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Abstract. We deal with unbounded dually residuated lattices that generalize pseudo
MV -algebras in such a way that every principal order-ideal is a pseudo MV -algebra. We
describe the connections of these generalized pseudo MV -algebras to generalized pseudo
effect algebras, which allows us to represent every generalized pseudo MV -algebra A by
means of the positive cone of a suitable ℓ-group GA. We prove that the lattice of all (normal)
ideals of A and the lattice of all (normal) convex ℓ-subgroups of GA are isomorphic. We also
introduce the concept of Archimedeanness and show that every Archimedean generalized
pseudo MV -algebra is commutative.
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Introduction

The recent research on algebras connected to fuzzy logic is concerned, among

others, with their non-commutative generalizations, i.e., the truth functions of strong

conjunction and disjunction are not assumed to be commutative. This began with

pseudo MV -algebras (see [12], [24]), a non-commutative version of the well-known

MV -algebras which are the algebraic semantics of the  Lukasziewicz many valued

propositional calculus.

Pseudo MV -algebras can be equivalently treated as bounded dually residuated

lattices (DRℓ-monoids) satisfying simple additional identities, and it is therefore

natural to view certain DRℓ-monoids as “unbounded” pseudo MV -algebras. Of

course, this can be equally done in the setting of residuated lattices, but we favour
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dually residuated ones since the initial definition of pseudo MV -algebras is closer to

dually residuated lattices.

In [20] we studied many properties of the lattice of all ideals (= convex subalgebras)

of these DRℓ-monoids which turned out to be markedly similar to the properties

of ideal lattices of pseudo MV -algebras. Taking into account the fact that the

ideal lattice of any pseudo MV -algebra is isomorphic to the lattice of all convex

ℓ-subgroups of a suitable ℓ-group, the question arises whether the same holds for our

“unbounded“ pseudo MV -algebras. In the present paper, we give the affirmative

answer by means of the so-called generalized pseudo effect algebras (see [10]) that

are an extension of effect algebras provided we drop the commutativity of the partial

addition as well as the existence of a greatest element.

The paper is organized as follows. In Section 1 we recall the basic properties of

pseudo MV -algebras and dually residuated ℓ-monoids. We also prove that every

generalized pseudo MV -algebra (GPMV -algebra) embeds into an ultraproduct of

a family of pseudo MV -algebras. Section 2 is devoted to the relations between our

GPMV -algebras and generalized pseudo effect algebras, which allows us to give a

representation of GPMV -algebras as lattice ideals in the positive cones of ℓ-groups.

In Section 3 we prove that the lattice of (normal) ideals of every GPMV -algebra is

isomorphic to the lattice of all (normal) convex ℓ-subgroups of some ℓ-group. This is

applied in Section 4 to obtain simple alternative proofs of our earlier results from [20].

Finally, in Section 5 we deal with the Archimedean property of GPMV -algebras.

1. Pseudo MV-algebras and dually residuated lattices

Definition 1.1. A pseudo MV -algebra is an algebra (A,⊕,− ,∼ , 0, 1) of type

〈2, 1, 1, 0, 0〉 that satisfies the identities

(A1) x⊕ (y ⊕ z) = (x⊕ y) ⊕ z,

(A2) x⊕ 0 = x = 0 ⊕ x,

(A3) x⊕ 1 = 1 = 1 ⊕ x,

(A4) 1− = 0 = 1∼,

(A5) (x− ⊕ y−)∼ = (x∼ ⊕ y∼)−,

(A6) x⊕ (y ⊙ x∼) = y ⊕ (x⊙ y∼) = (y− ⊙ x) ⊕ y = (x− ⊙ y) ⊕ x,

(A7) (x− ⊕ y) ⊙ x = y ⊙ (x⊕ y∼),

(A8) (x−)∼ = x,

where the supplementary binary operation ⊙ is defined by1

x⊙ y := (x− ⊕ y−)∼.

1 In [12], x ⊙ y was defined as (y− ⊕ x−)∼.
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As we have pointed out at the beginning, pseudo MV -algebras were introduced

by G. Georgescu and A. Iorgulescu [12] and independently by J. Rach̊unek [24] as

a non-commutative generalization of MV -algebras. Actually, if the addition ⊕ is

commutative then the unary operations − and ∼ coincide and the resulting algebra

becomes an MV -algebra.

The above definition is that by G. Georgescu and A. Iorgulescu, while J. Rach̊u-

nek’s one arising from C. C. Chang’s original definition of MV -algebras was more

complicated. Nevertheless, both concepts are equivalent.

Like MV -algebras, pseudo MV -algebras are very close to ℓ-groups:

Example 1.2. Let (G,+,−, 0,∨,∧) be an ℓ-group and u ∈ G an order-unit.2

Then Γ (G, u) := ([0, u],⊕,− ,∼ , 0, u) is a pseudo MV -algebra, where [0, u] = {x ∈

G : 0 6 x 6 u} and

x⊕ y := (x+ y) ∧ u, x− := u− x and x∼ := −x+ u

for x, y ∈ [0, u].

A. Dvurečenskij [5] enhanced D. Mundici’s famous result on MV -algebras and

Abelian ℓ-groups [23] and proved that every pseudo MV -algebra is obtained in that

form; i.e., for every pseudo MV -algebra A there exists an ℓ-group G with an order-

unit u such that A and Γ (G, u) are isomorphic.

As proved in [24], pseudo MV -algebras can be considered as a particular case of

the so-called DRℓ-monoids that were introduced and studied by K. L. N. Swamy [26]

as a common abstraction of Abelian ℓ-groups and Boolean algebras. The definition

we use here is adopted from T. Kovář’s thesis [21].

First of all, by an ℓ-monoid we mean an algebra (A,⊕, 0,∨,∧), where (A,⊕, 0) is

a monoid, (A,∨,∧) is a lattice and ⊕ distributes over ∨, i.e., A fulfils the equations

(x ∨ y) ⊕ z = (x⊕ z) ∨ (y ⊕ z), x⊕ (y ∨ z) = (x⊕ y) ∨ (x⊕ z).

Definition 1.3. An algebra (A,⊕, 0,∨,∧,⊘, ⊘) of type 〈2, 0, 2, 2, 2, 2〉 is called

a dually residuated ℓ-monoid or briefly a DRℓ-monoid if

(a) (A,⊕, 0,∨,∧) is an ℓ-monoid;

(b) for any x, y ∈ A, x⊘ y is the least element z ∈ A such that z⊕ y > x, and x ⊘y

is the least element z ∈ A such that y ⊕ z > x;

2 We call u > 0 an order-unit of G if for every x ∈ G there exists n ∈ N such that
−nu 6 x 6 nu; this is equivalent to saying that the convex ℓ-subgroup of G generated
by u is G.

397



(c) A satisfies the identities

((x⊘ y) ∨ 0) ⊕ y 6 x ∨ y, y ⊕ ((x ⊘y) ∨ 0) 6 x ∨ y,

x⊘ x > 0, x ⊘x > 0.

A DRℓ-monoid is called lower bounded provided 0 is its least element. A bounded

DRℓ-monoid is an algebra (A,⊕,∨,∧,⊘, ⊘, 0, 1) such that (A,⊕, 0,∨,∧,⊘, ⊘) is a

DRℓ-monoid with a greatest element 1.

Lemma 1.4. The following assertions hold in any DRℓ-monoid:

(1) x⊕ y > z iff x > z ⊘ y iff y > z ⊘x,

(2) x ∨ y = ((x⊘ y) ∨ 0) ⊕ y = y ⊕ ((x ⊘y) ∨ 0),

(3) x⊘ 0 = x ⊘0 = x, x⊘ x = x ⊘x = 0,

(4) (x ∨ y) ⊘ z = (x⊘ z) ∨ (y ⊘ z), (x ∨ y) ⊘z = (x ⊘z) ∨ (y ⊘z),

(5) x⊘ (y ∧ z) = (x⊘ y) ∨ (x ⊘ z), x ⊘(y ∧ z) = (x ⊘y) ∨ (x ⊘z),

(6) x⊘ (y ⊕ z) = (x⊘ z) ⊘ y, x ⊘(y ⊕ z) = (x ⊘y) ⊘z,

(7) (x⊘ y) ⊘z = (x ⊘z) ⊘ y,

(8) (x⊘ y) ⊕ (y ⊘ z) > x⊘ z, (y ⊘z) ⊕ (x ⊘y) > x ⊘z,

(9) (x⊕ z) ⊘ (y ⊕ z) 6 x⊘ y, (x⊕ y) ⊘(x⊕ z) 6 y ⊘z.

Remark 1.5. Seeing the definition and basic properties of DRℓ-monoids, it

should be evident that our DRℓ-monoids are dual to residuated lattices satisfy-

ing the divisibility identities. To be more precise, a residuated lattice is an algebra

(L,∨,∧, ·,→, , e), where (L,∨,∧) is a lattice, (L, ·, e) is a monoid and

x · y 6 z iff x 6 y → z iff y 6 x z

for all x, y, z ∈ L. If, moreover, e is the greatest element of L then L is called an

integral residuated lattice. A residuated lattice that fulfils the divisibility identities

x ∧ y = ((y → x) ∧ e) · y = y · ((y  x) ∧ e)

is called a GBL-algebra (see [11], [17]).

It is plain that given any DRℓ-monoid (A,⊕, 0,∨,∧,⊘, ⊘), then the dual structure

(A,⊔,⊓, ·,→, , e) defined by x⊔y := x∧y, x⊓y := x∨y, x·y := x⊕y, x→ y := y⊘x,

x y := y ⊘x and e := 0 is a GBL-algebra.

The converse need not be evident at once. As known, the multiplication in resid-

uated lattices distributes over joins and it can be proved that in the case of GBL-

algebras it distributes over meets, too. This was shown in [7] for integral GBL-

algebras, but with minor modifications the proof still works for arbitrary GBL-

algebras. Finally, any GBL-algebra verifies x → x = x  x = e (see [11]), and
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therefore, if (L,∨,∧, ·,→, , e) is a GBL-algebra then defining x⊕ y := x · y, 0 := e,

x⊔y := x∧y, x⊓y := x∨y, x⊘y := y → x and x y := y ⊘x we get a DRℓ-monoid

(A,⊕, 0,⊔,⊓,⊘, ⊘).

Altogether, the class of DRℓ-monoids is termwise equivalent to the class of GBL-

algebras.

Now, we turn back to pseudo MV -algebras. Let (A,⊕,− ,∼ , 0, 1) be a pseudo

MV -algebra and define

x ∨ y := x⊕ (y ⊙ x∼) = (x− ⊙ y) ⊕ x,(1.1)

x ∧ y := x⊙ (y ⊕ x∼) = (x− ⊕ y) ⊙ x,

x⊘ y := y− ⊙ x,

x ⊘y := x⊙ y∼.

Observe that for A = Γ (G, u) the lattice operations ∨ and ∧ in A given by (1.1) are

the restrictions of those in G to the interval [0, u] and we have x⊘y = (x−y)∨0 and

x ⊘y = (−y+x)∨0. A straightforward verification yields that (A,⊕,∨,∧,⊘, ⊘, 0, 1)

is a bounded DRℓ-monoid satisfying

(1.2) x ∧ y = x ⊘(x⊘ y) = x⊘ (x ⊘y),

and conversely, given a bounded DRℓ-monoid that fulfils (1.2), the algebra (A,⊕,− ,
∼, 0, 1)—where x− := 1 ⊘ x and x∼ := 1 ⊘x—is a pseudo MV -algebra.

Remark 1.6. The identities (1.2) can be even replaced by the seemingly weaker

equations

(1.3) x = 1 ⊘(1 ⊘ x) = 1 ⊘ (1 ⊘x).

Indeed, in any bounded DRℓ-monoid satisfying (1.3) we have

x ∧ y = (1 ⊘ (1 ⊘x)) ∧ (1 ⊘ (1 ⊘y))

= 1 ⊘ ((1 ⊘x) ∨ (1 ⊘y))

= 1 ⊘ (((1 ⊘y) ⊘ (1 ⊘x)) ⊕ (1 ⊘x))

= 1 ⊘ (((1 ⊘ (1 ⊘x)) ⊘y) ⊕ (1 ⊘x))

= 1 ⊘ ((x ⊘y) ⊕ (1 ⊘x))

= (1 ⊘ (1 ⊘x)) ⊘ (x ⊘y)

= x⊘ (x ⊘y)

and similarly x∧y = x ⊘(x⊘ y). This observation is essentially due to A. Iorgulescu

[16].
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Summarizing, pseudo MV -algebras are termwise equivalent to bounded DRℓ-

monoids verifying (1.2), and hence the DRℓ-monoids that satisfy (1.2) are the desired

generalization of pseudo MV -algebras.

Note that though a DRℓ-monoid A satisfying (1.2) need not have a greatest ele-

ment, it is always lower bounded because x ∧ 0 = x ⊘(x ⊘ 0) = x ⊘x = 0 for all

x ∈ A.

Definition 1.7. A generalized pseudo MV -algebra, in short: a GPMV -algebra,

is a DRℓ-monoid satisfying the identities (1.2).

Residuated lattices that are equivalent to our GPMV -algebras appear in literature

on residuated lattices under the name (integral) GMV -algebras (see [2], [11], [17]).

Another equivalent counterpart are Wajsberg pseudo hoops (see [13]).

It is easy to see that GPMV -algebras extend pseudo MV -algebras in such a way

that every principal order-ideal is a pseudo MV -algebra:

Lemma 1.8. Let (A,⊕, 0,∨,∧,⊘, ⊘) be a GPMV -algebra and a ∈ A. If we

define

x⊕a y := (x⊕ y) ∧ a

for x, y ∈ [0, a], then A[a] := ([0, a],⊕a,∨,∧,⊘, ⊘, 0, a) is a bounded GPMV -algebra.

It is worth noticing that for arbitrary x, y, a ∈ A we have

(x ∧ a) ⊕a (y ∧ a) = (x ⊕ y) ∧ a.

We close this section with proving that everyGPMV -algebra embeds into a pseudo

MV -algebra:

Theorem 1.9. Every GPMV -algebra can be isomorphically embedded into a

bounded GPMV -algebra.

P r o o f. Let A be a GPMV -algebra. We shall show that A can be embedded

into an ultraproduct of {A[a] : a ∈ A}.

It is easy to see that [a)∩ [b) = [a∨ b) 6= ∅ for all a, b ∈ A, so the set {[a) : a ∈ A}

has the finite intersection property and hence there exists an ultrafilter U in the

Boolean algebra 2A of all subsets of A such that {[a) : a ∈ A} ⊆ U . Let

B =
∏

a∈A

A[a]/U

be the ultraproduct of {A[a] : a ∈ A} over U . Clearly, B is a bounded GPMV -

algebra. Recall that the ultraproduct B is the quotient algebra
∏

a∈A

A[a]/θU , where

400



θU is the congruence on the direct product
∏

a∈A

A[a] given by (α, β) ∈ θU iff {a ∈

A : α(a) = β(a)} ∈ U ; the elements of B are denoted α/U or, in more detail,

(α(a) : a ∈ A)/U .

Now, we define a mapping f : A→ B via

f(x) := (x ∧ a : a ∈ A)/U,

which turns out to be the desired isomorphic embedding.

f is injective: Note that for any x, y ∈ A, f(x) = f(y) iff {a ∈ A : x∧a = y∧a} ∈

U . Assume that x 6= y. It is clear that whenever a > x∨y then x∧a = x 6= y = y∧a,

and hence [x∨ y) ⊆ {a ∈ A : x∧ a 6= y ∧ a}. Since [x∨ y) ∈ U , also {a ∈ A : x∧ a 6=

y∧ a} ∈ U . But {a ∈ A : x∧ a 6= y∧ a} is the complement of {a ∈ A : x∧ a = y∧ a}

in the Boolean algebra 2A, and consequently, {a ∈ A : x ∧ a = y ∧ a} /∈ U since U is

an ultrafilter in 2A. This shows that f(x) 6= f(y) provided x 6= y.

f preserves ⊕: We have f(x⊕ y) = ((x ⊕ y) ∧ a : a ∈ A)/U on the one hand and

f(x) ⊕ f(y) = (x ∧ a : a ∈ A)/U ⊕ (y ∧ a : a ∈ A)/U = ((x ∧ a) ⊕a (y ∧ a) : a ∈

A)/U = ((x ⊕ y) ∧ a : a ∈ A)/U on the other, so that f(x⊕ y) = f(x) ⊕ f(y).

f preserves ⊘: We have f(x⊘y) = ((x⊘y)∧a : a ∈ A)/U and f(x)⊘f(y) = (x∧a :

a ∈ A)/U⊘(y∧a : a ∈ A)/U = ((x∧a)⊘(y∧a) : a ∈ A)/U , thus f(x⊘y) = f(x)⊘f(y)

iff {a ∈ A : (x⊘ y)∧ a = (x∧ a)⊘ (y ∧ a)} ∈ U . Let x > a. Then (x⊘ y)∧ a = x⊘ y

and (x∧a)⊘(y∧a) = x⊘y. This yields [x) ⊆ {a ∈ A : (x⊘y)∧a = (x∧a)⊘(y∧a)}

and hence {a ∈ A : (x⊘ y) ∧ a = (x ∧ a) ⊘ (y ∧ a)} ∈ U as desired.

It can be shown analogously that f preserves ⊘as well as both ∨ and ∧. �

Since bounded GPMV -algebras are de facto pseudo MV -algebras that can be

represented as intervals in ℓ-groups, we immediately obtain:

Corollary 1.10. For every GPMV -algebra (A,⊕, 0,∨,∧,⊘, ⊘) there exists an

ℓ-group (G,+,−, 0,∨,∧) and an element 0 < u ∈ G such that (A,⊕, 0,∨,∧,⊘, ⊘) is

isomorphic to a subalgebra of ([0, u],⊕, 0,∨,∧,⊘, ⊘), where

x⊕ y := (x+ y) ∧ u, x⊘ y := (x− y) ∨ 0 and x ⊘y := (−y + x) ∨ 0.
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2. Generalized pseudo effect algebras

Generalized pseudo effect algebras were invented by A. Dvurečenskij and T. Vetter-

lein [10] as a generalization of effect algebras—partial additive structures related to

the logic of quantum mechanics (see e.g. [6])—omitting both commutativity and

boundedness:

A generalized pseudo effect algebra or simply a GPE-algebra is a structure

(E,+, 0), where 0 is an element of E and + is a partial binary operation on E

satifying the following axioms, for all a, b, c ∈ E:

(E1) a + b and (a + b) + c exist iff b + c and a + (b + c) exist, and in this case

(a+ b) + c = a+ (b+ c);

(E2) if a+ b exists then a+ b = x+ a = b+ y for some x, y ∈ E;

(E3) if a+ c and b+ c exist and are equal then a = b, if c+ a and c+ b exist and are

equal then a = b;

(E4) if a+ b exists and equals 0 then a = b = 0;

(E5) a+ 0 and 0 + a exist and a+ 0 = a = 0 + a.

We define a partial order 6 on E by a 6 b iff b = x + a for some x ∈ E, which is

equivalent to b = a+ y for some y ∈ E. Clearly, 0 is the least element of (E,6). If

(E,6) is a lattice then (E,+, 0) is called a lattice-ordered GPE-algebra.

A pseudo effect algebra is a structure (E,+, 0, 1) such that (E,+, 0) is a GPE-

algebra having a greatest element 1. In other words, pseudo effect algebras are

bounded GPE-algebras. Moreover, if the partial addition + is commutative then

(E,+, 0, 1) is an effect algebra (see [8], [9]).

Natural examples of GPE-algebras arise from positive cones of partially ordered

groups:

Example 2.1 [10]. Let (G,+,−, 0,6) be a partially ordered group and let X be

a non-empty subset of its positive cone G+ = {g ∈ G : 0 6 g} such that whenever

a, b ∈ X and a 6 b then b− a,−a+ b ∈ X . Then (X,+, 0) is a GPE-algebra, where

+ is the restriction of the group addition to those pairs of elements of X whose sum

belongs to X . Thus, in particular, (G+,+, 0) is a GPE-algebra.

Given a pseudo MV -algebra (A,⊕,− ,∼ , 0, 1), one defines a partial addition +

making A a pseudo effect algebra as follows (see [6], [5]): a + b is defined and

equal to a ⊕ b iff a 6 b− (alternatively, iff b 6 a∼). If we view A as a bounded

GPMV -algebra, then a ∧ b− = (1 ⊘ b) ⊘((1 ⊘ b) ⊘ a) = (1 ⊘ b) ⊘(1 ⊘ (a ⊕ b)) =

(1 ⊘(1⊘ (a⊕ b)))⊘ b = (a⊕ b)⊘ b, and hence a 6 b− is equivalent to (a⊕ b)⊘ b = a.

This observation allows one to introduce a partial addition also in any GPMV -

algebra (A,⊕, 0,∨,∧,⊘, ⊘) in the following way:

a+ b is defined iff (a⊕ b) ⊘ b = a, in which case a+ b := a⊕ b,
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or equivalently,

a+ b is defined iff (a⊕ b) ⊘a = b, in which case a+ b := a⊕ b.

The two definitions are easily seen to be equivalent. Indeed, if (a⊕ b) ⊘ b = a then

(a⊕ b) ⊘a = (a⊕ b) ⊘((a⊕ b) ⊘ b) = (a⊕ b) ∧ b = b, and vice versa.

We say that a GPE-algebra (E,+, 0) satisfies the Weak Riesz Decomposition

Property (RDP0), if for all a, b, c ∈ E, a 6 b + c implies the existence of b1, c1 ∈ E

such that b1 6 b, c1 6 c and a = b1 + c1.

Proposition 2.2. For any GPMV -algebra (A,⊕, 0,∨,∧,⊘, ⊘), the structure

(A,+, 0) is a lattice-ordered GPE-algebra satisfying (RDP0). Moreover, for every

a, b ∈ A,

(a) a⊕ b = max{a1 + b1 : a1 6 a, b1 6 b and a1 + b1 is defined},

(b) a ⊘ b is the unique x ∈ A with x + (a ∧ b) = a and a ⊘b is the unique y ∈ A

with (a ∧ b) + y = a.

P r o o f. (E1) Let a+ b and (a+ b) + c exist in A. Then

c = ((a⊕ b) ⊕ c) ⊘(a⊕ b) = (a⊕ (b ⊕ c)) ⊘(a⊕ b) 6 (b⊕ c) ⊘b 6 c

by (9) of Lemma 1.4, thus (b⊕ c) ⊘b = c and b+ c is defined. Further, by Lemma 1.4

(6), (a⊕ (b⊕ c))⊘ (b⊕ c) = (((a⊕ b)⊕ c)⊘ c)⊘ b = (a⊕ b)⊘ b = a, so a+ (b+ c) is

also defined.

(E2) Let a + b be defined. Then ((a ⊕ b) ⊘ a) ⊕ a = (a ⊕ b) ∨ a = a ⊕ b, whence

(((a⊕ b)⊘ a)⊕ a)⊘ a = (a⊕ b)⊘ a, so that ((a⊕ b)⊘ a) + a exists. We have shown

that a+ b = c+ a, where c = (a⊕ b)⊘ a. Similarly a+ b = b+ d for d = (a⊕ b) ⊘b.

(E3) Assume that a+ c and b+ c exist and are equal. From a+ c = b+ c it follows

that a = (a+ c) ⊘ c = (b + c) ⊘ c = b.

(E4) If a+ b is defined then clearly a = b = 0 whenever a+ b = 0.

(E5) We have (a⊕ 0) ⊘ 0 = 0, so a+ 0 = a.

For (RDP0), let a 6 b + c and denote b1 = a ∧ b and c1 = a ⊘b1. Then c1 =

a ⊘(a∧ b) = a ⊘b 6 c, whence b1⊕ c1 = b1⊕ (a ⊘b1) = a∨ b1 = a, and consequently,

b1 + c1 is defined since (b1 ⊕ c1) ⊘b1 = a ⊘b1 = c1.

To prove (a) is suffices to note that either a ⊕ b = ((a ⊕ b) ⊘ b) + b or a ⊕ b =

a+ ((a⊕ b) ⊘a).

Finally, for (b), (a⊘b)+(a∧b) is defined and equal to a since (a⊘b)⊕(a∧b) = (a⊘

(a∧b))⊕(a∧b) = a∨(a∧b) = a and hence ((a⊘b)⊕(a∧b))⊘(a∧b) = a⊘(a∧b) = a⊘b.

Thus a⊘ b is the unique x with x+ (a ∧ b) = a. Analogously, a ⊘b is the unique y

with (a ∧ b) + y = a. �
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For the reverse passage from certain GPE-algebras to GPMV -algebras we need

the following technical lemma:

Lemma 2.3 [10]. Let (E,+, 0) be a GPE-algebra and a, b, c ∈ E.

(i) If a+ b exists then a1 + b1 exists for every a1 6 a, b1 6 b.

(ii) If b + c exists then a 6 b iff a + c exists and a + c 6 b + c. Similarly, if c + b

exists then a 6 b iff c+ a exists and c+ a 6 c+ b.

Proposition 2.4. Let (E,+, 0) be a lattice-ordered GPE-algebra satisfying

(RDP0) such that for every a, b ∈ E there exists

a⊕ b := max{a1 + b1 : a1 6 a, b1 6 b and a1 + b1 is defined}.

Then (E,⊕, 0,∨,∧,⊘, ⊘)—where a⊘ b is the unique x ∈ E with x+ (a∧ b) = a and

a ⊘b is the unique y ∈ E with (a ∧ b) + y = a—is a GPMV -algebra.

P r o o f. First, we show that the operation ⊕ is associative. We have

(a⊕ b) ⊕ c = max{d1 + c1 : d1 6 a⊕ b, c1 6 c and d1 + c1 exists}.

But if d1 6 a ⊕ b then due to the definition of ⊕ and (RDP0) there are a1 6 a and

b1 6 b such that d1 = a1 + b1. Hence

(a⊕ b) ⊕ c = max{(a1 + b1) + c1 : a1 6 a, b1 6 b, c1 6 c and (a1 + b1) + c1 exists}

= max{a1 + b1 + c1 : a1 6 a, b1 6 b, c1 6 c and a1 + b1 + c1 exists}.

Analogously,

a⊕ (b⊕ c) = max{a1 + b1 + c1 : a1 6 a, b1 6 b, c1 6 c and a1 + b1 + c1 exists},

so that (a⊕ b) ⊕ c = a⊕ (b⊕ c).

Obviously, a⊕ 0 = a = 0 ⊕ a, thus (E,⊕, 0) is a monoid.

Now, we prove that c > a ⊘ b iff c ⊕ b > a. If a ⊘ b 6 c then a 6 c ⊕ b =

max{c1 + b1 : c1 6 c, b1 6 b, c1 + b1 exists} since a = (a⊘ b)+ (a∧ b), where a⊘ b 6 c

and a ∧ b 6 b. Conversely, let a 6 c⊕ b. Then a = c1 + b1 for some c1 6 c, b1 6 b.

Note that b1 6 a and so b1 6 a ∧ b. Since (a ⊘ b) + (a ∧ b) exists, it follows that so

does (a⊘ b) + b1 and we have (a⊘ b) + b1 6 (a ⊘ b) + (a ∧ b) = a = c1 + b1, which

implies a ⊘ b 6 c1 6 c as desired. Similarly, c > a ⊘b is equivalent to b ⊕ c > a.

Thus (A,⊕, 0,∨,∧,⊘, ⊘) is a dually residuated lattice.

It remains to verify that a∧ b = a⊘ (a ⊘b) = a ⊘(a⊘ b) for all a, b ∈ E. We have

a ⊘b = x, where (a∧ b) + x = a, and a⊘ (a ⊘b) = a⊘ x = y, where y+ (a∧ x) = a.

But a ∧ x = x, so y + x = a = (a ∧ b) + x whence y = a ∧ b follows. Analogously,

a ⊘(a⊘ b) = a ∧ b. �
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Combining Propositions 2.2 and 2.4, GPMV -algebras are equivalent to those

lattice-ordered GPE-algebras satisfying the Weak Riesz Decomposition Property

(RDP0) where

a⊕ b := max{a1 + b1 : a1 6 a, b1 6 b and a1 + b1 is defined}

exists for all a, b.

By [9], Theorem 8.8, pseudo MV -algebras (= bounded GPMV -algebras) are in

a one-to-one correspondence with lattice-ordered pseudo effect algebras (= bounded

GPE-algebras) satisfying (RDP0). Hence, if a given GPE-algebra has an upper

bound 1, then a⊕ b exists and

a⊕ b = (a ∧ (1 ⊘ b)) + b = a+ ((1 ⊘a) ∧ b),

where 1 ⊘ b and 1 ⊘a are the unique x, y such that x + b = 1 and a + y = 1,

respectively.

Many GPE-algebras are obtained as in Example 2.1:

Proposition 2.5 [10]. Every GPE-algebra (E,+, 0) which is a meet-semilat-

tice and satisfies (RDP0) can be isomorphically embedded into the positive cone

(G+
E ,+, 0) of an ℓ-group (GE ,+,−, 0,∨,∧) such that finite infima and existing finite

suprema are preserved, and moreover, assuming E ⊆ GE , E is a convex subset of

G+
E that generates G

+
E as a semigroup.

Let (E,+, 0) be a lattice-ordered GPE-algebra that obeys (RDP0) as in Propo-

sition 2.4 and let (GE ,+,−, 0,∨,∧) be the ℓ-group with the positive cone G+
E into

which (E,+, 0) can be embedded as in Proposition 2.5. Assume that E ⊆ G+
E . Then,

for every a, b ∈ E,

(2.1) a⊕ b = max{a1 + b1 : a1 6 a, b1 6 b and a1 + b1 ∈ E}

and

(2.2)
a⊘ b = a− (a ∧ b) = (a− b) ∨ 0,

a ⊘b = −(a ∧ b) + a = (−b+ a) ∨ 0.

Now, by Propositions 2.5 and 2.2 we obtain:

405



Theorem 2.6. For every GPMV -algebra A there exists a lattice-ordered group

GA such that A can be embedded into G
+
A in such a way that finite suprema and

infima are preserved, and assuming A ⊆ G+
A, the operations ⊘ and ⊘are given by

(2.2) and A is a lattice ideal which generates G+
A as a semigroup.

Another important observation concerns morphisms of GPE-algebras. We recall

from [10] that, given GPE-algebras E and F , a mapping f : E → F is called a

GPE-homomorphism if f(0) = 0 and f(a + b) = f(a) + f(b) provided a + b exists

in E.

Proposition 2.7 [10]. Let E and GE be as in Proposition 2.5, assume that

E ⊆ GE . Every meet-preserving GPE-homomorphism f of E into the positive cone

H+ of a ℓ-group H can be uniquely extended to an ℓ-group homomorphism of GE

into H .

Let f be a homomorphism of a GPMV -algebra A into a GPMV -algebra B.

Trivially, f(0) = 0. Suppose that a + b is defined in A, i.e., (a ⊕ b) ⊘ b = a. Then

(f(a)⊕ f(b))⊘ f(b) = f((a⊕ b)⊘ b) = f(a) showing that f(a)+ f(b) is defined in B.

Thus f is a GPE-homomorphism which evidently preserves infima. Hence we get:

Corollary 2.8. Let A and B be GPMV -algebras, GA and GB their representing

ℓ-groups from Theorem 2.6, and assume A ⊆ GA, B ⊆ GB . Then every homomor-

phism f : A→ B extends uniquely to an ℓ-group homomorphism f̂ : GA → GB.

3. The ideal lattice

The concept of an ideal of a general DRℓ-monoid was introduced and studied in

[18]. Here we restrict ourselves to the case of GPMV -algebras (which are necessarily

lower bounded):

An ideal of a GPMV -algebra A is a non-empty subset I such that

(I1) a⊕ b ∈ I for all a, b ∈ I,

(I2) if a ∈ I and b 6 a then b ∈ I.

It is easy to prove that for every ∅ 6= I ⊆ A, the following assertions are equivalent:

1. I is an ideal,

2. I is a convex subalgebra of A,

3. for all a, b ∈ A, if a ∈ I and b⊘ a ∈ I then b ∈ I,

4. for all a, b ∈ A, if a ∈ I and b ⊘a ∈ I then b ∈ I.
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We use I(A) to denote the set of all ideals of A; it is an algebraic distributive

lattice when ordered by set-inclusion. For any ∅ 6= X ⊆ A, the set

I(X) = {a ∈ A : a 6 x1 ⊕ . . .⊕ xn for some x1, . . . , xn ∈ X,n ∈ N}
is the smallest ideal containing X .

An ideal I ∈ I(A) is called normal if, for all a, b ∈ A,

a⊘ b ∈ I iff a ⊘b ∈ I.

This is equivalent to saying that3 a⊕I = I⊕a for every a ∈ A. There is a one-to-one

correspondence between the normal ideals of A and its congruences. Namely, given

a normal ideal I, the relation ΘI defined by

(a, b) ∈ ΘI iff (a⊘ b) ∨ (b⊘ a) ∈ I

is a congruence whose kernel [0]ΘI
= {a ∈ A : (a, 0) ∈ ΘI} is I, and conversely, given

a congruence Θ, I = [0]Θ is the normal ideal such that ΘI = Θ.

We write simply a/I instead of [a]ΘI
= {b ∈ A : (a, b) ∈ ΘI} and, accordingly, the

quotient algebra A/ΘI is denoted by A/I.

From now on, we assume that A is a GPMV -algebra, GA the ℓ-group from The-

orem 2.6, and A ⊆ GA.

Proposition 3.1. If I is an ideal in A then4

ϕA(I) := GA(I)

is a convex ℓ-subgroup of GA such that I = ϕA(I) ∩A.

If K is a convex ℓ-subgroup of GA then

ψA(K) := K ∩A

is an ideal in A such that K = GA(ψA(K)).

P r o o f. It is clear that I ⊆ ϕA(I) ∩ A for every I ∈ I(A). Conversely, if

x ∈ ϕA(I) ∩ A then x > 0 and so x = a1 + . . . + an for some a1, . . . , an ∈ I. Since

x ∈ A, it follows that x ∈ I, proving ϕA(I) ∩A ⊆ I.

For the latter claim, let K ∈ C(GA). We first prove that ψA(K) is an ideal in

A. Obviously, 0 ∈ ψA(K). Take a, b ∈ A and suppose that a⊘ b, b ∈ ψA(K). Then

3 We write a ⊕ I and I ⊕ a for {a ⊕ x : x ∈ I} and {x ⊕ a : x ∈ I}, respectively.
4 For X ⊆ GA, GA(X) is the convex ℓ-subgroup of GA generated by X.
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0 6 a 6 a ∨ b = (a ⊘ b) ⊕ b = (a ⊘ b) + b ∈ K ∩ A, so a ∈ K ∩ A = ψA(K). Thus

ψA(K) ∈ I(A).

Further, we prove that the convex ℓ-subgroup of GA generated by ψA(K) is just

K. If x ∈ K, x > 0, then x = a1 + . . .+ an for some a1, . . . , an ∈ A. But 0 6 ai 6 x

implies ai ∈ K ∩ A for all i = 1, . . . , n, and hence x ∈ GA(ψA(K)). If x is an

arbitrary element of K then 0 6 |x| = x ∨ −x ∈ K and the same argument yields

|x| ∈ GA(ψA(K)), so that x ∈ GA(ψA(K)). This shows K ⊆ GA(ψA(K)). The other

inclusion is evident. �

Next, we focus our attention on congruence kernels—normal ideals of generalized

pseudo MV -algebras and ℓ-ideals of ℓ-groups.

Proposition 3.2. For any I ∈ I(A), I is a normal ideal of A if and only if ϕA(I)

is an ℓ-ideal of GA. For any K ∈ C(GA), K is an ℓ-ideal if and only if ψA(K) is a

normal ideal of A.

P r o o f. Let K be an ℓ-ideal of GA, i.e., a normal convex ℓ-subgroup. Observe

that x− (x∧y) ∈ K iff −(x∧y)+x ∈ K for all x, y ∈ GA. Indeed, if x− (x∧y) ∈ K

then x = (x−(x∧y))+(x∧y) ∈ K+(x∧y) = (x∧y)+K since K is a normal subgroup

of GA. This means x = (x ∧ y) + z for some z ∈ K, so that −(x ∧ y) + x = z ∈ K.

Analogously −(x ∧ y) + x ∈ K yields x− (x ∧ y) ∈ K.

Consequently, if a ⊘ b ∈ ψA(K) = K ∩ A for a, b ∈ A, then also a ⊘b ∈ ψA(K),

and vice versa. Thus ψA(K) is a normal ideal in A provided K is an ℓ-ideal in GA.

Conversely, let I be a normal ideal of A. Let f be the canonical homomorphism of

A onto the quotient algebra A/I given by f(a) := a/I. By Theorem 2.6, A/I may be

embedded into the positive cone of an ℓ-group GA/I as a lattice ideal that generates

G+
A/I . By Corollary 2.8, f extends to an ℓ-group homomorphism f̂ : GA → GA/I ,

i.e., f̂(a) = a/I for each a ∈ A. We are going to show that GA(I) = Ker(f̂).

Let x ∈ GA(I). If x > 0 then x = a1 + . . . + an for some a1, . . . , an ∈ I, whence

we obtain f̂(x) = f̂(a1) + . . .+ f̂(an) = a1/I + . . .+ an/I = I since ai ∈ I for every

i = 1, . . . , n. Thus x ∈ Ker(f̂). If x ∈ GA(I) is arbitrary then similarly |x| ∈ Ker(f̂),

which yields x ∈ Ker(f̂). Hence GA(I) ⊆ Ker(f̂).

On the other hand, let x ∈ Ker(f̂), i.e., f̂(x) = I. If x > 0 then x = a1 + . . .+ an

for some a1, . . . , an ∈ A. But 0 6 ai 6 x implies I = f̂(0) 6 f̂(ai) 6 f̂(x) = I, so

f̂(ai) = I and hence ai ∈ I for all i = 1, . . . , n. This means x = a1+. . .+an ∈ GA(I).

The parallel argument shows that |x| ∈ GA(I) for an arbitrary x ∈ Ker(f̂), and thus

x ∈ GA(I). Altogether, GA(I) = Ker(f̂), which certainly is an ℓ-ideal of GA. �

Let us denote the lattice of all normal ideals of A by NI(A) and the lattice of all

ℓ-ideals of GA by NC(GA). We have proved:
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Theorem 3.3. The ideal lattice I(A) of A is isomorphic to the lattice C(GA)

of all convex ℓ-subgroups of GA under the mapping ϕA whose inverse is ψA. In

addition, the restriction ϕA ↾NI(A) is an isomorphism of NI(A) onto NC(GA) the

inverse of which is the restriction ψA ↾NC(GA).

Corollary 3.4. A GPMV -algebra A is linearly ordered if and only if GA is a

linearly ordered group.

P r o o f. One readily sees that if A is linearly ordered then its ideal lattice I(A),

and hence likewise the lattice C(GA) of convex ℓ-subgroups of GA, is a chain with

respect to set-inclusion. But in this case GA is a linearly ordered group. �

4. Values and complete distributivity

By Zorn’s lemma, the set of all ideals that do not contain a given a ∈ A \ {0} has

a maximal element; such an ideal is called a value of a in A. We use ΓA(a) to denote

the set of all values of a in A. It is easily seen that if V ∈ ΓA(a) for some a ∈ A\ {0}

then V has a unique cover V ∗ in the lattice I(A). Of course, a ∈ V ∗ \ V . A value V

is normal provided it is a normal ideal in its cover V ∗. If all values are normal then

A is called a normal-valued GPMV -algebra.

It is also worth noticing that V is a value in A if and only if it is a completely

meet-irreducible element of the ideal lattice I(A), and hence, since I(A) is algebraic,

it follows that every ideal equals the intersection of all values containing it.

An element a ∈ A is said to be special if it has a unique value; the only value of

a special element is called the special value.

A GPMV -algebra A is finite-valued if ΓA(a) is finite for all a ∈ A \ {0}.

Let now A be a GPMV -algebra, GA its representing ℓ-group and let A ⊆ GA. In

view of Theorem 3.3 it is obvious that an ideal V is a value of a ∈ A \ {0} if and

only if ϕA(V ) is a value of a in GA, and moreover, ϕA(V ∗) is the cover of ϕA(V ) in

the lattice C(GA). As known, an ℓ-group is finite-valued if and only if every value is

special, therefore we get (cf. [19]):

Theorem 4.1. A GPMV -algebra A is finite-valued if and only if every value in

A is special.

Further, for any ideal I ∈ I(A), ϕA(I) = GA(I) is precisely its representing ℓ-

group GI . This entails that a value V in A is normal in its cover V ∗ if and only if

ϕA(V ) is normal in its cover ϕA(V )∗ = ϕA(V ∗). Indeed, V is normal in V ∗ if and

only if ϕV ∗(V ) = GV ∗(V ) = GA(V ) = ϕA(V ) is normal in GV ∗ = ϕA(V ∗).
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As a corollary we have that A is normal-valued if and only if so is the ℓ-group GA.

Using the fact that in ℓ-groups special values are normal, we obtain:

Theorem 4.2. Let A be a GPMV -algebra. Then every special value is normal.

Consequently, if A is finite-valued then it is normal-valued.

Let X ⊆ A. It is plain that the embedding of A into GA preserves arbitrary

existing infima, i.e., infAX exists iff so does infGA
X , in which case they are equal.

The analogue for suprema holds, too.

Lemma 4.3. For any X ⊆ A, if supAX exists then supAX = supGA
X ; if

supGA
X exists and belongs to A then supAX = supGA

X .

P r o o f. Denote x0 := supAX . Let a ∈ GA be another upper bound of X . Then

x0 ∧ a ∈ A and x0 ∧ a > x for every x ∈ X , hence a > x0, proving that x0 is the

l.u.b. of X .

The latter claim is obvious. �

An ideal I ∈ I(A) is defined to be closed if supAX ∈ I for every X ⊆ I whose

supremum exists in A.

We call an ideal P ∈ I(A) prime if it is a prime element of the ideal lattice I(A),

i.e., for any I, J ∈ I(A), I ∩J ⊆ P implies I ⊆ P or J ⊆ P . Equivalently, P is prime

if and only if a∧ b ∈ P entails a ∈ P or b ∈ P for all a, b ∈ A. Note that every value

is a prime ideal.

Proposition 4.4. Let P be a prime ideal of A. Then P is closed if and only if

ϕA(P ) is a closed prime subgroup of GA.

P r o o f. First note that P is a prime ideal iff ϕA(P ) is a prime subgroup of GA,

so we may assume that P 6= A.

Let P be closed, let X ⊆ ϕA(P ) ∩ G+
A and x0 := supGA

X . Take any a ∈ A \ P .

Then a ∧ x0 ∈ A and a ∧ x ∈ P for every x ∈ X . Since P is closed, we have

a ∧ x0 =
∨

x∈X

(a ∧ x) ∈ P . However, a /∈ ϕA(P ) and ϕA(P ) is a prime subgroup of

GA, and so x0 ∈ P .

Conversely, P is easily seen to be closed whenever ϕA(P ) is a closed prime sub-

group. �

As a consequence we have (cf. [20]):
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Proposition 4.5. Given P,Q ∈ I(A) with P ⊆ Q, if P is closed prime then so

is Q.

P r o o f. This follows from the fact that ϕA(Q) ⊇ ϕA(P ) is a closed prime

subgroup of GA whenever so is ϕA(P ). �

A value V in A is called essential if it contains all values of some a ∈ A \ {0}.

Evidently, V is an essential value in A iff so is ϕA(V ) in GA. Since essential values

in ℓ-groups are closed, by the previous proposition we obtain (cf. [20]):

Proposition 4.6. Let A be a GPMV -algebra. Every essential value is closed; in

particular, every special value is closed. If, moreover, A is normal-valued then every

closed value is essential.

P r o o f. We have to justify the latter statement. For that purpose, suppose

that V is a closed value of some a ∈ A \ {0}. Then ϕA(V ) is a closed value of a

in the ℓ-group GA which is normal-valued. It is known that in the case of normal-

valued ℓ-groups closed values are essential, hence ϕA(V ) contains all values of some

x ∈ G+
A \ {0}. It is clear now that every value W ∈ ΓA(a ∧ x) is contained in V , so

V is essential. �

Let A be a GPMV -algebra. The distributive radical of A is the intersection of all

closed prime ideals of A. Since any closed prime ideal is the intersection of the values

exceeding it every one of which is closed, it can be easily seen that D(A) equals the

intersection of all closed values in A. Observe that a ∈ D(A) if and only if a has no

closed value.

Proposition 4.7. ϕA(D(A)) = D(GA).

P r o o f. Let x ∈ ϕA(D(A)), x > 0, i.e., x = a1 + . . . + an where a1, . . . , an ∈

D(A). Since ai’s have no closed values in A, they have no closed values in GA either,

which yields that ai ∈ D(GA) for all i = 1, . . . , n. Consequently, x ∈ D(GA).

Conversely, if x ∈ D(GA), x > 0, then x = a1 + . . .+ an for some a1, . . . , an ∈ A,

and x has no closed value in GA. If V ∈ ΓA(ai), then x /∈ ϕA(V ), and so ϕA(V ) ⊆M

for some M ∈ ΓGA
(x). Therefore ϕA(V ), and hence V , is not closed. This yields

ai ∈ D(A) for any i = 1, . . . , n, so that x ∈ ϕA(D(A)). �

Note that the distributive radicalD(A) of A is a (closed) normal ideal since D(GA)

is an ℓ-ideal of GA (see e.g. [3], 6.2.2).

We say that a GPMV -algebra A is completely distributive if
∧

s∈S

∨

t∈T

ast =
∨

f : S→T

∧

s∈S

asf(s)

for all {ast : s ∈ S, t ∈ T } ⊆ A for which the indicated infima and suprema exist.
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It is well-known that an ℓ-group G is completely distributive if and only if D(G) =

{0}.

Before proving the analogue for GPMV -algebras, we remark that for any ideal

I ∈ I(A), there exists the smallest closed ideal exceeding I; it is denoted by cl(I) and

consists of those elements a that can be written as a =
∨

t∈T

at, where {at : t ∈ T } ⊆ I.

Theorem 4.8 (cf. [20]). A GPMV -algebra A is completely distributive if and

only if D(A) = {0}.

P r o o f. If D(A) = {0} then by the previous proposition we have D(GA) =

{0}, hence GA is a completely distributive ℓ-group, so in view of Lemma 4.3, A is

completely distributive.

Assume that A is completely distributive but there exists a ∈ D(A) \ {0}. Let

{Ps : s ∈ S} be the set of all prime ideals. Since cl(Ps) is a closed prime ideal for

every s ∈ S, it follows that a ∈ cl(Ps) for all s ∈ S, and a can be written in the

form a =
∨

t∈T

ast for some {ast : t ∈ T } ⊆ Ps (for each s ∈ S we take the same

T ). For any f : S → T we have
∧

s∈S

asf(s) = 0 as
⋂

s∈S

Ps = {0}. However, then

a =
∧

s∈S

∨
t∈T

ast =
∨

f : S→T

∧
s∈S

asf(s) = 0, a contradiction. �

Since A is finite-valued if and only if every value in A is special, and special values

are closed, we get

Corollary 4.9. If A is finite-valued then it is completely distributive.

5. Archimedean GPMV-algebras

In analogy with ℓ-groups, we write a ≪ b if, for every n ∈ N, n · a = a + . . . + a

(n-times) exists and n · a 6 b. A GPMV -algebra A is said to be Archimedean if

a 6≪ b for all a, b ∈ A \ {0}.

The ℓ-group representation of GPMV -algebras allows one to prove that any

Archimedean GPMV -algebra is commutative.

Theorem 5.1. Let A be a GPMV -algebra. Then A is Archimedean if and only

if GA is an Archimedean ℓ-group.

P r o o f. Let GA be Archimedean, i.e., for any a, b ∈ G+
A, if n · a 6 b for all

n ∈ N, then a = 0. If a, b ∈ A and a ≪ b, then n · a 6 b for each positive integer n,

which entails a = 0. Thus A is Archimedean, too.
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Conversely, let A be an Archimedean GPMV -algebra, let x, y ∈ G+
A and assume

that n · x 6 y for all n ∈ N. Since A generates G+
A, there exist a1, . . . , am ∈ A such

that y = a1 + . . .+ am. We proceed by induction on m.

(a) Let m = 1, i.e., n · x 6 a1 for all n ∈ N. Then obviously x 6 a1, and so x ∈ A.

Now, for every n ∈ N, n · x is defined in A and is less than or equal to a1, whence

x = 0 follows.

(b) Suppose that the statement holds for every positive integer k 6 m. Let

n · x 6 a1 + . . . + am + am+1 for all n ∈ N; then n · x − am+1 6 a1 + . . . + am. It

can be easily seen that in any ℓ-group G, n · (x ∨ 0) = n · x ∨ (n− 1) · x ∨ . . . ∨ x ∨ 0

for every x ∈ G and n ∈ N. Furthermore, if x, y ∈ G+ then n · (x − y) 6 n · x − y.

Therefore for any r ∈ N,

r · ((n · x− am+1) ∨ 0)

= r · (n · x− am+1) ∨ (r − 1) · (n · x− am+1) ∨ . . . ∨ (n · x− am+1) ∨ 0

6 (rn · x− am+1) ∨ ((r − 1)n · x− am+1) ∨ . . . ∨ (n · x− am+1) ∨ 0

6 a1 + . . .+ am.

By the induction hypothesis we obtain (n · x− am+1) ∨ 0 = 0, so n · x 6 am+1 for

all n ∈ N, which yields x = 0. �

Corollary 5.2. Every Archimedean GPMV -algebra is commutative.

P r o o f. It is well-known that any Archimedean ℓ-group is Abelian (e.g. [14],

Theorem 4.B). Hence if A is Archimedean then GA is Abelian and so a⊘ b = a ⊘b

for all a, b ∈ A. This entails the commutativity of A since a > (b⊕a) ⊘b = (b⊕a)⊘b

whence a⊕ b > b⊕ a, and similarly a⊕ b 6 b⊕ a. �

An Archimedean lattice (see [22]) is an algebraic lattice L such that for each

compact element c ∈ L, the meet of all maximal elements in the interval [0, c] is 0

(where 0 is the least element of L). As known, an Abelian ℓ-group G is Archimedean

if and only if the lattice C(G) of its convex ℓ-subgroups is an Archimedean lattice.

The proof can be easily done by observing that the compact elements of C(G) are

just the principal convex ℓ-subgroups G(a), a ∈ G, and using the fact that in each

ℓ-group G(a) which has a strong order unit a, the intersection of all maximal ℓ-ideals

equals the set {x ∈ G(a) : x≪ a}.

Since A is Archimedean exactly if GA is an Archimedean ℓ-group, it follows that

I(A) is an Archimedean lattice if and only if so is C(GA). Hence
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Theorem 5.3. A commutative GPMV -algebra A is Archimedean if and only if

its ideal lattice I(A) is an Archimedean lattice.
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