## Czechoslovak Mathematical Journal

## Ján Jakubík <br> Direct summands and retract mappings of generalized $M V$-algebras

Czechoslovak Mathematical Journal, Vol. 58 (2008), No. 1, 183-202

Persistent URL: http://dml.cz/dmlcz/128254

## Terms of use:

© Institute of Mathematics AS CR, 2008

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.


This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

# DIRECT SUMMANDS AND RETRACT MAPPINGS OF GENERALIZED $M V$-ALGEBRAS 

Ján Jakubík, Košice

(Received January 31, 2006)


#### Abstract

In the present paper we deal with generalized $M V$-algebras ( $G M V$-algebras, in short) in the sense of Galatos and Tsinakis. According to a result of the mentioned authors, $G M V$-algebras can be obtained by a truncation construction from lattice ordered groups. We investigate direct summands and retract mappings of $G M V$-algebras. The relations between $G M V$-algebras and lattice ordered groups are essential for this investigation.


Keywords: residuated lattice, lattice ordered group, generalized $M V$-algebra, direct summand

MSC 2000: 06D35, 06F15

## 1. Introduction

In [5], the notion of generalized $M V$-algebra ( $G M V$-algebra, in short) has been introduced; it has been studied in the context of residuated lattices.

The fundamental result of [5] is Theorem (A). From this it follows that each $G M V$-algebra can be represented by using lattice ordered groups. For a detailed formulation of this result, cf. Section 2 below.

In the present paper we apply the mentioned representation for investigating direct summands and retract mappings of $G M V$-algebras.

Let $\mathbf{M}$ be a $G M V$-algebra and let $\ell(\mathbf{M})$ be the underlying lattice of $\mathbf{M}$. Further, let $\mathbf{A}$ be a subalgebra of $\mathbf{M}$. We prove that $\mathbf{A}$ is a direct summand of $\mathbf{M}$ iff the underlying lattice $\ell(\mathbf{A})$ of $A$ is an internal direct factor of the lattice $\ell(\mathbf{A})$.

[^0]The main result concerning retract mappings of $G M V$-algebras is Theorem (C) presented in Section 7 below.

We recall that the investigation of direct summands of some types of algebraic structures is frequent in the literature. E.g., a rather large series of papers has dealt with direct summands of abelian groups; cf. the references given in [4].

The related notion of direct product decomposition of $M V$-algebras was dealt with in [9]; for the case of pseudo $M V$-algebras cf. [10] and [20] (under a different terminology).

Retract mappings and retracts of lattice ordered groups were investigated in [13], [14], [15], [16]. Retract mappings of $M V$-algebras were studied in [17].

An important tool in the investigation of the relation between $G M V$-algebras and lattice ordered groups that is applied in [5] is the negative cone of a lattice ordered group. In the introduction of [5], the authors mention the papers of Chang [1], Mundici [18] and Dvurečenskij [3] on $M V$-algebras and pseudo $M V$-algebras; here the authors write: 'It should be noted that all the three authors have expressed their results in terms of the positive cone rather than the negative cone.' Hence in this respect, the method of [5] differs from that of [1], [3], [18].

We also remark that the term 'generalized $M V$-algebra' was applied in a different sense in [17]; in the sense of [17], this term is equivalent to the notion of pseudo $M V$-algebra (cf. [3], [6], [7], and also [10], [11], [12], [19] and [20]).

In what follows, the term ' $G M V$-algebra' will be used in the sense of [5].

## 2. Preliminaries

For the sake of completeness, we recall some basic definitions. We also quote some results of [5].

A residuated lattice is an algebra $\mathbf{L}=(L ; \wedge, \vee, \cdot, \backslash, /, e)$ of type $(2,2,2,2,2,0)$ such that $(L ; \wedge, \vee)$ is a lattice, $(L ; \cdot, e)$ is a monoid and for each $x, y, z \in L$,

$$
x \cdot y \leqslant \Leftrightarrow x \leqslant z / y \Leftrightarrow y \leqslant x \backslash z .
$$

A residuated lattice is commutative if $x y=y x$ for each $x, y \in L$; it is integral if $x \wedge e=x$ for each $x \in L$.

The negative cone of a residuated lattice $\mathbf{L}$ is an algebra $\mathbf{L}^{-}=\left(L^{-} ; \wedge, \vee, \cdot, \backslash_{L^{-}}\right.$, $\left./_{L^{-}}, e\right)$ where

$$
\begin{aligned}
L^{-} & =\{x \in L: x \leqslant e\}, \\
x \backslash_{L^{-}} y & =(x \backslash y) \wedge e, \quad x / L^{-} y=(x / y) \wedge e .
\end{aligned}
$$

Then $\mathbf{L}^{-}$is a residuated lattice as well.

A generalized $M V$-algebra (GMV-algebra, in short) is a residuated lattice satisfying the identities

$$
x /((x \vee y) \backslash x)=x \vee y=(x /(x \vee y)) \backslash x .
$$

If $\mathbf{L}$ is a $G M V$-algebra, then its negative cone $\mathbf{L}^{-}$is a $G M V$-algebra as well.
Let $P$ be a partially ordered set. A mapping $\gamma: P \rightarrow P$ is a closure operator on $P$ if $\gamma(x) \leqslant \gamma(y)$ whenever $x \leqslant y, x \leqslant \gamma(x)$ and $\gamma(\gamma(x))=x$. Put $\gamma(P)=P_{\gamma}$. Then

$$
\gamma(x)=\min \left\{t \in P_{\gamma}: x \leqslant t\right\}
$$

for each $x \in P$; hence the mapping $\gamma$ is uniquely determined by the set $P_{\gamma}$.
Let $\mathbf{L}$ be a residuated lattice. A closure operator $\gamma$ on $L$ satisfying $\gamma(a) \gamma(b) \leqslant$ $\gamma(a, b)$ for each $a, b \in L$ is a nucleus on $L$. If $L_{\gamma}$ is the image of a nucleus $\gamma$ on $L$, then the set $L_{\gamma}$ is endowed with a residuated lattice structure in the following way:

$$
L_{\gamma}=\left(L_{\gamma} ; \wedge, \vee_{\gamma}, \circ_{\gamma}, \backslash, /, \gamma(e)\right),
$$

where

$$
\gamma(a) \vee_{\gamma} \gamma(b)=\gamma(a \vee b), \quad \gamma(a) \circ_{\gamma} \gamma(b)=\gamma(a b) .
$$

A residuated lattice $\mathbf{A}$ is a direct sum of its subalgebras $\mathbf{B}$ and $\mathbf{C}$, in symbols $\mathbf{A}=\mathbf{B} \oplus \mathbf{C}$, if the map $B \times C \rightarrow A$ defined by $f(x, y)=x y$ is an isomorphism. In such case $\mathbf{B}$ and $\mathbf{C}$ are direct summands of $\mathbf{A}$. Under the above notation, put $z=x y$; we denote $x=z(\mathbf{B})$ and $y=z(\mathbf{C})$. We say that $x$ and $y$ is the component of $z$ in $\mathbf{B}$ or in $\mathbf{C}$, respectively

For lattice ordered groups we use the terminology and the notation as in [8].
Let $\mathbf{G}=\left(G ; \wedge, \vee, \cdot,^{-1}, e\right)$ be a lattice ordered group. The algebra

$$
\mathbf{G}^{*}=(G ; \wedge, \vee, \cdot, \backslash, /, e)
$$

where $x \backslash y=x^{-1} y$ and $y / x=y x^{-1}$, is a $G M V$-algebra.
The following theorem is one of the main results of [5]; we use a slightly modified notation.

Theorem 2.1 (cf. [5], Theorem (A)). A residuated lattice $\mathbf{M}$ is a $G M V$-algebra if and only if there are lattice ordered groups $\mathbf{G}$ and $\mathbf{G}_{1}$ and a nucleus $\gamma$ on $\left(\mathbf{G}_{1}^{*}\right)^{-}$ such that

$$
\mathbf{M}=\mathbf{G}^{*} \oplus \mathbf{L}_{\gamma}
$$

where $\mathbf{L}=\left(\mathbf{G}_{1}^{*}\right)^{-}$.

Theorem 2.2 (cf. [5], Theorem 3.4). If $\mathbf{L}=(L ; \wedge, \vee, \cdot, \backslash, /, e)$ is a $G M V$-algebra and $\gamma$ is a nucleus on $\gamma$, then
(i) $\vee_{\gamma}=\vee$;
(ii) $\gamma$ preserves binary joins;
(iii) $\gamma(e)=e$;
(iv) $\mathbf{L}_{\gamma}=\left(L_{\gamma} ; \wedge, \vee, \circ_{\gamma}, \backslash, /, e\right)$ is a $G M V$-algebra;
(v) $L_{\gamma}$ is a filter of the lattice $(L ; \wedge, \vee)$.

## 3. Internal direct factors of partially ordered sets

Assume that $P$ is a partially ordered set and that $\left(P_{i}\right)_{i \in I}$ is and indexed system of partially ordered sets. The direct product $\prod_{i \in I} P_{i}$ is defined in the usual way. The elements of $\prod_{i \in I} P_{i}$ are written in the form $t=\left(t_{i}\right)_{i \in I}$. If

$$
\varphi: P \rightarrow \prod_{i \in I} P_{i}
$$

is an isomorphism, then we say that $\varphi$ is a direct product decomposition of $P$. In such case, for each $i \in I$ and each $a \in P$ we put

$$
P(i, a)=\left\{x \in P: \varphi(x)_{j}=\varphi(a)_{j} \quad \text { for each } j \in I \backslash\{i\}\right\}
$$

The set $P(i, a)$ endowed with the partial order induced from $P$ is an internal direct factor of $P$ with respect to the element a. Obviously, $P(i, a)$ is isomorphic to $P_{i}$.

For each $y \in P$, we denote by $\varphi_{i}^{a}(y)$ the element of $P(i, a)$ such that

$$
\left(\varphi\left(\varphi_{i}^{a}(y)\right)_{i}=(\varphi(y))_{i}\right.
$$

Then the mapping

$$
\begin{equation*}
\varphi^{a}: P \rightarrow \prod_{i \in I} P(i, a) \tag{1}
\end{equation*}
$$

where $\varphi^{a}(y)=\left(\varphi_{i}^{a}(y)\right)_{i \in I}$ for each $y \in P$, is an isomorphism. We say that $\varphi^{a}$ defines an internal direct product decomposition of $P$ with respect to the element $a$.

For each $x \in P$ we now put

$$
x_{i}=\left(\varphi^{a}(x)\right)_{i}
$$

$x_{i}$ is the $i$-the component of $x$ with respect to (1). We also say that $x_{i}$ is the component of $x$ in $P(i, a)$ and we write $x_{i}=x(P(i, a))$. Then

$$
\begin{align*}
a_{i} & =a \text { for each } i \in I  \tag{2}\\
\left(x_{i}\right)_{i} & =x_{i} \text { and }\left(x_{i}\right)_{j}=a \text { if } j \in I, j \neq i \tag{3}
\end{align*}
$$

Now let $I_{1}$ and $I_{2}$ be nonempty subsets of $I$ such that $I_{1} \cap I_{2}=\emptyset$ and $I_{1} \cup I_{2}=I$. Put

$$
\begin{array}{lll}
P\left(I_{1}, a\right)=\left\{x \in P: x_{i}=a_{i}\right. & \text { for each } & \left.i \in I_{2}\right\}, \\
P\left(I_{2}, a\right)=\left\{x \in P: x_{i}=a_{i}\right. & \text { for each } & \left.i \in I_{1}\right\} .
\end{array}
$$

Let $x \in P$. The element $y \in P$ such that

$$
y_{i}=\left\{\begin{array}{lll}
x_{i} & \text { if } i \in I_{1} \\
a_{i} & \text { if } i \in I_{2}
\end{array}\right.
$$

will be denoted by $x_{I_{1}}$. Analogously we define $x_{I_{2}}$. Then the mapping

$$
x \rightarrow\left(x_{I_{1}}, x_{I_{2}}\right)
$$

defines an internal direct product decomposition

$$
\begin{equation*}
P \rightarrow P\left(I_{1}, a\right) \times P\left(I_{2}, a\right) . \tag{1}
\end{equation*}
$$

Further, we have internal direct product decompositions

$$
\begin{align*}
& P\left(I_{1}, a\right) \rightarrow \prod_{i \in I_{1}} P(i, a),  \tag{2}\\
& P\left(I_{2}, a\right) \rightarrow \prod_{i \in I_{2}} P(i, a) . \tag{3}
\end{align*}
$$

All the internal direct product decompositions $\left(*_{1}\right),\left(*_{2}\right)$ and $\left(*_{3}\right)$ are taken with respect to the element $a$.

Lemma 3.1. Assume that $P$ is a partially ordered set and that $a$ is the greatest element of $P$. Let (1) be valid. Then

$$
x=\bigwedge_{i \in I} x_{i}
$$

for each $x \in P$.
Proof. This is a consequence of the relations (2) and (3).
If (1) holds and $i \in I$, then we put

$$
P^{\prime}(i, a)=\left\{x \in P: x_{i}=a\right\} .
$$

Then in view of $\left(*_{2}\right)$ we have an internal product decomposition

$$
P^{\prime}(i, a) \rightarrow \prod_{j \in I \backslash\{i\}} P(j, a) .
$$

Moreover, according to $\left(*_{1}\right)$ we obtain a two-factor internal direct product decomposition

$$
\begin{equation*}
P \rightarrow P(i, a) \times P^{\prime}(i, a) \tag{4}
\end{equation*}
$$

For $x \in P$ we put $x\left(P^{\prime}(i, a)\right)=x_{i}^{\prime}$.

Lemma 3.2. Let $P$ be as in Lemma 3.1. Further, let $x$ and $y$ be elements of $P$. Then

$$
x_{i} \wedge x_{i}^{\prime}=x, \quad x_{i} \vee y_{i}^{\prime}=a .
$$

Proof. The validity of the first relation is a consequence of Lemma 3.1 and of (4). In view of (2) and (3), the second relation holds.

## 4. The negative cone

Let $\mathbf{G}$ be a lattice ordered group. The algebra

$$
\mathbf{G}^{-}=\left\{G^{-} ; \wedge, \vee, \cdot, e\right\},
$$

where $\mathbf{G}^{-}=\{g \in G: g \leqslant e\}$ is the negative cone of $G$. For $x, y \in G^{-}$we put $x \backslash y=\left(x^{-1} y\right) \wedge e$ and $y / x=\left(y x^{-1}\right) \wedge e$. An elementary calculation shows that the algebra

$$
\left(\mathbf{G}^{-}\right)^{*}=\left(G^{-} ; \wedge, \vee, \cdot, \backslash, /, e\right)
$$

is a $G M V$-algebra; moreover, under the notation as in Section 2 we have $\left(\mathbf{G}^{-}\right)^{*}=$ $\left(\mathbf{G}^{*}\right)^{-}$.

We denote by $\ell(\mathbf{G})$ and $\ell\left(\mathbf{G}^{-}\right)$the underlying lattice of $\mathbf{G}$ or of $\mathbf{G}^{-}$, respectively.
A filter $C$ of $\ell\left(G^{-}\right)$will be called regular if for each $x \in G^{-}$, the set $\{c \in C: x \leqslant c\}$ has a minimal element; in such case, this minimal element will be denoted by $\gamma_{C}(x)$. Clearly,

$$
\gamma_{C}\left(G^{-}\right)=C .
$$

Lemma 4.1. Let $C$ be a regular filter of the lattice $\ell\left(\mathbf{G}^{-}\right)$. Then $\gamma_{C}$ is a nucleus on $G^{-}$(with respect to the GMV-algebra $\left.\left(\mathbf{G}^{-}\right)^{*}\right)$.

Proof. It is obvious that $\gamma_{C}$ is a closure operator on the lattice $\ell\left(\mathbf{G}^{-}\right)$. Let $a, b \in G^{-}$. In view of the definition of the operation $/ L^{-}$we have

$$
\gamma(a) / L^{-} b=\left(\gamma(a) b^{-1}\right) \wedge e .
$$

From $b \in G^{-}$we obtain $b^{-1} \geqslant e$, thus $\gamma(a) b^{-1} \geqslant \gamma(a)$, whence

$$
\gamma(a) \leqslant\left(\gamma(a) b^{-1}\right) \wedge e \leqslant e
$$

and thus $\gamma(a) / L_{L^{-}} b \in \gamma_{C}\left(G^{-}\right)$. Analogously, $b \backslash_{L^{-}} \gamma(a) \in \gamma_{C}\left(G^{-}\right)$. Hence in view of [5], Lemma 1.3, $\gamma_{C}$ is a nucleus.

Let $C$ be as in Lemma 4.1. Denote

$$
\begin{equation*}
\gamma_{C}=\gamma, \quad \mathbf{L}=\left(\mathbf{G}^{-}\right)^{*}, \quad P=\ell\left(\mathbf{L}_{\gamma}\right), \quad a=e \tag{5}
\end{equation*}
$$

Lemma 4.2. Assume that (1) is valid. Let $x, y \in P$ and $i \in I$. Then

$$
x \circ_{\gamma} y=\left(x_{i} \circ_{\gamma} y_{i}\right) \circ_{\gamma}\left(x_{i}^{\prime} \circ_{\gamma} y_{i}^{\prime}\right) .
$$

Proof. We use the relation (4). In view of Lemma 3.2,

$$
x=x_{i} \wedge x_{i}^{\prime}, \quad y=y_{i} \wedge y_{i}^{\prime}
$$

Also, $x_{i} \vee x_{i}^{\prime}=e$. From this and from Lemma 2.10 in [5] we obtain $x=x_{i} \circ_{\gamma} x_{i}^{\prime}$. Similarly, $y=y_{i} \circ_{\gamma} y_{i}^{\prime}$. Thus

$$
x \circ_{\gamma} y=\left(x_{i} \circ_{\gamma} x_{i}^{\prime}\right) \circ_{\gamma}\left(y_{i} \circ_{\gamma} y_{i}^{\prime}\right)=x_{i} \circ_{\gamma}\left(x_{i}^{\prime} \circ_{\gamma} y_{i}\right) \circ_{\gamma} y_{i}^{\prime} .
$$

Using Lemma 3.2 again we get

$$
x_{i}^{\prime} \circ_{\gamma} y_{i}=x_{i}^{\prime} \wedge y_{i}=y_{i} \wedge x_{i}^{\prime}=y_{i} \circ_{\gamma} x_{i}^{\prime}
$$

whence

$$
x \circ_{\gamma} y=\left(x_{i} \circ_{\gamma} y_{i}\right) \circ_{\gamma}\left(x_{i}^{\prime} \circ_{\gamma} y_{i}^{\prime}\right) .
$$

Lemma 4.3. Assume that (1) is valid. Let $i \in I$ and $x, y \in P_{i}$. Then $x \circ_{\gamma} y \in P_{i}$.
Proof. Put $x \circ_{\gamma} y=z$. In view of (1),

$$
z=z_{i} \wedge z_{i}^{\prime}=z_{i} \circ_{\gamma} z_{i}^{\prime}
$$

From the relations $x \in P_{i}, z_{i}^{\prime} \in P_{i}^{\prime}$ we get

$$
x \vee z_{i}^{\prime}=e
$$

Hence

$$
\left(x \vee z_{i}\right) \circ_{\gamma} y=\left(x \circ_{\gamma} y\right) \vee\left(z_{i}^{\prime} \circ_{\gamma} y\right)=e \circ_{\gamma} y=y
$$

Further, $z_{i}^{\prime} \circ_{\gamma} y=z_{i}^{\prime} \wedge y$, thus

$$
z \vee\left(z_{i}^{\prime} \wedge y\right)=y
$$

By the distributivity of $\ell$-groups, we have

$$
z \vee\left(z_{i}^{\prime} \wedge y\right)=\left(z \vee z_{i}^{\prime}\right) \wedge(z \vee y)=z_{i}^{\prime} \wedge y
$$

Therefore $z_{i}^{\prime} \geqslant y$. Since $z_{i}^{\prime} \vee y=e$ we get $z_{i}^{\prime}=e$. This yields $z=z_{i}$, whence $z \in P_{i}$.

Lemma 4.4. Let (1) be valid. We use the notation as in (5). Let $a \in P, i \in I$, $a_{1} \in P_{i}, a_{2} \in P_{i}^{\prime}$ and $a=a_{1} \wedge a_{2}$. Then $a_{1}=a_{i}$ and $a_{2}=a_{i}^{\prime}$.

Proof. We have

$$
a_{1}=a_{1} \vee a=a_{1} \vee\left(a_{i} \wedge a_{i}^{\prime}\right)=\left(a_{1} \vee a_{i}\right) \wedge\left(a_{1} \vee a_{i}^{\prime}\right)
$$

Since $a_{1} \vee a_{i}^{\prime}=e$ we get $a_{1}=a_{1} \vee a_{i}$, whence $a_{1} \geqslant a_{i}$. By an analogous argument we obtain $a_{i} \geqslant a_{1}$, thus $a_{i}=a_{1}$. Similarly, $a_{2}=a_{1}^{\prime}$.

Lemma 4.5. Let (1) and (5) be valid. Let $i \in I$ and $x, y \in P$. Then

$$
\left(x \circ_{\gamma} y\right)_{i}=x_{i} \circ_{\gamma} y_{i}, \quad\left(x \circ_{\gamma} y\right)_{i}^{\prime}=x_{i}^{\prime} \circ_{\gamma} y_{i}^{\prime} .
$$

Proof. In view of Lemma 4.3 we have $x_{i} \circ_{\gamma} y_{i} \in P_{i}$. Analogously, $x_{i}^{\prime} \circ_{\gamma} y_{i}^{\prime} \in P_{i}^{\prime}$. Now it suffices to apply Lemma 4.2 and Lemma 4.4.

Again, let us suppose that (1) and (5) are valid.
Let $y, z \in P$. Put $z / y=t$. In view of the definition of residuated lattice we have

$$
x \circ_{\gamma} y \leqslant z \Leftrightarrow x \leqslant t
$$

This yields

$$
t=\max P(y, z)
$$

where

$$
P(y, z)=\left\{x \in P: x \circ_{\gamma} y \leqslant z\right\}
$$

According to Lemma 4.5 the relation $x \circ_{\gamma} y \leqslant z$ is equivalent with the validity of the two following conditions:

$$
\begin{align*}
& x_{i} \circ_{\gamma} y_{i} \leqslant z_{i}  \tag{6a}\\
& x_{i}^{\prime} \circ_{\gamma} y_{i}^{\prime} \leqslant z_{i}^{\prime} . \tag{6b}
\end{align*}
$$

Lemma 4.6. Let (1) and (5) be valid. Let $i \in I$ and $y, z \in P_{i}$. Then $z / y \in P_{i}$.
Proof. Let us apply the notation as above. From $y, z \in P_{i}$ we obtain $y_{i}=y$ and $z_{i}=z$; thus in view of (6a)

$$
x_{i} \circ_{\gamma} y \leqslant z
$$

for each $x \in P(y, z)$. Since $t \in P(y, z)$, we have $t_{i} \circ_{\gamma} y \leqslant z$, hence $t_{i} \in P(y, z)$. Clearly $t_{i} \geqslant t$. Therefore we must have $t_{i}=t$. This yields $t \in P_{i}$.

Analogously, we have (by applying (6b))

Lemma 4.6.1. Let (1) and (5) be valid. Let $i \in I$ and $y, z \in P_{i}^{\prime}$. Then $z / y=P_{i}^{\prime}$.
Lemma 4.7. Let (1) and (5) be valid. Let $i \in I$ and $y, z \in P$. Then $(z / y)_{i}=$ $z_{i} / y_{i}$.

Proof. As above, let $z / y=t$. Further, put $z_{i} / y_{i}=q$. In view of Lemma 4.6, $q \in P_{i}$.

Since $t \in P(y, z),(6 \mathrm{~b})$ yields

$$
t_{i} \circ_{\gamma} y_{i} \leqslant z_{i}
$$

hence $t_{i} \in P\left(y_{i}, z_{i}\right)$. Since $q=\max P\left(y_{i}, z_{i}\right)$, we obtain $q \geqslant t_{i}$.
Denote $q \wedge t_{i}^{\prime}=q_{1}$. According to Lemma 4.4,

$$
\left(q_{1}\right)_{i}=q, \quad\left(q_{1}\right)_{i}^{\prime}=t_{i}^{\prime} .
$$

From this and from (6a), (6b) we conclude that $q_{1}$ belongs to $P(y, z)$. Therefore $q_{1} \leqslant t$. Hence $\left(q_{1}\right)_{i} \leqslant t_{i}$. Thus $q=t_{i}$. This completes the proof.

Similarly, we have

Lemma 4.7.1. Under the assumptions as in Lemma 4.7, $(z / y)_{i}^{\prime}=z_{i}^{\prime} / y_{i}^{\prime}$.
The results analogous to Lemma 4.7 and Lemma 4.7.1 are valid for the operation $y \backslash z$.

Summarizing, from the previous lemmas of the present section we obtain

Proposition 4.8. Let $\mathbf{G}$ be a lattice ordered group and let us use the notation as in (5). Suppose that

$$
\varphi: P \rightarrow P_{i} \times P_{i}^{\prime}
$$

is an internal direct product decomposition of the lattice $P$ with respect to the element $e$.
(i) Both $P_{i}$ and $P_{i}^{\prime}$ are closed with respect to the operations $\wedge, \vee_{\gamma}, \circ_{\gamma}, \backslash$ and /; also, $e \in P_{i} \cap P_{i}^{\prime}$. Thus the algebras $\mathbf{P}_{i}=\left(P_{i}, \vee, \wedge_{\gamma}, \circ_{\gamma}, \backslash, /, e\right)$ and $\mathbf{P}_{i}^{\prime}=$ $\left(P_{i}^{\prime}, \wedge, \vee_{\gamma}, \circ_{\gamma}, \backslash, /, e\right)$ are subalgebras of the $G M V$-algebra $\mathbf{L}_{\gamma}$.
(ii) The mapping $\varphi$ determines a direct sum decomposition

$$
\varphi: \mathbf{L}_{\gamma}=\mathbf{P}_{i} \oplus \mathbf{P}_{i}^{\prime} .
$$

It is obvious that if $\mathbf{L}_{\gamma}$ is represented as a direct sum

$$
\mathbf{L}_{\gamma}=\mathbf{X} \oplus \mathbf{Y}
$$

and if for $z \in L_{\gamma}$ we have $z=x \cdot y$ with $x \in X$ and $y \in Y$, then the mapping $\varphi(z)=(x, y)$ determines an internal direct product of the corresponding lattices

$$
\varphi: \ell\left(\mathbf{L}_{\gamma}\right) \rightarrow \ell(\mathbf{X}) \times \ell(\mathbf{Y})
$$

From this and from Proposition 2.10 we obtain the following.

Corollary 4.9. Let us use the notation as in Proposition 4.8. Let $F(P)$ be the set of all internal direct factors of $P$ taken with respect to the element $e$. Further, let $S\left(\mathbf{L}_{\gamma}\right)$ be the set of all direct summands of $\mathbf{L}_{\gamma}$. For each $\mathbf{A} \in S\left(\mathbf{L}_{\gamma}\right)$ put $\psi(\mathbf{A})=\ell(\mathbf{A})$. Then $\psi$ is a one-to-one mapping of the set $S\left(\mathbf{L}_{\gamma}\right)$ onto the set $F(P)$.

From the mentioned relations between elements of $F(P)$ and $S\left(\mathbf{L}_{\gamma}\right)$ and from the well-known properties of internal direct factors of partially ordered sets we immediately obtain the following facts:
4.10.1. Let $\mathbf{P}_{i} \in S\left(\mathbf{L}_{\gamma}\right)$ and $x \in L_{\gamma}$. Then the component $x_{L}$ of $x$ in $\mathbf{P}_{i}$ is uniquely determined; namely

$$
x_{i}=\min \left\{t \in P_{i}: t \geqslant x\right\} .
$$

4.10.2. Let $\mathbf{P}_{i} \in S\left(\mathbf{L}_{\gamma}\right)$. Then the corresponding $\mathbf{P}_{i}^{\prime}$ (under the notation as above) is uniquely determined; namely,

$$
P_{i}^{\prime}=\left\{t \in L_{\gamma}: t \vee p=e \quad \text { for each } p \in P_{i}\right\}
$$

4.10.3. The system $S\left(\mathbf{L}_{\gamma}\right)$ partially ordered by the set-theoretical inclusion is a Boolean algebra. If $\mathbf{X}, \mathbf{Y} \in S\left(\mathbf{L}_{\gamma}\right)$, then the underlying set of $\mathbf{X} \wedge \mathbf{Y}$ is $X \cap Y$. Under the notation as above, $\mathbf{P}_{i}^{\prime}$ is the complement of $\mathbf{P}_{i}$ in the Boolean algebra $S\left(\mathbf{L}_{\gamma}\right)$.

## 5. On the $G M V$-algebra $\mathbf{G}^{*}$

Assume that $\mathbf{M}$ is a $G M V$-algebra and that

$$
\mathbf{M}=\mathbf{G}^{*} \oplus \mathbf{L}_{\gamma}
$$

where $\mathbf{G}^{*}$ and $\mathbf{L}_{\gamma}$ are as in Theorem 2.1.
In this section we investigate the $G M V$-algebra $\mathbf{G}^{*}$. Put $\ell\left(\mathbf{G}^{*}\right)=Q$. We have $\ell\left(\mathbf{G}^{*}\right)=\ell(\mathbf{G})$.

Suppose that

$$
\psi: Q \rightarrow \prod_{j \in J} Q_{j}
$$

is an internal direct product decomposition of the lattice $Q$ with respect to the element $e$.

Let $j \in J, x \in Q$. We denote by $x_{j}$ or $x\left(Q_{j}\right)$ the component of $x$ in $Q_{j}$. Further, let $Q_{j}^{\prime}$ be defined analogously as $P_{i}^{\prime}$ in Section 3. Then we have an internal direct product decomposition

$$
\psi^{j}: Q \rightarrow Q_{j} \times Q_{j}^{\prime}
$$

where $\psi^{j}(x)=\left(x_{j}, x_{j}^{\prime}\right)$ for each $x \in Q$. Then in view of Proposition 4.8 (applied for $\psi^{j}$ ) we conclude that $Q_{j}$ is the underlying sublattice of an $\ell$-subgroup $\mathbf{Q}_{j}$ of $\mathbf{G}$ (the meaning of $\mathbf{Q}_{j}^{\prime}$ is analogous) and that $\psi^{j}$ yields also a direct product decomposition of the lattice ordered group $\mathbf{G}$, i.e.,

$$
\begin{equation*}
\psi^{j}: \mathbf{G} \rightarrow \mathbf{Q}_{j} \times \mathbf{Q}_{j}^{\prime} \tag{7}
\end{equation*}
$$

is a direct product decomposition of the lattice ordered group $\mathbf{G}$.
Let us consider the $G M V$-algebras $\mathbf{G}^{*}, \mathbf{Q}_{j}^{*}$ and $\left(\mathbf{Q}_{j}^{\prime}\right)^{*}$. For $x, y \in G$ we have

$$
x / y=x y^{-1}, \quad y \backslash x=y^{-1} x
$$

Thus in view of (7) we obtain that $Q_{j}$ and $Q_{j}^{\prime}$ are closed with respect to the operations / and \; therefore

$$
\begin{aligned}
(x / y)_{j} & =x_{j} y_{j}^{-1}=x_{j} / y_{j}^{-1} \\
(x / y)_{j}^{\prime} & =x_{j}^{\prime}\left(y^{-1}\right)_{j}^{\prime}=x_{j}^{\prime} /\left(y^{-1}\right)_{j}^{\prime}
\end{aligned}
$$

and analogously for the operation $\backslash$. Hence

$$
\mathbf{G}^{*}=\mathbf{Q}_{j}^{*} \oplus \mathbf{Q}_{j}^{\prime} .
$$

We verified that if $Q_{j}$ is an internal direct factor of the lattice $Q$ with respect to the element $e$, then $\mathbf{Q}_{j}^{*}$ is a direct summand of the $G M V$-algebra $\mathbf{G}^{*}$. Clearly, $\ell\left(\mathbf{Q}_{j}^{*}\right)=Q_{j}$.

Conversely, it is obvious that if $\mathbf{X}$ is a direct summand of the $G M V$-algebra $\mathbf{G}^{*}$, then the lattice $\ell(\mathbf{X})$ is a direct summand of the lattice $\ell\left(\mathbf{G}^{*}\right)$ with respect to the element $e$.

We denote by $F(Q)$ the system of all internal direct factors of the lattice $Q$ taken with respect to the element $e$. Further, let $S\left(\mathbf{G}^{*}\right)$ be the system of all direct summands of the $G M V$-algebra $G^{*}$. In view of the above argument we have proved

Lemma 5.1. For each $\mathbf{X} \in S\left(\mathbf{G}^{*}\right)$ let $\chi(\mathbf{X})=\ell(\mathbf{X})$. Then $\chi$ is a one-to-one mapping of the set $S\left(\mathbf{G}^{*}\right)$ onto the set $F\left(\ell\left(\mathbf{G}^{*}\right)\right)$.

Now, let us assume that $\mathbf{M}$ is any $G M V$-algebra. Further, suppose that $I$ is a nonempty set and that for each $i \in I, \mathbf{M}_{i}$ is a direct summand of $M$. If $x \in M$, then, as above, $x\left(\mathbf{M}_{i}\right)$ will denote the component of $x$ in $\mathbf{M}_{i}$. Consider the mapping

$$
\alpha: M \rightarrow \prod_{i \in I} M_{i}
$$

defined by $\alpha(x)=\left(x\left(\mathbf{M}_{i}\right)\right)_{i \in I}$ for each $x \in M$. If $\alpha$ is bijective then we say that $\mathbf{M}$ is a complete direct sum of the system $\left(\mathbf{M}_{i}\right)_{i \in I}$ and we express this fact by writing

$$
\mathbf{M}=\sum_{i \in I}^{*} \mathbf{M}_{i}
$$

Proposition 5.2. Let G be a lattice ordered group. Assume that

$$
\varphi: \ell(\mathbf{G}) \rightarrow \prod_{i \in I} P_{i}
$$

is an internal direct product decomposition of the lattice $\ell(\mathbf{G})$. Let $\chi$ be as in Lemma 5.1; for each $i \in I$ put $\mathbf{T}_{i}=\chi^{-1}\left(P_{i}\right)$. Then

$$
\mathbf{G}^{*}=\sum_{i \in I}^{*} \mathbf{T}_{i}
$$

Proof. Since $\ell(\mathbf{G})=\ell\left(\mathbf{G}^{*}\right)$, the assertion follows from Lemma 5.1.
Analogously, from Corollary 4.9 we obtain
Proposition 5.3. Let $\mathbf{L}_{\gamma}$ be as in Corollary 4.9. Assume that

$$
\varphi: \ell\left(\mathbf{L}_{\gamma}\right) \rightarrow \prod_{i \in I} P_{i}
$$

is an internal direct product decomposition of the lattice $\ell\left(\mathbf{L}_{\gamma}\right)$ with respect to the element $e$. Put $\psi^{-1}\left(P_{i}\right)=\mathbf{Q}_{i}$ for each $i \in I$. Then

$$
\mathbf{L}_{\gamma}=\sum_{i \in I}^{*} \mathbf{Q}_{i}
$$

## 6. Direct summands of $\mathbf{M}$

Again, let $\mathbf{M}$ be a $G M V$-algebra and let $S(\mathbf{M})$ be the system of all direct summands of $\mathbf{M}$. Further, we denote by $F(\ell(\mathbf{M}))$ the system of all internal direct factors of the lattice $\ell(\mathbf{M})$ with respect to the element $e$.

If $\mathbf{X} \in S(\mathbf{M})$, then, obviously, the lattice $\ell(\mathbf{X})$ belongs to $F(\ell(\mathbf{M}))$.
Conversely, assume that $X$ is an element of $F(\ell(\mathbf{M}))$. Then there exists $Y \in$ $F(\ell(\mathbf{M}))$ and an internal direct product decomposition

$$
\varphi_{0}: \ell(\mathbf{M}) \rightarrow X \times Y
$$

At the same time, in view of Theorem 2.1, we have an internal direct product decomposition with respect to the element $e$

$$
\varphi_{1}: \ell(M) \rightarrow \ell\left(\mathbf{G}^{*}\right) \times \ell\left(\mathbf{L}_{\gamma}\right)
$$

It is well-known that any two internal direct product decompositions of a lattice (taken with respect to the same element) have a common refinement; hence from $\varphi_{0}$ and $\varphi_{1}$ we can construct a new internal direct product decomposition

$$
\varphi_{2}: \ell(\mathbf{M}) \rightarrow\left(X \cap \ell\left(\mathbf{G}^{*}\right)\right) \times\left(X \cap \ell\left(\mathbf{L}_{\gamma}\right)\right) \times\left(Y \cap \ell\left(\mathbf{G}^{*}\right) \times\left(Y \cap \ell\left(\mathbf{L}_{\gamma}\right)\right)\right.
$$

At the same time, we have internal direct product decompositions with respect to the element $e$

$$
\begin{aligned}
\varphi_{21}: \ell\left(\mathbf{G}^{*}\right) & \rightarrow\left(X \cap \ell\left(\mathbf{G}^{*}\right) \times\left(Y \cap \ell\left(\mathbf{G}^{*}\right)\right),\right. \\
\varphi_{22}: \ell\left(\mathbf{L}_{\gamma}\right) & \rightarrow\left(X \cap \ell\left(\mathbf{L}_{\gamma}\right) \times\left(Y \cap \ell\left(\mathbf{L}_{\gamma}\right)\right),\right. \\
\varphi_{23}: X & \rightarrow\left(X \cap \ell\left(\mathbf{G}^{*}\right) \times\left(X \cap \ell\left(\mathbf{L}_{\gamma}\right)\right),\right. \\
\varphi_{24}: Y & \rightarrow\left(X \cap \ell\left(\mathbf{G}^{*}\right) \times\left(Y \cap \ell\left(\mathbf{L}_{\gamma}\right)\right)\right.
\end{aligned}
$$

In view of $\varphi_{21}$ and of Proposition 5.2 we conclude that there are $G M V$-algebras $\mathbf{M}_{1}$ and $\mathbf{M}_{2}$ such that

$$
\ell\left(\mathbf{M}_{1}\right)=X \cap \ell\left(\mathbf{G}^{*}\right), \quad \ell\left(\mathbf{M}_{2}\right)=Y \cap \ell\left(G^{*}\right)
$$

and

$$
\mathbf{G}^{*}=\mathbf{M}_{1} \oplus \mathbf{M}_{2}
$$

Analogously, according to the relation $\varphi_{22}$ and Proposition 5.3, there are GMValgebras $\mathbf{M}_{3}$ and $\mathbf{M}_{4}$ such that

$$
\ell\left(\mathbf{M}_{3}\right)=X \cap \ell\left(\mathbf{L}_{\gamma}\right), \quad\left(\mathbf{M}_{4}\right)=Y \cap \ell\left(\mathbf{L}_{\gamma}\right)
$$

and

$$
\mathbf{L}_{\gamma}=\mathbf{M}_{3} \oplus \mathbf{M}_{4}
$$

Therefore, in view of Theorem 2.1, we have

$$
\mathbf{M}=\left(M_{1} \oplus \mathbf{M}_{2}\right) \oplus\left(\mathbf{M}_{3} \oplus \mathbf{M}_{4}\right) .
$$

It is obvious that the operation $\oplus$ is associative and commutative; hence

$$
\mathbf{M}=\left(\mathbf{M}_{1} \oplus \mathbf{M}_{3}\right) \oplus\left(\mathbf{M}_{2} \oplus \mathbf{M}_{4}\right)
$$

Thus $\mathbf{M}_{1} \oplus \mathbf{M}_{3}$ is a direct summand of $\mathbf{M}$. Further, in view of $\varphi_{23}$ we conclude that

$$
\ell\left(M_{1} \oplus M_{3}\right)=X
$$

Summarizing, we have

Theorem 6.1. Let $\mathbf{M}$ be a $G M V$-algebra. For each $\mathbf{M}_{1} \in S(\mathbf{M})$ put $\varphi\left(\mathbf{M}_{1}\right)=$ $\ell\left(\mathbf{M}_{1}\right)$. Then $\varphi$ is a bijection of $S(\mathbf{M})$ onto $\mathbf{F}(\ell(\mathbf{M}))$.

Theorem 6.2. Let $\mathbf{M}$ be a $G M V$-algebra. Assume that

$$
\varphi_{1}: \ell(\mathbf{M}) \rightarrow \prod_{i \in I} P_{i}
$$

is an internal direct product decomposition of the lattice $\ell(\mathbf{M})$ with respect to the element $e$. Put $\varphi^{-1}\left(P_{i}\right)=\mathbf{Q}_{i}$ for each $i \in I$, where $\varphi$ is as in Theorem 6.1. Then

$$
\begin{equation*}
\mathbf{M}=\sum_{i \in I}^{*} \mathbf{Q}_{i} \tag{8}
\end{equation*}
$$

Proof. In view of Theorem 6.1, each $\mathbf{Q}_{i}$ is a direct summand of $\mathbf{M}$. Moreover, for $x \in M$, the component of $x$ in $\mathbf{Q}_{i}$ coincides with the component of $x$ in $P_{i}$. Hence the mapping $x \mapsto x\left(P_{i}\right)$ is a homomorphism of $\mathbf{M}$ into $\mathbf{Q}_{i}$. From this and from the direct product decomposition $\varphi_{1}$ we infer that (8) holds.

Since any two internal direct product decompositions of a lattice have a common refinement, we obtain

Corollary 6.3. Any two complete direct sum decompositions of a $G M V$-algebra have a common refinement. Namely, if (8) is valid, and, at the same time,

$$
\begin{equation*}
\mathbf{M}=\sum_{j \in J}^{*} \mathbf{T}_{\gamma}, \tag{9}
\end{equation*}
$$

then

$$
\mathbf{M}=\sum_{i \in I, j \in J}^{*} \mathbf{V}_{i, j}
$$

where $V_{i, j}=Q_{i} \cap T_{j}$ for each $i \in I$ and $j \in J$, and $\mathbf{V}_{i j}$ is a subalgebra of $\mathbf{Q}_{i}$ and of $\mathbf{T}_{j}$.

A $G M V$-algebra is directly irreducible if, whenever $\mathbf{M}=\mathbf{M}_{1} \oplus \mathbf{M}_{2}$, then either $M_{1}$ or $M_{2}$ is a one-element set. In the opposite case, $\mathbf{M}$ is directly irreducible.

For monoids, we define the notation of direct sum, direct summand, direct irreducibility and direct reducibility in the same way as for $G M V$-algebras.

Let $\mathbf{M}=(M ; \wedge, \vee, \cdot, \backslash, /, e)$ be an $G M V$-algebra; we consider the monoid $\operatorname{mon} \mathbf{M}=(M ; \cdot, e)$.

If $\mathbf{M}=\mathbf{M}_{1} \oplus \mathbf{M}_{2}$, then we obviously have

$$
\operatorname{mon} \mathbf{M}=\operatorname{mon} \mathbf{M}_{1} \oplus \operatorname{mon} \mathbf{M}_{2}
$$

The natural question arises whether the situation here is analogous to the situation when we cosider direct summands of $\mathbf{M}$ and internal direct factors of $\ell(\mathbf{M})$; i.e., we ask whether there exists a one-to-one correspondence between direct summands of $\mathbf{M}$ and direct summands of mon $\mathbf{M}$.

The answer is 'No'. Moreover, it can happen that $\mathbf{M}$ is directly irreducible and mon $\mathbf{M}$ is directly reducible.

Example. Let $R$ be the additive group of all reals with the natural linear order and $\mathbf{G}=R \circ R$, where $\circ$ denotes the operation of lexicographic product. Put $\mathbf{M}=\mathbf{G}^{*}$. Since $\ell\left(G^{*}\right)$ is a chain, it is directly irreducible and hence $\mathbf{M}$ is directly irreducible as well. On the other hand, the monoid mon $\mathbf{M}$ is directly reducible.

## 7. Retract mappings of $G M V$-algebras

A retract mapping of an algebra $\mathcal{A}$ is an endomorhpism of $\mathcal{A}$ such that $f^{2}=f$.
Let $\mathbf{M}$ be a $G M V$-algebra; we apply the notation as in Theorem 2.1. Thus $\mathbf{M}=\mathbf{G}^{*} \oplus \mathbf{L}_{\gamma}$.

Let $z \in M$. As above, we denote by $z\left(\mathbf{G}^{*}\right)$ the component of $z$ in the direct summand $\mathbf{G}^{*}$. The meaning of $z\left(\mathbf{L}_{\gamma}\right)$ is analogous. If $x=z\left(\mathbf{G}^{*}\right)$ and $y=z\left(\mathbf{L}_{\gamma}\right)$, then $z=x y$. Conversely, if $z=x_{1} y_{1}$ and $x_{1} \in G, y_{1} \in L_{\gamma}$, then $x_{1}=z\left(\mathbf{G}^{*}\right)$ and $y_{1}=z\left(\mathbf{L}_{\gamma}\right)$.

In the present section we prove that each retract mapping $f$ of $\mathbf{M}$ is determined by a pair $\left(f_{1}, f_{2},\right)$ of mappings such that
( $\left.\mathrm{i}_{0}\right) f_{1}$ is a retract mapping of $\mathbf{G}^{*}$;
(iiio) $f_{2}$ is a retract mapping of $\mathbf{L}_{\gamma}$.
We denote by $\mathcal{R}(\mathbf{M})$ the set of all retract mappings of $\mathbf{M}$. Further, let $\mathcal{T}(\mathbf{M})$ be the system of all pairs of mappings $\left(f_{1}, f_{2},\right)$ such that the conditions ( $\mathrm{i}_{0}$ ) and (iiio) are valid.

Our aim is to construct a bijection

$$
\psi: \mathcal{R}(\mathbf{M}) \rightarrow \mathcal{T}(\mathbf{M})
$$

Lemma 7.1. Let $z \in M$. The following conditions are equivalent:
(i) $z \in G$;
(ii) there exists $z_{1} \in M$ such that $z z_{1}=e$;
(iii) there exists $z_{2} \in M$ such that $z_{2} z=e$.

Proof. In view of Theorem 2.1, $(G ; \cdot, e)$ is a group with neutral element $e$. Thus (i) $\Rightarrow$ (ii) and (i) $\Rightarrow$ (iii).

Assume that (ii) holds. We express $z$ in the form $z=x y$, where $x=z\left(\mathbf{G}^{*}\right)$ and $y=z\left(\mathbf{L}_{\gamma}\right)$. Under analogous notation, let $z_{1}=x_{1} y_{1}$. By way of contradiction, suppose that $z$ does not belong to $G$. Hence $y \neq e$. Thus $e>y$ and $y \geqslant y y_{1}$. We obtain $y y_{1} \neq e$, whence $z z_{1}$ does not belong to $G$, which is a contradiction. Therefore (ii) $\Rightarrow$ (i). Analogously, (iii) $\Rightarrow$ (i).

Corollary 7.2. Let $z, z_{1} \in M, z z_{1}=e$. Then both $z$ and $z_{1}$ belong to $G$.

Lemma 7.3. Let $f$ be a retract mapping of M. Let $z \in G$. Then $f(z) \in G$.
Proof. In view of Lemma 7.1, there exists $z_{1} \in M$ with $z z_{1}=e$. We have $f(e)=e$ and $f\left(z_{1}\right)=f(z) f\left(z_{1}\right)$, hence $f(z) f\left(z_{1}\right)=e$. Then Corollary 7.2 yields that $f(z)$ belongs to $G$.

Under the notation as in Lemma 7.3, we put $f \mid G=f_{1}$. In view of Lemma 7.3, we get

Lemma 7.4. $f_{1}$ is a retract mapping of $\mathbf{G}^{*}$.
Let $y \in L_{\gamma}$. We denote

$$
x=f(y)\left(\mathbf{G}^{*}\right), \quad y_{1}=f(y)\left(\mathbf{L}_{\gamma}\right) .
$$

Further, we put

$$
f_{2}(y)=y_{1}, \quad f_{3}(y)=x .
$$

We obtain mappings

$$
f_{2}: L_{\gamma} \rightarrow L_{\gamma}, \quad f_{3}: L_{\gamma} \rightarrow G .
$$

Lemma 7.5. $f_{2}$ is a retract mapping of $\mathbf{L}_{\gamma}$.
Proof. It is obvious that $f_{2}$ is an endomorphism of $\mathbf{L}_{\gamma}$. It remains to verify that $f_{2}\left(f_{2}(y)\right)=f_{2}(y)$ for each $y \in L_{\gamma}$.

Under the notation as above, we have $f_{2}(y)=y_{1}$ and $f(y)=x y_{1}$. Denote

$$
x_{1}=f\left(y_{1}\right)\left(\mathbf{G}^{*}\right), \quad y_{2}=f\left(y_{1}\right)\left(\mathbf{L}_{\gamma}\right) .
$$

Thus, in view of the definition of $f_{2}$, we get $f_{2}\left(y_{1}\right)=y_{2}$. Further, we obtain

$$
\begin{aligned}
& f(f(y))=f(y)=x y_{1} \\
& f(f(y))=f\left(x y_{1}\right)=f(x) f\left(y_{1}\right)=f(x) x_{1} y_{2}
\end{aligned}
$$

Since $x \in G$, in view of 7.3 we have $f(x) x_{1} \in G$. Thus from

$$
x y_{1}=f(x) x_{1} y_{2}
$$

we obtain $x=f(x) x_{1}$ and $y_{1}=y_{2}$. We have verified that $f_{2}\left(y_{1}\right)=y_{1}$.
Under the above notation we put

$$
\psi(f)=\left(f_{1}, f_{2}\right) .
$$

From 7.4 and 7.5 we obtain

Theorem (A). $\psi$ is a mapping of the set $\mathcal{R}(\mathbf{M})$ into the set $\mathcal{T}(\mathbf{M})$.

Lemma 7.6. $f_{3}=e$ for each $y \in L_{\gamma}$.
Proof. Let $y \in L_{\gamma}$. If we view $\mathbf{M}$ as a direct product, we have

$$
\begin{aligned}
e=e_{\mathbf{M}}=f\left(e_{\mathbf{M}}\right) & =f\left(e_{\mathbf{M}} / y\right)=f\left(e_{\mathbf{M}}\right) / f(y) \\
& =\left(e_{\mathbf{G}}, e_{\mathbf{L}_{\gamma}} /\left(x, y_{1}\right)=\left(e_{\mathbf{G}} / x, e_{\mathbf{L}_{\gamma}}\right)=\left(x^{-1}, e_{\mathbf{L}_{\gamma}}\right)\right.
\end{aligned}
$$

so $x^{-1}=e_{\mathbf{G}}$ and $x=e_{\mathbf{G}}$. Therefore $f_{3}(y)=e_{\mathbf{G}}$.

Corollary 7.7. $f(y)=f_{2}(y)$ for each $y \in L_{\gamma}$.
In view of Corollary 7.7 we conclude that the mapping $\psi$ is a monomorphism.
Now let us suppose that $f_{1}$ and $f_{2}$ are as in conditions ( $\mathrm{i}_{0}$ ) and (iio). Further, let $z \in M, z=x y$, where $x \in G$ and $y \in L_{\gamma}$. We put

$$
f_{0}(z)=f_{1}(x) f_{2}(y)
$$

Then in view of Theorem 2.1 we obtain

Lemma 7.8. $f_{0}$ is a retract mapping of $\mathbf{M}$.
For a pair $\left(f_{1}, f_{2}\right)$ belonging to the system $\mathcal{T}(\mathbf{M})$ we put

$$
\chi\left(\left(f_{1}, f_{2}\right)\right)=f_{0}
$$

where $f_{0}$ is as above.
According to Lemma 7.8 we get

Theorem (B). $\chi$ is a mapping of the system $\mathcal{T}(\mathbf{M})$ into the set $\mathcal{R}(\mathbf{M})$.
We have already noticed above that the mapping $\psi$ is a monomorphism. Now from the definitions of $\psi$ and $\chi$ we immediately obtain that $\chi=\psi^{-1}$. Hence we have

Theorem (C). Let $\mathbf{M}$ be a $G M V$-algebra. The mapping $\psi$ is a bijection of the set $\mathcal{R}(\mathbf{M})$ onto the system $\mathcal{T}(\mathbf{M})$.

The author is indebted to the referee for valuable suggetions. The proof of Lemma 7.6 is due to the referee.
[1] C. C. Chang: Algebraic analysis of many valued logics. Trans. Amer. Math. Soc. 88 (1958), 467-490.
[2] R. Cignoli, I. M. I. D'Ottaviano and D. Mundici: Algebraic Foundations of Many-Valued Reasoning. Kluwer Academic Publishers, Dordrecht, 2000.
[3] A. Dvurečenskij: Pseudo MV-algebras are intervals in $\ell$-groups. J. Austral. Math. Soc. 72 (2004), 427-445.
[4] L. Fuchs:: Infinite Abelian Groups, Vol. 1. Academic Press, New York and London, 1970.
[5] N. Galatos and C. Tsinakis: Generalized MV-algebras. J. Algebra 283 (2005), 254-291.
[6] G. Georgescu and A.Iorgulescu: Pseudo MV-algebras: a noncommutative extension of MV-algebras. In: Information Technology, Bucharest 1999, INFOREC, Bucharest, 1999, pp. 961-968.
[7] G. Georgescu and A.Iorgulescu: Pseudo MV-algebras. Multi-Valued Logic 6 (2001), 95-135.
[8] A.M. W. Glass: Partially Ordered Groups. World Scientific, Singapore-New Jersey-London-Hong Kong, 1999.
zbl
[9] J. Jakubik: Direct product decompositions of MV-algebras. Czech. Math. J. 44 (1994), 725-739.
zbl
[10] J. Jakubik: Direct product decompositions of pseudo MV-algebras. Archivum Math. 37 (2001), 131-142.
zbl
[11] J. Jakubik: Weak ( $\mathfrak{m}, \mathfrak{n}$ )-distributivity of lattice ordered groups and of generalized MV-algebras. Soft Computing 10 (2006), 119-124.

Zbl
[12] J. Jakubik: On interval subalgebras of generalized MV-algebras. Math. Slovaca 56 (2006), 387-395.
zbl
[13] J. Jakubik: Retracts of abelian lattice ordered groups. Czech. Math. J. 39 (1989), 477-489.
zbl
[14] J. Jakubik: Retract varieties of lattice ordered groups. Czech. Math. J. 40 (1990), 104-112.
[15] J. Jakubik: Complete retract mappings of a complete lattice ordered group. Czech. Math. J. 43 (1993), 309-318.
zbl
[16] J. Jakubik: On absolute retracts and absolute convex retracts in some classes of $\ell$-groups. Discussiones Math., Gener. Alg. Appl. 23 (2003), 19-30.
[17] J. Jakubik: Retract mappings of projectable MV-algebras. Soft Computing 4 (2000), 27-32.
[18] D. Mundici: Interpretation of $\mathrm{AFC}^{*}$-algebras in Lukasiewicz sentential calculus. J. Funct. Anal. 65 (1986), 15-63.
[19] J. Rachionek: A non-commutative generalization of MV-algebras. Czech. Math. J. 52 (2002), 255-273.
zbl
[20] J. Rachůnek and D. Šalounová: Direct product factors in GMV-algebras. Math. Slovaca 55 (2005), 399-407.
zbl
Author's address: Ján Jakubík, Mathematical Institute, Slovak Academy of Sciences, Grešákova 6, SK-040 01 Košice, Slovakia, e-mail: kstefan@saske.sk.


[^0]:    Supported by VEGA Agency grant $1 / 2002 / 05$.
    This work has been partially supported by the Slovak Academy of Sciences via the project Center of Excellence - Physics of Information, grant I/2/2005.

