined

and ac = a(bc);

(P2) whenever a, b, c ∈ A are such that ac and bc are defined then a(bc) is also defined

and a(bc) = ac.

For a partial groupoid A satisfying (P1) and (P2) we define a groupoid F (A)

as follows. The underlying set of F (A) is the set of finite nonempty sequences

〈a1, a2, . . . , an〉 of elements of A such that if n > 2 then a1a2 is not defined in A;

multiplication is given by

〈a1, . . . , an〉〈b1, . . . , bm〉 =

{

a1bm if n = 1 and a1bm is defined in A,

〈a1, . . . , an, bm〉 otherwise.

For this definition to make sense, we must suppose that no element of A is a finite

sequence of length larger than 1. If this is not satisfied then A should be replaced

with an isomorphic partial groupoid. Also, we identify an element a of A with 〈a〉.

Theorem 4.1. Let A be a partial groupoid satisfying (P1) and (P2). Then

F (A) is a slim groupoid; it is the free slim groupoid over A, i.e., it is generated

by A and every homomorphism of A into a slim groupoid B can be extended to a

homomorphism of F (A) into B.

P r o o f. The most essential is to prove that F (A) is slim. Let u = 〈a1, . . . , an〉,

v = 〈b1, . . . , bm〉 and w = 〈c1, . . . , ck〉 be three elements of F (A). We are going to

check that u(wv) = uv.

Consider first the case when n = 1 and a1bm is defined in A, so that uv = a1bm.

If k = 1 and c1bm is defined in A then u(vw) = a1(c1bm) = a1bm = uv by (P2).

Otherwise, u(wv) = u〈c1, . . . , ck, bm〉 = a1bm = uv.

Consider the remaining case. Now uv = 〈a1, . . . , an, bm〉. If wv = 〈c1, . . . , ck, bm〉

then u(wv) = 〈a1, . . . , an, bm〉 = uv. Otherwise, k = 1, c1bm is defined in A and

wv = c1bm. If n = 1 and a1(c1bm) is defined in A then a1bm is defined by (P1),

which is not possible. So, wv = 〈c1, . . . , ck, bm〉 and u(wv) = 〈a1, . . . , an, bm〉 = uv.

Clearly, F (A) is generated by the set A. A homomorphism f of A into a slim

groupoid B can be extended to a homomorphism g of F (A) into B by setting

g(〈a1, . . . , an〉) = f(a1)f(a2) . . . f(an). �
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Corollary 4.2. A partial groupoid is strongly embeddable into a slim groupoid

if and only if it satisfies (P1) and (P2).

For a partial groupoid A denote by γA the set of the ordered pairs 〈a, b〉 ∈ A × A

such that one of the following three cases takes place:

(1) there exists an element c ∈ A such that ca, cb are both defined and ca = cb;

(2) there exists an element c ∈ A such that ca is defined and ca = b;

(3) there exists an element c ∈ A such that cb is defined and cb = a.

Denote by βA the reflexive and transitive closure of γA. (If A is a slim groupoid then

both γA and βA coincide with the congruence βA defined earlier.) Of course, βA is

an equivalence on A.

Consider the following condition for a partial groupoid A:

(P0) whenever 〈a, b〉 ∈ βA, c ∈ A and ca and cb are both defined then ca = cb.

Theorem 4.3. The following three conditions are equivalent for a partial

groupoid A:

(1) A is embeddable into a slim groupoid;

(2) A can be completed to a slim groupoid;

(3) A satisfies (P0).

P r o o f. The implications (2) ⇒ (1) ⇒ (3) are trivial. We are going to prove

(3) ⇒ (2). Let A satisfy (P0). For every block B of βA choose one fixed element

ν(B) ∈ B. Define a binary operation ◦ on A as follows:

a ◦ b =

{

ac if there is a c ∈ A with 〈b, c〉 ∈ βA such that ac is defined,

ν(b/βA) otherwise.

Correctness of this definition follows from (P0). Clearly, if a, b are two elements of A

such that ab is defined in A then a◦b = ab. Thus the groupoid 〈A, ◦〉 is a completion

of the partial groupoid A = 〈A, ·〉. It remains to prove that this groupoid is slim.

C l a i m 1. 〈a ◦ b, b〉 ∈ βA for all a, b ∈ a. This is easy to check.

C l a i m 2. For a, b, c ∈ A with 〈a, b〉 ∈ βA we have c ◦ a = c ◦ b. If c ◦ a = cd

where 〈a, d〉 ∈ βA then 〈b, d〉 ∈ βA, so that c ◦ b = cd = c ◦ a. The case c ◦ b = cd for

some d is symmetric. In the remaining case c ◦ a = ν(a/βA) = ν(b/βA) = c ◦ b.

C l a i m 3. For a, b, c ∈ A we have a ◦ (b ◦ c) = a ◦ c. By Claim 1 we have

〈b ◦ c, c〉 ∈ βA and so a ◦ (b ◦ c) = a ◦ c by Claim 2. �

A variety V is said to have the finite embeddability property if every finite partial

algebra that is embeddable into an algebra from V is embeddable into a finite algebra

from V .
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Corollary 4.4. The variety of slim groupoids has the finite embeddability prop-

erty.

Corollary 4.5. In the variety of slim groupoids the word problem is globally

decidable.

This follows from Evans [1]: in every finitely based variety with finite embeddabil-

ity property the globally word problem is decidable.

A variety V is said to have the strong amalgamation property if for any two

algebras A, B ∈ V such that the intersection A∩B is a subalgebra of both A and B,

there exists an algebra C ∈ V such that both A and B are subalgebras of C.

Theorem 4.6. The variety of slim groupoids has the strong amalgamation prop-

erty.

P r o o f. Let A, B be two slim groupoids such that A ∩ B is a subgroupoid of

each of them. Define a partial groupoid P with the underlying set A∪B as follows:

for a, b ∈ A ∪ B, the product ab is defined in P if and only if either {a, b} ⊆ A or

{a, b} ⊆ B; in either case let the product in P coincide with that in either A or B.

By Theorem 4.3, it is sufficient to check that P satisfies (P0). Take a fixed element

c ∈ A∩B. Let us first prove that if 〈a, b〉 ∈ γP then ca = cb. There exists an element

d such that either da = db or da = b or db = a. If either {a, b} ⊆ A or {a, b} ⊆ B

then it is easy to see that either 〈a, b〉 ∈ βA or 〈a, b〉 ∈ βB and hence ca = cb. Let,

e.g., a ∈ A − B and b ∈ B − A. Since both the products da and db are defined, we

have d ∈ A ∩ B and da = db ∈ A ∩ B. Then ca = c(da) = c(db) = cb.

Now let 〈a, b〉 ∈ βP . There exists a finite sequence a = a0, a1, . . . , ak = b such

that 〈ai−1, ai〉 ∈ γP for i = 1, . . . , n. We have seen that cai−1 = cai for all i. Thus

ca = cb. This implies that da = db whenever both da and db are defined. �

5. Equational theories

Let X be a countably infinite set of variables. The underlying set of F (X) is a

subset of the groupoid 〈T (X), ◦〉 of terms over X . The free semigroup 〈S (X), ∗〉

over X has the same underlying set as F (X). For two elements x1 . . . xn and

y1 . . . ym we have (x1 . . . xn)(y1 . . . ym) = x1 . . . xnym and (x1 . . . xn) ∗ (y1 . . . ym) =

x1 . . . xny1 . . . ym.

An equational theory is a fully invariant congruence of the groupoid 〈T (X), ◦〉.

By a slim theory we mean a restriction to F (X) of an equational theory extending

the equational theory of slim groupoids. Of course, the lattice of varieties of slim

groupoids is antiisomorphic to the lattice of slim theories.
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Theorem 5.1. A binary relation R on F (X) is a slim theory if and only if it is

a congruence of the free semigroup S (X) satisfying the following three conditions:

(1) if 〈x1 . . . xn, y1 . . . ym〉 ∈ R then 〈f(x1) . . . f(xn), f(y1), . . . , f(ym)〉 ∈ R for any

mapping f of X into X ;

(2) if 〈x1 . . . xn, y1 . . . ym〉 ∈ R where x1 6= y1 then 〈zx1 . . . xn, y1 . . . ym〉 ∈ R for

any variable z;

(3) if there is an equation 〈x1 . . . xn, y1 . . . ym〉 ∈ R such that xn 6= ym then

〈xy, xz〉 ∈ R for three distinct variables x, y, z.

P r o o f. Let R be a slim theory, so that R = R′ ∩ (F (X) × F (X)) for an

equational theory extending the equational theory of slim groupoids. Let 〈x1 . . . xn,

y1 . . . ym〉 ∈ R. Condition (1) is satisfied, since R′ is a fully invariant congruence of

T (X). If x1 6= y1 then substituting zx1 for x1 yields 〈zx1 . . . xn, y1 . . . ym〉 ∈ R. If

xn 6= ym, take a variable z different from both xn and ym; we have 〈z ◦ (x1 . . . xn), z ◦

(y1 . . . ym)〉 ∈ R′, so that 〈zxn, zym〉 ∈ R.

It remains to prove the converse. Denote by R′ the set of the equations 〈u, v〉 ∈

F (X) × F (X) such that 〈u∗, v∗〉 ∈ R. (As above, u∗ is the only element of F (X)

such that 〈u, u∗〉 is in the equational theory of slim groupoids.) Clearly, R′ is

an equivalence. Let 〈u, v〉 ∈ R′ and let w be a term. Since R is a congruence,

〈u∗κ(w), v∗κ(w)〉 ∈ R and hence 〈u ◦ w, v ◦ w〉 ∈ R′. We have (w ◦ u)∗ = w∗xn and

(w ◦ v)∗ = w∗ym. If xn = ym, we get (w ◦ u)∗ = (w ◦ v)∗ and thus 〈w ◦ u, w ◦ v〉 ∈ R′.

If xn 6= ym, the same follows from (3). So, R
′ is a congruence of T (X).

Let 〈u, v〉 ∈ R′ and let f be an endomorphism of F (X). We have u =

x0u1 . . . un and v = y0v1 . . . vm for some variables x0, y0 and terms ui, vj . Then

〈u∗, v∗〉 = 〈x0x1 . . . xn, y0y1 . . . ym〉 ∈ R where xi = κ(ui) and yj = κ(vj) for

i, j > 1. Put f(x0)
∗ = z1 . . . zr and f(y0)

∗ = w1 . . . ws. For i, j > 1 put

pi = κ(f(xi)) and qj = κ(f(yj)). We have 〈zrp1 . . . pn, wsq1 . . . qm〉 ∈ R by (1).

If x0 = y0 then 〈f(u)∗, f(v)∗〉 = 〈z1 . . . zrp1 . . . pn, z1 . . . zrq1 . . . qm〉 ∈ R, since

R is a congruence of S (X). If x0 6= y0 then it follows easily from (2) that

〈z1 . . . zrp1 . . . pn, w1 . . . wsq1 . . . qm〉 ∈ R, i.e., 〈f(u)∗, f(v)∗〉 ∈ R. This shows that

R′ is a fully invariant congruence of T (X). Clearly, R′ extends the equational

theory of slim groupoids and R is its restriction to F (X). �

By a slim-regular equation we mean an equation x1 . . . xn ≈ y1 . . . ym (xi and yj

are variables) such that {x1, . . . , xn} = {y1, . . . , ym}, x1 = y1 and xn = ym.

By a slim derivation of an equation u ≈ v based on a set B of slim-regular

equations we mean a finite sequence u0, . . . , uk of words such that u0 = u, uk = v

and for every i = 0, . . . , k− 1, 〈ui, ui+1〉 is an immediate consequence of an equation

〈x1 . . . xn, y1 . . . ym〉 ∈ B ∪ B−1 in the sense that the word ui+1 is obtained from ui
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by replacing a subword f(x1) . . . f(xn), for a mapping f of the set of variables into

itself, by f(y1) . . . f(ym).

Theorem 5.2. Let B be a set of slim-regular equations and let u, v be two terms.

The equation u ≈ v is satisfied in the variety of slim groupoids determined by B if

and only if there exists a slim derivation of u ≈ v based on B.

P r o o f. It follows from 5.1. �

6. Strongly nonfinitely based finite slim groupoids

A finite groupoid A is said to be nonfinitely based if its equational theory has no

finite base. It is said to be inherently nonfinitely based if there is no finitely based,

locally finite variety containing A.

By a strongly nonfinitely based slim groupoid we mean a finite slim groupoid A

such that whenever A satisfies an equation 〈u, v〉 where both u, v are slim and u is

linear (i.e., every variable occurs at most once in u), then u = v.

Theorem 6.1. Let A be a finite, strongly nonfinitely based slim groupoid. Then

A is inherently nonfinitely based.

P r o o f. First observe that if an equation 〈u, v〉 is satisfied in A then κ(u) = κ(v).

Indeed, if κ(u) 6= κ(v) then A satisfies xy = xz, a contradiction. Also observe that

if 〈x, u〉 is satisfied in A where x is a variable x then u = x.

Let V be a locally finite variety containing A and suppose that the equational

theory E of V has a finite base B. Denote by E0 the equational theory of A,

so that E ⊆ E0. Let q be a positive integer larger than the length of u for any

〈u, v〉 ∈ B ∪ B−1. For any i > 1 denote by ti the term which is the product of

the first i variables in the sequence x1, . . . , xq, x1, . . . , xq, x1, . . . , xq, . . .. Since V is

locally finite, we have 〈ti, tj〉 ∈ E for some i 6= j. Since B is a base for E, there

exists a B-derivation ti = w0, w1, . . . , wn = tj .

Let us prove by induction on p = 0, 1, . . . that w∗

p = ti. For p = 0 it is clear.

Let w∗

p = ti for some p < n. There exist an equation 〈u, v〉 ∈ B ∪ B−1 and an

endomorphism f of the groupoid of terms such that wp+1 is obtained from wp

by replacing a subterm f(u) by f(v). We have wp = xr2 . . . ri for a variable x

and some terms r2, . . . , ri (the same i as above). If f(u) is a subterm of rm for

some m then wp+1 = xr′2 . . . r′i for some terms r′i with r′c = rc for all c 6= m

and κ(r′m) = κ(rm), so that w∗

p+1 = w∗

p = ti. Otherwise, f(u) = xr2 . . . rd for

some d. We have u = yu2 . . . uk for a variable y and some terms u2, . . . , uk where
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k < q. Then f(y) = xr2 . . . re, f(u2) = re+1, . . . , f(uk) = rd. Since k < q, the

variables κ(re), κ(re+1), . . . , κ(rd) are pairwise distinct. Hence y, κ(u2), . . . , κ(uk)

are pairwise distinct. Thus u∗ is a slim linear term. Since 〈u∗, v∗〉 is satisfied

in A and v∗ is slim, we get u∗ = v∗. Then also (f(u))∗ = (f(v))∗. We get

w∗

p+1 = (f(v))∗κ(rd+1) . . . κ(ri) = w∗

p = ti.

In particular, w∗

n = ti, i.e., tj = ti, a contradiction. �

Consider the slim groupoid G4,1 with elements a, b, c, d and multiplication table

a b c d
a a a c c
b a a d d
c b b c c
d b b d d

Lemma 6.2. Let h be a homomorphism of the groupoid T of terms into G4,1.

Let t = x1 . . . xn where n > 2 and xi are variables. Then

(1) h(t) = a if f {h(xn−1), h(xn)} ⊆ {a, b};

(2) h(t) = b if f h(xn) ∈ {a, b} and h(xn−1) ∈ {c, d};

(3) h(t) = c if f h(xn) ∈ {c, d} and, when k is the least index with {h(xk), . . . ,

h(xn)} ⊆ {c, d}, one of the following three cases takes place:

k = 1 and h(x1) = c,

k = 2 and h(x1) = a,

k > 3 and {h(xk−2), h(xk−1)} ⊆ {a, b};

(4) h(t) = d in the remaining cases.

P r o o f. It can be checked easily. �

Lemma 6.3. Let x1 . . . xn ≈ y1 . . . ym be satisfied in G4,1, where xi and yj are

variables. Then x1 = y1, xn = ym and if n = 1 then m = 1.

P r o o f. Since G4,1 contains the subgroupoid {c, d} satisfying xy ≈ x, we have

x1 = y1. Since the factor G4,1/βG4,1
is a two-element groupoid satisfying xy ≈ y,

we have xn = ym. Since G4,1 contains the subgroupoid {a, b} satisfying xy ≈ uv,

G4,1 does not satisfy any equation x ≈ xk with k > 1. Consequently, if n = 1 then

m = 1. �
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Lemma 6.4. Let x1 . . . xn ≈ y1 . . . ym be satisfied in G4,1, where xi and yj are

variables. Then {x1, . . . , xn} = {y1, . . . , ym}.

P r o o f. Suppose, for example, that there exists an i with xi /∈ {y1, . . . , ym} and

take the largest index i with this property. By 6.3 we have 1 < i < n.

Consider first the case xi−1 6= xi. Take the homomorphism h : T → G4,1 with

h(xi) = b and h(z) = c for all other variables z. Then h(x1 . . . xn) = d 6= c =

h(y1 . . . ym), a contradiction. (For these computations one can use Lemma 6.2.)

Now consider the remaining case xi−1 = xi. Take h : T → G4,1 with h(xi) = a

and h(z) = d for all other variables z. Then h(x1 . . . xn) = c 6= d = h(y1 . . . ym), a

contradiction again. �

Theorem 6.5. G4,1 is a strongly nonfinitely based slim groupoid.

P r o o f. Suppose, on the contrary, that there are pairwise different variables

x1, . . . , xn and some variables y1, . . . , ym such that x1 . . . xn ≈ y1 . . . ym is satisfied

in G4,1 but x1 . . . xn 6= y1 . . . ym. We know already that 1 < n 6 m, x1 = y1, xn = ym

and {x1, . . . , xn} = {y1, . . . , ym}.

Let us prove by induction on i = 0, . . . , n−1 that ym−i = xn−i. For i = 0 it follows

from 6.3. Let i > 0 and ym−j = xn−j for all j < n; suppose that ym−i 6= xn−i. If

ym−i 6= xn−i+1, take the homomorphism h : T → G4,1 with h(xn−i) = h(xn−i+1) = a

and h(z) = c for all other variables z; we have h(x1 . . . xn) ∈ {a, c} (a if i = 1 and

c if i > 1), while h(y1 . . . ym) ∈ {b, d} (b if i = 1 and d if i > 1). If ym−i = xn−i+1,

take h : T → G4,1 with h(xn−i+1) = a and h(z) = c for all other variables z; we have

h(x1 . . . xn) ∈ {b, d} (b if i = 1 and d if i > 1), while h(y1 . . . ym) ∈ {a, c} (a if i = 1

and c if i > 1). In both cases we get a contradiction.

Thus ym = xn, . . . , ym−n+1 = x1. It remains to show that m = n. Suppose, on

the contrary, that m > n. If ym−n = x1, take h : T → G4,1 with h(x1) = b and

h(z) = c for all other variables z; we have h(x1 . . . xn) = d while h(y1 . . . ym) = c. If

ym−n 6= x1, take h : T → G4,1 with h(x1) = a and h(z) = c for all other variables z;

we have h(x1 . . . xn) = c while h(y1 . . . ym) = d. �

Now consider the slim groupoid G4,2 with elements a, b, c, d and multiplication

table
a b c d

a a a c c
b a a d d
c b b d d
d b b c c
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Theorem 6.6. G4,2 is a strongly nonfinitely based slim groupoid.

P r o o f. The idea is essentially the same as for G4,1. The main difference is that

the analogue of Lemma 6.2, which is then often used for checking, is slightly more

complicated. For a homomorphism h of the groupoid T of terms into G4,2 and for a

term t = x1 . . . xn (n > 2) we have

(1) h(t) = a iff {h(xn−1), h(xn)} ⊆ {a, b};

(2) h(t) = b iff h(xn) ∈ {a, b} and h(xn−1) ∈ {c, d};

(3) h(t) = c iff h(xn) ∈ {c, d} and, when k is the least index with {h(xk), . . . ,

h(xn)} ⊆ {c, d}, one of the following six cases takes place:

k = 1, h(x1) = c and n is odd,

k = 1, h(x1) = d and n is even,

k = 2, h(x1) = a and n is even,

k = 2, h(x1) = b and n is odd,

k > 3, h(xk−2) ∈ {a, b} and n − k is even,

k > 3, h(xk−2) ∈ {c, d} and n − k is odd;

(4) h(t) = d in the remaining cases.

Let x1 . . . xn ≈ y1 . . . ym be satisfied in G4,2, where xi and yj are variables. One

can prove in the same way as in Lemma 6.3 that x1 = y1, xn = ym and if n = 1

then m = 1. In order to prove that {x1, . . . , xn} = {y1, . . . , ym}, suppose that there

is an i with xi /∈ {y1, . . . , ym} and let i be the largest index with this property.

We have 1 < i < n. Take two homomorphisms h, h′ : T → G4,2 with h(xi) =

h′(xi) = a and h(z) = c, h′(z) = d for all other variables z. It is easy to check that

h(x1 . . . xn) = h′(x1 . . . xn) while h(y1 . . . ym) 6= h′(y1 . . . ym) in all cases, so that

either h(x1 . . . xn) 6= h(y1 . . . ym) or h′(x1 . . . xn) 6= h′(y1 . . . ym).

Let, moreover, x1, . . . , xn be pairwise different. The proof will be completed if we

derive a contradiction from the assumption x1 . . . xn 6= y1 . . . ym. We have 1 < n 6

m.

Let us first prove that ym−i = xn−i for i = 0, . . . , n− 1. Suppose ym−i 6= xn−i for

some i, and let i be the least number with this property; then i > 0. If ym−i 6= xn−i+1

then h(x1 . . . xn) 6= h(y1 . . . ym) where h(xn−i) = h(xn−i+1) = a and h(z) = c

for all other variables z. If ym−i = xn−i+1 then h(x1 . . . xn) 6= h(y1 . . . ym) where

h(xn−i+1) = a and h(z) = c for all other variables z.

So, ym = xn, . . ., ym−n+1 = x1. If x1 . . . xn 6= y1 . . . ym, we get m > n. If

ym−n = x1 then h(x1 . . . xn) 6= h(y1 . . . ym) where h(x1) = b and h(z) = c for all

other variables z. If ym−n 6= x1 then h(x1 . . . xn) 6= h(y1 . . . ym) where h(x1) = a

and h(z) = c for all other variables c. �
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Theorem 6.7. The groupoids G4,1 and G4,2 are, up to isomorphism, the only two

strongly nonfinitely based slim groupoids with at most four elements.

P r o o f. It is possible to use a computer program to generate all slim groupoids

with at most four elements that do not satisfy at least one of the equations xy ≈ xyyy,

xyz ≈ xyzxyz, xyz ≈ xyxyz and xyzu ≈ xyzuzuzu. Only two such groupoids are

obtained: the groupoid G4,1 and the groupoid G4,2. �

Let us remark that the varieties generated by G4,1 and G4,2 are incomparable: the

equation xxx = xx is satisfied in G4,1 but not in G4,2, and the equation xxyy ≈

xyxyyy is satisfied in G4,2 but not in G4,1.
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