Svatoslav Staněk Three-point boundary value problem for nonlinear second-order differential equation with parameter

Czechoslovak Mathematical Journal, Vol. 42 (1992), No. 2, 241-256

Persistent URL: http://dml.cz/dmlcz/128324

Terms of use:

© Institute of Mathematics AS CR, 1992

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://dml.cz

THREE-POINT BOUNDARY VALUE PROBLEM FOR NONLINEAR SECOND-ORDER DIFFERENTIAL EQUATION WITH PARAMETER

SVATOSLAV STANĚK, Olomouc

(Received March 2, 1989)

1. INTRODUCTION

Consider the second-order differential equation

(1)
$$y'' - q(t)y = f(t, y, y', \mu)$$

in which $q \in C^0(J)$, $f \in C^0(J \times \mathbb{R}^2 \times I)$, q(t) > 0 for $t \in J$, where $J = \langle t_1, t_3 \rangle$, $I = \langle a, b \rangle$, $-\infty < t_1 < t_3 < \infty$, $-\infty < a < b < \infty$, containing a parameter μ . Let $t_2 \in \mathbb{R}$, $t_1 < t_2 < t_3$ be an arbitrary fixed number. The problem considered is to determine sufficient conditions on q and f quaranteeing that it is possible to choose the parameter μ so that there exists a solution y of (1) satisfying either the boundary conditions

(2)
$$y(t_1) = y(t_2) = y(t_3) = 0$$

or the boundary conditions

(3)
$$y(t_1) = y'(t_1) = y(t_3) = 0.$$

The uniqueness of solutions of the boundary value problems (BVP for short) (1), (2) and (1), (3) is also discussed.

Sufficient conditions for a two-parameter differential equation $y'' + (q(t, \lambda, \mu) + r(t))y = 0$ having a nontrivial solution y satisfying (2) are given in [2].

Let u, v be solutions of the equation

(q)
$$y'' = q(t)y \quad (q \in C^0(J), \ q(t) > 0 \text{ for } t \in J),$$

 $u(t_1) = 0, u'(t_1) = 1, v(t_1) = 1, v'(t_1) = 0$ and

(4)
$$r(t,s) := u(t)v(s) - u(s)v(t)$$
 for $(t,s) \in J^2$.

Then the following lemma can be proved.

Lemma 1. Let r be defined by (4). Then

(5)
$$r(t,s) > 0$$
 for $t_1 \leq s < t \leq t_3$, $r(t,s) < 0$ for $t_1 \leq t < s \leq t_3$

and

$$ig(r_1'(t,s):=ig) \quad rac{\partial r}{\partial t}(t,s)>1 \quad ext{ for } (t,s)\in J^2, \quad t
eq s.$$

Proof. Let $s \in J$ be an arbitrary fixed number. Setting z(t) := r(t, s) for $t \in J$, then z is a solution of (q), z(s) = 0, z'(s) = 1 and $z'(t) = r'_1(t, s)$. Since q(t) > 0 on J, it is easy to verify that z(t) < 0 for $t_1 \leq t < s$ (provided $s > t_1$), z(t) > 0 for $s < t \leq t_3$ (provided $s < t_3$) and z'(t) > 1 for $t \in J$, $t \neq s$. This proves Lemma 1.

Lemma 2. Let $h \in C^0(J)$ and let y be a solution of the equation

(6)
$$y'' - q(t)y = h(t)$$

satisfying the boundary conditions

(7)
$$y(t_1) = y(t_2) = 0$$

Then

(8)
$$y(t) = \frac{r(t_2, t)}{r(t_2, t_1)} \int_{t_1}^{t_2} r(t_1, s)h(s) ds + \int_{t_2}^{t} r(t, s)h(s) ds, \quad t \in J.$$

Proof. Setting $y_0(t) := \int_{t_2}^t r(t,s)h(s)ds$ for $t \in J$, then y_0 is a solution of (6), $y_0(t_2) = y'_0(t_2) = 0$, and the function

$$y(t) := \frac{r(t_2, t)}{r(t_1, t_2)} y_0(t_1) + y_0(t) \quad \text{for} \quad t \in J,$$

is a solution of (6) (which is then unique) satisfying (7).

Lemma 3. Let $h \in C^0(J \times I)$, let h(t, .) be an increasing function on I for every fixed $t \in J$ and

(9)
$$h(t,a)h(t,b) \leq 0 \quad \text{for} \quad t \in J.$$

Then there exists a unique μ_0 , $\mu_0 \in J$ such that the equation

(10)
$$y'' - q(t)y = h(t, \mu)$$

with $\mu = \mu_0$ has a solution y (which is then unique) satisfying (2).

Proof. Let $y(t, \mu)$ be the solution of (10), $y(t_1, \mu) = y(t_2, \mu) = 0$. By Lemma 2

$$y(t_3,\mu) = \frac{r(t_2,t_3)}{r(t_2,t_1)} \int_{t_1}^{t_2} r(t_1,s)h(s,\mu) ds + \int_{t_2}^{t_3} r(t_3,s)h(s,\mu) ds, \quad \mu \in I.$$

Since $r(t_2, t_1) > 0$, $r(t_2, t_3) < 0$, $r(t_1, s) < 0$ for $s \in (t_1, t_3)$ and $r(t_3, s) > 0$ for $s \in \langle t_1, t_3 \rangle$ by Lemma 1, the function $y(t_3, .)$ is an increasing continuous function on I and by virtue of (9) we have $y(t_3, a) \leq 0$, $y(t_3, b) \geq 0$. Consequently, there exists a unique $\mu_0, \mu_0 \in I$ such that $y(t_3, \mu_0) = 0$. BVP (q), (2) has only the trivial solution and thus BVP (10), (2) with $\mu = \mu_0$ has a unique solution.

Let r_1 , r_2 be positive constants, $r_1 > 0$, $r_2 > 0$. In what follows we shall assume that q and f satisfy some of the following assumptions:

(11)
$$|f(t, y_1, y_2, \mu)| \leq q(t)r_1 \quad \text{for} \quad (t, y_1, y_2, \mu) \in D \times I,$$

where $D := J \times \langle -r_1, r_1 \rangle \times \langle -r_2, r_2 \rangle;$

(12)
$$f(t, y_1, y_2, .)$$
 is an increasing function on I
for every fixed $(t, y_1, y_2) \in D;$

(13)
$$f(t, y_1, y_2, a) f(t, y_1, y_2, b) \leq 0 \quad \text{for} \quad (t, y_1, y_2) \in D;$$

(14)
$$\min\left\{ \left(A + r_1 \max_{t \in J} q(t)\right)(t_3 - t_1), \ 2\sqrt{r_1}\sqrt{A + r_1 \max_{t \in J} q(t)} \right\} \leqslant r_2, \\ \text{where} \quad A := \max_{\substack{(t, y_1, y_2, \mu) \in D \times I \\ (t, y_1, y_2, \mu) \in D \times I}} |f(t, y_1, y_2, \mu)|.$$

Remark 1. If the function f may be written in the form $f(t, y_1, y_2, \mu) = g(t, y_1, y_2) + \mu \cdot \varphi(t)$ with $g \in C^0(J \times \mathbb{R}^2)$, $\varphi \in C^0(J)$, $\varphi(t) > 0$ on J, then f satisfies assumption (12) for arbitrary positive constants r_1 , r_2 . If, in addition, g is bounded on $J \times \mathbb{R}^2$, then assumption (11) is satisfied for an arbitrary positive constant r_2 and a sufficient large positive constant r_1 .

Remark 2. A function $\alpha \in C^2(J)$ $(\beta \in C^2(J))$ is called an upper (lower) solution of BVP (1), (2) if $\alpha''(t) - q(t)\alpha(t) \leq f(t, \alpha(t), \alpha'(t), \mu), \alpha(t_1) \geq 0, \alpha(t_2) \geq 0,$ $\alpha(t_3) \geq 0$ $(\beta''(t) - q(t)\beta(t) \geq f(t, \beta(t), \beta'(t), \mu), \beta(t_1) \leq 0, \beta(t_2) \leq 0, \beta(t_3) \leq 0)$ for $(t, \mu) \in J \times I$. It follows from assumptions (11) that $\alpha(t) \equiv r_1$ $(\beta(t) \equiv -r_1)$ is an upper (lower) solution of BVP (1), (2).

Lemma 4. Assume that assumptions (11)-(14) are satisfied for positive constant r_1, r_2 . Then for every $\varphi, \varphi \in C^1(J), |\varphi^{(i)}(t)| \leq r_{i+1}$ for $t \in J, i = 0, 1$, there exists a unique $\mu_0, \mu_0 \in I$ such that the equation

(15)
$$y'' - q(t)y = f(t,\varphi(t),\varphi'(t),\mu)$$

with $\mu = \mu_0$ has a solution y (which is then unique) satisfying (2). For this solution y the inequalities

(16)
$$|y^{(i)}(t)| \leq r_{i+1}, \quad t \in J, \quad i = 0, 1,$$

hold.

Proof. Let $\varphi \in C^1(J)$, $|\varphi^{(i)}(t)| \leq r_{i+1}$ for $t \in J$, i = 0, 1, and $h(t, \mu) := f(t, \varphi(t), \varphi'(t), \mu)$ for $(t, \mu) \in J \times I$. Then $|h| \leq A$, from (13) we get

$$h(t, a) \leq 0, \quad h(t, b) \geq 0 \quad \text{for} \quad t \in J,$$

and h(t, .) is an increasing continuous function on J for all fixed $t \in J$ by assumption (12). In this situation we may apply Lemma 3 and thus there exists a unique μ_0 , $\mu_0 \in I$ such that equation (10) with $\mu = \mu_0$ has a unique solution y satisfying (2).

We now prove inequalities (16). Let $|y(t) \leq |y(\xi)| > r_1$ be satisfied for some $\xi \in (t_1, t_3)$ and $t \in J$. If $y(\xi) > r_1$ $(y(\xi) < -r_1)$ then $y''(\xi) > 0$ $(y''(\xi) < 0)$ by assumption (11), and therefore y does not have a local maximum (minimum) at the point $t = \xi$, which is a contradiction. Thus $|y(t)| \leq r_1$ on J.

Let $r_2 \ge (A + r_1 \max_{t \in J} q(t))(t_3 - t_1)$. Since $y'(\xi) = 0$, we obtain from the equality $y'(t) = \int_{\xi}^{t} (q(s)y(s) + h(s, \mu_0)) ds$ that

$$|y'(t)| \leq (A + r_1 \max_{t \in J} q(t))|t - \xi| \leq (A + r_1 \max_{t \in J} q(t))(t_3 - t_1) \leq r_2$$

for $t \in J$.

Let $r_2 \ge 2\sqrt{r_1}\sqrt{A + r_1\max_{t\in J}q(t)}$ and $y'(\xi_1) = 0$ for some $\xi_1 \in J$. Multiplying both sides of the equality

$$y''(t) = q(t)y(t) + h(t, \mu_0), \quad t \in J,$$

by 2y'(t) and integrating from ξ_1 to $t \ (\in J)$, we obtain

$$y'^{2}(t) = 2 \int_{\xi_{1}}^{t} (q(s)y(s)y'(s) + h(s,\mu_{0})y'(s)) ds.$$

Then we get

$$y'^{2}(t) \leq 2(A + r_{1} \max_{t \in J} q(t)) \Big| \int_{\xi_{1}}^{t} y'(s) \mathrm{d}s \Big| \leq 4r_{1} (A + r_{1} \max_{t \in J} q(t))$$

on every interval $J_1, J_1 \subset J, \xi_1 \in J_1, y'(t) \ge 0 \ (\leqslant 0)$ for $t \in J_1$, and this yields

$$|y'(t)| \leq 2\sqrt{r_1}\sqrt{A + r_1 \max_{t \in J} q(t)} \leq r_2 \quad \text{for} \quad t \in J.$$

If the function $f(t, y_1, y_2, \mu)$ does not depend explicitly on y_2 , then we may write equation (1) in the form

(17)
$$y'' - q(t)y = f_1(t, y, \mu)$$

where $f_1 \in C^0(J \times \mathbb{R} \times I)$. From Lemma 2 and its proof it immediately follows:

Lemma 5. Let r > 0 be a positive constant and

(18) $|f_1(t, y, \mu)| \leq rq(t)$ for $(t, y, \mu) \in H \times I$, where $H := J \times \langle -r, r \rangle$; (19) $f_1(t, y, .)$ is an increasing function on I for every fixed $(t, y) \in H$; (20) $f(t, y, a)f(t, y, b) \leq 0$ for $(t, y) \in H$.

Then for every $\varphi, \varphi \in C^0(J), |\varphi(t)| \leq r$ for $t \in J$ there exists a unique $\mu_0, \mu_0 \in I$ such that the equation

(21)
$$y'' - q(t)y = f_1(t, \varphi(t), \mu)$$

with $\mu = \mu_0$ has a solution y (which is then unique) satisfying (2). For this solution y the inequality

$$|y(t)| \leq r$$
 for $t \in J$

holds.

Remark 3. Let the assumptions of Lemma 5 be satisfied,

$$A_1 := \max_{(t,y,\mu) \in H \times I} |f_1(t,y,\mu)|,$$

 $\varphi \in C^0(J), |\varphi(t)| \leq r \text{ for } t \in J \text{ and let } y \text{ be the solution of BVP (21), (2) with}$ $\mu = \mu_0.$ Then there exists $\xi, \xi \in I: y'(\xi) = 0$ and from the equality $y'(t) = \int_{\xi}^{t} (q(s)y(s) + f_1(s,\varphi(s),\mu_0)) ds$ we get $|y'(t)| \leq (A_1 + r \max_{t \in J} q(t))(t_3 - t_1)$ for $t \in J$. **Theorem 1.** Suppose that assumptions (11)–(14) are satisfied for positive constants r_1 , r_2 . Then there exists μ_0 , $\mu_0 \in I$ such that BVP (1), (2) with $\mu = \mu_0$ has a solution y satisfying (16).

Proof. Let $X = C^{1}(J)$ be a Banach space with the norm $||y|| = \max_{t \in J} (|y(t)| + |y'(t)|)$ for $y \in X$, $\mathcal{K} := \{y; y \in X, |y^{(i)}(t)| \leq r_{i+1}$ for $t \in J$, $i = 0, 1\}$ and $B := A + r_1 \max_{t \in J} q(t)$. \mathcal{K} is a closed bounded convex subset of X, $\mathcal{K} \subset X$. For every $\varphi, \varphi \in \mathcal{K}$ there exists (by Lemma 4) a unique $\mu_0, \mu_0 \in I$ such that equation (15) with $\mu = \mu_0$ has a unique solution y satisfying (2) and (16). Setting $T(\varphi) = y$ we obtain an operator $T, T: \mathcal{K} \to \mathcal{K}$. We shall prove that T is a completely continuous operator.

Let $\{y_n\}$, $y_n \in \mathcal{K}$ be a convergent sequence, $\lim_{n \to \infty} y_n = y$, and $z_n = T(y_n)$, z = T(y). Then (by Lemma 4) there exist a sequence $\{\mu_n\}$, $\mu_n \in I$ and $\mu_0 \in I$ such that

(22)
$$z_n(t) = \frac{r(t_2, t)}{r(t_2, t_1)} \int_{t_1}^{t_2} r(t_1, s) f(s, y_n(s), y'_n(s), \mu_n) ds + \int_{t_2}^{t} r(t, s) f(s, y_n(s), y'_n(s), \mu_n) ds, \quad t \in J,$$

and

$$z(t) = \frac{r(t_2, t)}{r(t_2, t_1)} \int_{t_1}^{t_2} r(t_1, s) f(s, y(s), y'(s), \mu_0) ds + \int_{t_2}^t r(t, s) f(s, y(s), y'(s), \mu_0) ds, \quad t \in J.$$

If $\{\mu_n\}$ is not a convergent sequence, then there exist convergent subsequences $\{\mu_{k_n}\}$, $\{\mu_{r_n}\}$, $\lim_{n\to\infty}\mu_{k_n}=\lambda_1$, $\lim_{n\to\infty}\mu_{r_n}=\lambda_2$, $\lambda_1<\lambda_2$. Putting $n=k_n$ and $n=r_n$ in (22) and taking limits on both sides of (22) we obtain

(23)
$$\lim_{n \to \infty} z_{k_n}(t) = \frac{r(t_2, t)}{r(t_2, t_1)} \int_{t_1}^{t_2} r(t_1, s) f(s, y(s), y'(s), \lambda_1) ds + \int_{t_2}^{t} r(t, s) f(s, y(s), y'(s), \lambda_1) ds$$

and

(24)
$$\lim_{n \to \infty} z_{r_n}(t) = \frac{r(t_2, t)}{r(t_2, t_1)} \int_{t_1}^{t_2} r(t_1, s) f(s, y(s), y'(s), \lambda_2) ds + \int_{t_2}^t r(t, s) f(s, y(s), y'(s), \lambda_2) ds$$

uniformly on J, respectively. Since $f(t, y(t), y'(t), \lambda_1) < f(t, y(t), y'(t), \lambda_2)$ for $t \in J$ by assumption (12) then it follows from (23), (24) and Lemma 1 that $\lim_{k \to \infty} z_{k_n}(t_3) < \infty$ $\lim_{n\to\infty} z_{r_n}(t_3)$, which contradicts $z_n(t_3) = 0$ for all $n \in \mathbb{N}$. Consequently, $\{\mu_n\}$ is a convergent sequence; let $\lim_{n \to \infty} \mu_n = \mu^*$. Then $\lim_{n \to \infty} f(t, y_n(t), y'_n(t), \mu_n) =$ $f(t, y(t), y'(t), \mu^*)$ uniformly on J and taking limits on both sides of (22) we get

$$(z^*(t) :=) \lim_{n \to \infty} z_n(t) = \frac{r(t_2, t)}{r(t_2, t_1)} \int_{t_1}^{t_2} r(t_1, s) f(s, y(s), y'(s), \mu^*) ds + \int_{t_2}^t r(t, s) f(s, y(s), y'(s), \mu^*) ds$$

uniformly on J. The function z^* is a solution of the equation

$$z''-q(t)z=f\bigl(t,y(t),y'(t),\mu^*\bigr)$$

and $z^{*}(t_{1}) = z^{*}(t_{2}) = z^{*}(t_{3}) = 0$, consequently by Lemma 4 we get $\mu^{*} = \mu_{0}, z^{*} = z$. Next, uniformly on J we have

$$\lim_{n \to \infty} z'_n(t) = \lim_{n \to \infty} \left[-\frac{r'_1(t, t_2)}{r(t_2, t_1)} \int_{t_1}^{t_2} r(t_1, s) f(s, y_n(s), y'_n(s), \mu_n) ds \right]$$

+ $\int_{t_2}^t r'_1(t, s) f(s, y_n(s), y'(s), \mu_n) ds \right]$
= $-\frac{r'_1(t, t_2)}{r(t_2, t_1)} \int_{t_1}^{t_2} r(t_1, s) f(s, y(s), y'(s), \mu_0) ds$
+ $\int_{t_2}^t r'_1(t, s) f(s, y(s), y'(s), \mu_0) ds = z'(t).$

Hence $\lim_{n \to \infty} T(y_n) = T(y)$ and T is a continuous operator on \mathcal{K} . Let $y \in \mathcal{K}$ and z = T(y). Then $z \in \mathcal{K}$, $z(t_1) = z(t_2) = z(t_3) = 0$ and

(25)
$$z''(t) = q(t)z(t) + f(t, y(t), y'(t), \mu_0) \quad \text{for} \quad t \in J$$

with some $\mu_0 \in I$. From (25) it follows that $|z''(t)| \leq B$ for $t \in J$, thus $T(\mathcal{K}) \subset \mathcal{L} :=$ $\{y, y \in C^2(J), |y(t)| \leq r_1, |y'(t)| \leq r_2, |y''(t)| \leq B \text{ for } t \in J\} \subset \mathcal{K}, \text{ and since } \mathcal{L} \text{ is a}$ compact subset of X, $T(\mathcal{K})$ is a relative compact subset of X.

By Schauder's fixed point theorem there exists $y \in \mathcal{K}$: T(y) = y, i.e. there exists $\mu_0 \in I$ such that

$$y''(t) - q(t)y(t) = f(t, y(t), y'(t), \mu_0)$$
 for $t \in J$

and y satisfies (2) and (16).

Corollary 1. Assume that assumptions (12), (13) are satisfied for positive constants r_1 , r_2 and $r_1(t_3 - t_1) \max_{\substack{t \in J}} q(t) \leq r_2$. Then there is $\delta > 0$ such that for every ε , $0 < \varepsilon \leq \delta$ there exists μ_{ε} , $\mu_{\varepsilon} \in I$ such that BVP

$$y'' - q(t)y = \varepsilon f(t, y, y', \mu)$$

 $y(t_1) = y(t_2) = y(t_3) = 0$

with $\mu = \mu_{\epsilon}$ has a solution y satisfying (16).

Proof. Let
$$A := \max_{\substack{(t,y_1,y_2,\mu) \in D \times I}} |f(t,y_1,y_2,\mu)|$$
 and
$$\delta := \min \left\{ \frac{r_1}{A} \min_{t \in J} q(t), \frac{1}{A} \left(\frac{r_2}{t_3 - t_1} - r_1 \max_{t \in J} q(t) \right) \right\}.$$

Then εf for $0 < \varepsilon \leq \delta$ satisfies the same assumptions as f in Theorem 1 and thus Corollary 1 follows immediately from Theorem 1.

Example 1. Let $t_2 \in (0, \frac{1}{3})$. Consider BVP

(26)
$$y'' - q(t)y = t^3 \cos y + ty'^n + \mu p(t),$$
$$y(0) = y(t_2) = y\left(\frac{1}{3}\right) = 0,$$

where $p, q \in C^0(J_1), 1 \leq p(t) \leq 2, \frac{8}{3\pi} \leq q(t) \leq \frac{10}{3\pi}$ for $t \in \langle 0, \frac{1}{3} \rangle =: J_1, n$ is a positive integer and $\mu \in \langle -\frac{4}{9}, \frac{4}{9} \rangle$. One can easily check that the assumptions of Theorem 1 are satisfied with $r_1 = \frac{\pi}{2}, r_2 = 1$ and thus there exists $\mu_0, \mu_0 \in \langle -\frac{4}{9}, \frac{4}{9} \rangle$ such that BVP (26) with $\mu = \mu_0$ has a solution y satisfying $|y(t)| \leq \frac{\pi}{2}, |y'(t)| \leq 1$ for $t \in J_1$.

Corollary 2. Assume that assumptions (11)–(14) are satisfied for positive constants r_1 , r_2 . Then there exists μ_0 , $\mu_0 \in I$ such that equation (1) with $\mu = \mu_0$ has a solution y satisfying (3) and (16).

Proof. Let $\{x_n\}$, $x_n \in (t_1, t_3)$ be a convergent sequence, $\lim_{n \to \infty} x_n = t_1$. By Theorem 1 there exists a sequence $\{\mu_n\}$, $\mu_n \in I$ such that equation (1) with $\mu = \mu_n$ has a solution y_n satisfying

$$y_n(t_1) = y_n(x_n) = y_n(t_3) = 0$$

and

$$\left|y_{n}^{(i)}(t)\right| \leqslant r_{i+1}$$
 for $t \in J; \quad i = 0, 1; \quad n \in \mathbb{N}.$

Since $\{\mu_n\}$ is a bounded sequence we may assume, without loss of generality, that $\{\mu_n\}$ is convergent, $\lim_{n\to\infty} \mu_n = \mu_0$. From the equalities $y''_n(t) = q(t)y_n(t) + f(t, y_n(t), y'_n(t), \mu_n)$ we obtain

$$|y_n''(t)| \leq r_1 \max_{t \in J} q(t) + A$$
 for $t \in J$ and $n \in \mathbb{N}$.

Let $\xi_n \in (t_1, x_n)$ be such numbers that $y'_n(\xi_n) = 0$, $n \in \mathbb{N}$. Using Ascoli's theorem we may choose a subsequence $\{y_{k_n}(t)\}$ of $\{y_n(t)\}$ such that $\{y^{(j)}_{k_n}(t)\}$ are uniformly convergent on J for j = 0, 1, 2. Then $y(t) := \lim_{n \to \infty} y_{k_n}(t)$, $t \in J$, is a solution of (1) with $\mu = \mu_0$, $y(t_1) = y(t_3) = 0$, $|y^{(i)}(t)| \leq r_{i+1}$ for $t \in J$ and i = 0, 1. Since $y'(t) = \lim_{n \to \infty} y'_{k_n}(t)$ uniformly on J, $y'_{k_n}(\xi_{k_n}) = 0$ and $\lim_{n \to \infty} \xi_{k_n} = t_1$, we have $y'(t_1) = 0$.

Remark 4. If assumptions of Corollary 2 are satisfied, then it is obvious from the proof of Corollary 2 that there exists μ_0 , $\mu_0 \in I$ such that equation (1) with $\mu = \mu_0$ has a solution y satisfying (16) and

$$y(t_1) = y(t_3) = y'(t_3) = 0.$$

For BVP (17), (2) we have the following results:

Theorem 2. Let assumptions (18)–(20) be satisfied with a positive constant r. Then there exists $\mu_0, \mu_0 \in I$ such that BVP (17), (2) with $\mu = \mu_0$ has a solution y and

$$|y(t)| \leq r, \quad |y'(t)| \leq (A_1 + r \max_{t \in J} q(t))(t_3 - t_1) \quad \text{for} \quad t \in J,$$

where $A_1 := \max_{(t,y,\mu) \in H \times I} |f_1(t,y,\mu)|.$

Proof. Let $B_1 =: A_1 + r \max_{t \in J} q(t)$, let X be the Banach space defined in the same way as in the proof of Theorem 1 and $\mathcal{K}_1 := \{y; y \in X, |y(t)| \leq r, |y'(t)| \leq B_1(t_3 - t_1) \text{ for } t \in J\}$. \mathcal{K}_1 is a closed bounded convex subset of X, $\mathcal{K}_1 \subset X$. For every $\varphi, \varphi \in \mathcal{K}_1$ there exists (by Lemma 5) a unique $\mu_0, \mu_0 \in I$ such that equation (21) with $\mu = \mu_0$ has a unique solution y satisfying (2) and $y \in \mathcal{K}_1$ (by Remark 3). Setting $T(\varphi) = y$ we obtain an operator $T, T: \mathcal{K}_1 \to \mathcal{K}_1$. The next part of the proof is very similar to that of Theorem 1 and therefore is omitted.

Example 2. Let n be a positive integer, let ν , c be constants, $\nu \ge 0$, c > 2and $t_2 \in (0, 1)$. Consider BVP

(27)
$$y'' - q(t)y = t^{\nu}y^{n} + \varphi(t) + \mu,$$
$$y(0) = y(t_{2}) = y(1) = 0,$$

where $q, \varphi \in C^0(J_2), q(t) \ge c, 0 < \varphi(t) \le c-2$ for $t \in \langle 0, 1 \rangle =: J_2$ and $\mu \in \langle 1-c, 1 \rangle$. The assumptions of Theorem 2 are satisfied with r = 1. By Theorem 2 there exists $\mu_0, \mu_0 \in \langle 1-c, 1 \rangle$ such that BVP (27) with $\mu = \mu_0$ has a solution y and $|y(t)| \le 1$, $|y'(t)| \le 2c - 2 + \max_{t \in J_2} q(t)$ for $t \in J_2$. **Corollary 3.** Assume that assumptions (19) and (20) are satisfied with a positive constant r. Then there is $\delta > 0$ such that for every ε , $0 < \varepsilon \leq \delta$ there exists μ_{ε} , $\mu_{\varepsilon} \in I$ such that BVP

$$y'' - q(t)y = \varepsilon f_1(t, y, \mu),$$

 $y(t_1) = y(t_2) = y(t_3) = 0$

with $\mu = \mu_{\varepsilon}$ has a solution y satisfying

$$|y(t)| \leq r$$
, $|y'(t)| \leq (A_1 + r \max_{t \in J} q(t))(t_3 - t_1)$ for $t \in J$,

where A_1 is defined in Theorem 2.

Proof. Let $\delta := \frac{r}{A_1} \min_{t \in J} q(t)$. If $0 < \varepsilon \leq \delta$ then εf satisfies the same assumptions as f in Theorem 2. Therefore Corollary 3 follows immediately from Theorem 2.

Corollary 4. Suppose that assumptions (18)–(20) are satisfied for a positive constant r. Then there exists μ_0 , $\mu_0 \in I$ such that equation (17) with $\mu = \mu_0$ has a solution y satisfying (3) and

$$|y(t)| \leq r, \quad |y'(t)| \leq \left(A_1 + r \max_{t \in J} q(t)\right)(t_3 - t_1) \quad \text{for} \quad t \in J,$$

where A_1 is defined in Theorem 2.

Proof. Let $\{x_n\}$, $x_n \in (t_1, t_3)$ be a convergent sequence, $\lim_{n \to \infty} x_n = t_1$. Then (by Theorem 2) there exists a sequence $\{\mu_n\}$, $\mu_n \in I$, such that equation (17) with $\mu = \mu_n$ has a solution y_n satisfying

$$y_n(t_1) = y_n(x_n) = y(t_3) = 0,$$

$$|y_n(t)| \le r, \quad |y'_n(t)| \le (A_1 + r \max_{t \in I} q(t))(t_3 - t_1)$$

and

$$|y_n''(t)| = |q(t)y_n(t) + f_1(t, y_n(t), \mu_n)| \le A_1 + r \max_{t \in J} q(t) \quad \text{for} \quad t \in J, \quad n \in \mathbb{N}.$$

Since $\{\mu_n\}$ is a bounded sequence we may assume, without loss of generality, that $\{\mu_n\}$ is convergent and $\lim_{n\to\infty} \mu_n = \mu_0$. Let $\xi_n \in (t_1, x_n)$ be such numbers for which $y'_n(\xi_n) = 0$. Then by Ascoli's theorem we may choose a subsequence $\{y_{k_n}(t)\}$ of $\{y_n(t)\}$ such that $\{y_{k_n}^{(j)}(t)\}$ are uniformly convergent on J for j = 0, 1, 2. The function $y(t) := \lim_{n\to\infty} y_{k_n}(t), t \in J$, is a solution of (17) with $\mu = \mu_0, y(t_1) = y(t_3) = 0$, $|y(t)| \leq r, |y'(t)| \leq (A_1 + r \max_{t\in J} q(t))(t_3 - t_1)$ for $t \in J$. Since $y'(t) = \lim_{n\to\infty} y'_{k_n}(t)$ uniformly on $J, y'_{k_n}(\xi_{k_n}) = 0$ and $\lim_{n\to\infty} \xi_n = t_1$, we have $y'(t_1) = 0$.

Remark 5. If the assumptions of Corollary 4 are satisfied then we can prove the existence of μ_0 , $\mu_0 \in I$ such that equation (17) with $\mu = \mu_0$ has a solution y satisfying

$$y(t_1) = y(t_3) = y'(t_3) = 0$$

and

$$|y(t)| \leq r, \quad |y'(t)| \leq \left(A_1 + r \max_{t \in J} q(t)\right)(t_3 - t_1) \quad \text{for} \quad t \in J.$$

4. UNIQUENESS THEOREM

Lemma 6. Let r_1 , r_2 be positive constants, $S = \{y; y \in C^1(J), |y^{(i)}(t)| \leq r_{i+1} \text{ for } t \in J, i = 0, 1\}$. Assume

(28)
$$|f(t, y_1, y_2, \mu) - f(t, z_1, z_2, \mu)| \leq h_1(t)|y_1 - z_1| + h_2(t)|y_2 - z_2|$$

for $(t, y_1, y_2, \mu), (t, z_1, z_2, \mu) \in J \times \langle -r_1, r_1 \rangle \times \langle -r_2, r_2 \rangle \times I,$

where $h_1, h_2 \in C^0(J)$ and at least one of the following four assumptions holds:

(29)
$$\int_{t_1}^{t_2} \left[\left(\exp \int_{t_1}^s h_2(\tau) \mathrm{d}\tau \right) \cdot \int_{t_1}^s \left(q(\tau) + h_1(\tau) \right) \mathrm{d}\tau \right] \mathrm{d}s \leqslant 1,$$

(30)
$$\int_{t_1}^{t_2} \left[\left(q(s) + h_1(s) \right) (s - t_1) + h_2(s) \right] \mathrm{d}s \leqslant 1,$$

(31)
$$\int_{t_2}^{t_3} \left[\left(\exp \int_{t_2}^s h_2(\tau) \mathrm{d}\tau \right) \cdot \int_{t_2}^s (q(\tau) + h_1(\tau)) \mathrm{d}\tau \right] \mathrm{d}s \leqslant 1,$$

(32)
$$\int_{t_2}^{t_3} \left[\left(q(s) + h_1(s) \right) (s - t_2) + h_2(s) \right] \mathrm{d}s \leqslant 1$$

If BVP (1), (2) with $\mu = \mu_0$, $\mu_0 \in I$ has a solution $y, y \in S$, then this solution is unique in S.

Proof. Let $y_1, y_2 \in S$ be solutions of BVP (1), (2) with $\mu = \mu_0, \mu_0 \in I$ and define $w := y_1 - y_2$. Since $w(t_1) = w(t_2) = 0$ there exists a $\xi \in (t_1, t_2) : |w(t)| \leq |w(\xi)|$ for $t \in \langle t_1, t_2 \rangle$.

Let assumptions (29) be satisfied. Using Gronwall's lemma for the inequality

(33)
$$|w'(t)| \leq \left| \int_{\xi}^{t} \left[\left(q(s) + h_1(s) \right) |w(s)| + h_2(s) |w'(s)| \right] \mathrm{d}s \right|, \quad t \in \langle t_1, t_2 \rangle$$

we get

$$|w'(t)| \leq \left(\exp \int_{\xi}^{t} h_2(s) \mathrm{d}s\right) \cdot \int_{\xi}^{t} \left(q(s) + h_1(s)\right) |w(s)| \mathrm{d}s, \quad t \in \langle \xi, t_2 \rangle.$$

For all $t \in \langle \xi, t_2 \rangle$ we have

$$|w(t) - w(\xi)| \leq \int_{\xi}^{t} |w'(s)| \mathrm{d}s \leq \int_{\xi}^{t} \left[\left(\exp \int_{\xi}^{s} h_2(\tau) \mathrm{d}\tau \right) \cdot \int_{\xi}^{s} \left(q(\tau) + h_1(\tau) \right) |w(\tau)| \mathrm{d}\tau \right] \mathrm{d}s$$

and thus, if $w(\xi) \neq 0$, we obtain

$$|w(\xi)| = |w(t_2) - w(\xi)| \leq \int_{\xi}^{t_2} \left[\left(\exp \int_{\xi}^{s} h_2(\tau) d\tau \right) \cdot \int_{\xi}^{s} \left(q(\tau) + h_1(\tau) \right) |w(\tau)| d\tau \right] ds$$

$$< |w(\xi)| \int_{t_1}^{t_2} \left[\left(\exp \int_{t_1}^{s} h_2(\tau) d\tau \right) \cdot \int_{t_1}^{s} \left(q(\tau) + h_1(\tau) \right) d\tau \right] ds.$$

Then

$$1 < \int_{t_1}^{t_2} \left[\left(\exp \int_{t_1}^s h_2(\tau) \mathrm{d}\tau \right) \cdot \int_{t_1}^s (q(\tau) + h_1(\tau)) \mathrm{d}\tau \right] \mathrm{d}s,$$

which contradicts (29). Therefore $w(\xi) = 0$ and $y_1(t) = y_2(t)$ for $t \in \langle t_1, t_2 \rangle$.

Now, let assumptions (30) be satisfied. From (33) and $|w(t)| \leq \int_{t_1}^t |w'(s)| ds$ for $t \in J$ we get

$$|w'(t)| \leq \left| \int_{\xi}^{t} \left[\left(g(s) + h_{1}(s) \right) \cdot \int_{t_{1}}^{s} |w'(\tau)| \mathrm{d}\tau + h_{2}(s)|w'(s)| \right] \mathrm{d}s \right|$$

$$\leq \int_{t_{1}}^{t_{2}} \left[\left(q(s) + h_{1}(s) \right) \cdot \int_{t_{1}}^{s} |w'(\tau)| \mathrm{d}\tau + h_{2}(s)|w'(s)| \right] \mathrm{d}s, \quad t \in \langle t_{1}, t_{2} \rangle.$$

Putting $X(t) := \max_{t_1 \leq s \leq t} |w'(s)|$ for $t \in \langle t_1, t_2 \rangle$ then, if $X(t_2) \neq 0$, we obtain

$$|w'(t)| < X(t_2) \int_{t_1}^{t_2} \left[\left(q(s) + h_1(s) \right) (s - t_1) + h_2(s) \right] \mathrm{d}s, \quad t \in \langle t_1, t_2 \rangle$$

and thus

$$X(t_2)\Big(1 - \int_{t_1}^{t_2} \big[\big(q(s) + h_1(s)\big)(s - t_1) + h_2(s)\big] \,\mathrm{d}s\Big) < 0,$$

which contradicts (30). This shows that $X(t_2) = 0$, consequently w'(t) = 0 for $t \in \langle t_1, t_2 \rangle$ and since $w(t_1) = 0$ we get w(t) = 0 on $\langle t_1, t_2 \rangle$, that is $y_1(t) = y_2(t)$ for $t \in \langle t_1, t_2 \rangle$.

By the existence and uniqueness theorem for equation (1) we get $y_1(t) = y_2(t)$ for $t \in J$.

If assumptions (31) (or (32)) is satisfied, then the proof is very similar and therefore is omitted. $\hfill \Box$

R e m a r k 6. It is evident from the proof of Lemma 6 that assumptions (29)-(32) may be replaced by the assumptions

$$\begin{split} &\int_{t_1}^{t_2} \left[\left(\exp \int_s^{t_2} h_2(\tau) \mathrm{d}\tau \right) \cdot \int_s^{t_2} (q(\tau) + h_1(\tau)) \mathrm{d}\tau \right] \mathrm{d}s \leqslant 1, \\ &\int_{t_1}^{t_2} \left[(q(s) + h_1(s))(t_2 - s) + h_1(s) \right] \mathrm{d}s \leqslant 1, \\ &\int_{t_2}^{t_3} \left[\left(\exp \int_s^{t_3} h_2(\tau) \mathrm{d}\tau \right) \cdot \int_s^{t_3} (q(\tau) + h_1(\tau)) \mathrm{d}\tau \right] \mathrm{d}s \leqslant 1, \\ &\int_{t_2}^{t_3} \left[(q(s) + h_1(s))(t_3 - s) + h_2(s) \right] \mathrm{d}s \leqslant 1. \end{split}$$

Example 3. Consider BVP (26) as in Example 1, where n = 3. Assumption (28) is satisfied for $h_1(t) = t^3$ and $h_2(t) = 3t$ with an arbitrary positive constant r_1 and $r_2 = 1$. If BVP (26) with $\mu = \mu_0$ ($\in \langle -\frac{4}{9}, \frac{4}{9} \rangle$) has a solution y satisfying $|y'(t)| \leq 1$ on $\langle 0, \frac{1}{3} \rangle$ (by Example 1 such μ_0 and y exist if $r_1 \geq \frac{\pi}{2}$), then this solution y is unique in the set $\{y; y \in C^2(\langle 0, \frac{1}{3} \rangle), |y'(t)| \leq 1$ for $t \in \langle 0, \frac{1}{3} \rangle$ since

$$\int_{t_1}^{t_3} \left[\left(q(s) + h_1(s) \right) (s - t_1) + h_2(s) \right] \mathrm{d}s = \int_0^{\frac{1}{3}} \left[\left(q(s) + s^3 \right) s + 3s \right] \mathrm{d}s$$
$$\leqslant \frac{5}{3\pi} \left(\frac{1}{3} \right)^2 + \frac{1}{5} \left(\frac{1}{3} \right)^5 + \frac{3}{2} \left(\frac{1}{3} \right)^2 < 1.$$

Lemma 6 and its proof immediately yield

Corollary 5. Let r > 0 be a positive constant, $S_1 = \{y; y \in C^0(J), |y(t)| \leq r \text{ for } t \in J\}$. Assume

(34)
$$|f_1(t, y, \mu) - f_1(t, z, \mu)| \leq h(t)|y - z|$$
 for $(t, y, \mu), (t, z, \mu) \in J \times \langle -r, r \rangle \times I$,

where $h \in C^0(J)$ and at least one from the following four assumptions holds:

(35)
$$\int_{t_1}^{t_2} \int_{t_1}^{s} (q(\tau) + h(\tau)) d\tau ds \leq 1, \quad \int_{t_1}^{t_2} (q(s) + h(s))(s - t_1) ds \leq 1,$$
$$\int_{t_2}^{t_3} \int_{t_2}^{s} (q(\tau) + h(\tau)) d\tau ds \leq 1, \quad \int_{t_2}^{t_3} (q(s) + h(s))(s - t_2) ds \leq 1.$$

If BVP (17), (2) with $\mu = \mu_0 \ (\in I)$ has a solution $y, y \in S_1$, then this solution y is unique in S_1 .

Remark 7. Assumptions (34) in Corollary 5 may be replaced by the assumptions

$$\int_{t_1}^{t_2} \int_{s}^{t_2} (q(\tau) + h(\tau)) d\tau ds \leq 1, \quad \int_{t_1}^{t_2} (q(s) + h(s))(t_2 - s) ds \leq 1,$$
$$\int_{t_2}^{t_3} \int_{s}^{t_3} (q(\tau) + h(\tau)) d\tau ds \leq 1, \quad \int_{t_2}^{t_3} (q(s) + h(s))(t_3 - s) ds \leq 1.$$

Example 4. Consider BVP (27) as in Example 2. Assumption (34) holds for h(t) = n and r = 1. If BVP (27) has for $\mu = \mu_0$ ($\in \langle 1 - c, 1 \rangle$) a solution y, $y \in S_2 := \{y; y \in C^2(\langle 0, 1 \rangle), |y(t)| \leq 1 \text{ for } t \in \langle 0, 1 \rangle\}$ (by Example 2 such μ_0 and yexist) and $t_2 \in (0, 1)$ satisfies at least one from the conditions

$$\int_{0}^{t_{2}} \int_{0}^{s} q(\tau) d\tau + \frac{n}{2} t_{2}^{2} \leqslant 1, \qquad \int_{0}^{t_{2}} sq(s) ds + \frac{n}{2} t_{2}^{2} \leqslant 1,$$

$$\int_{t_{2}}^{1} \int_{t_{2}}^{s} q(\tau) d\tau ds + \frac{n}{2} (1 - t_{2})^{2} \leqslant 1, \qquad \int_{t_{2}}^{1} q(s) (s - t_{2}) ds + \frac{n}{2} (1 - t_{2})^{2} \leqslant 1,$$

$$\int_{0}^{t_{2}} \int_{s}^{t_{2}} q(\tau) d\tau ds + \frac{n}{2} t_{2}^{2} \leqslant 1, \qquad \int_{0}^{t_{2}} q(s) (t_{2} - s) ds + \frac{n}{2} t_{2}^{2} \leqslant 1,$$

$$\int_{t_{2}}^{1} \int_{s}^{1} q(\tau) d\tau ds + \frac{n}{2} (1 - t_{2})^{2} \leqslant 1, \qquad \int_{t_{2}}^{1} q(s) (1 - s) ds + \frac{n}{2} (1 - t_{2})^{2} \leqslant 1,$$

then this solution y is unique in S_2 .

Lemma 7. Let assumption (12) be satisfied for positive constants r_1 , r_2 . Let $\frac{\partial f}{\partial y_1}(t, y_1, y_2, \mu), \frac{\partial f}{\partial y_2}(t, y_1, y_2, \mu) \in C^0(D_2)$ and

(36)
$$q(t) + \frac{\partial f}{\partial y_1}(t, y_1, y_2, \mu) \ge 0 \quad \text{for} \quad (t, y_1, y_2, \mu) \in D_2,$$

where $D_2 = D \times I$. Define $S := \{y; y \in C^1(J), |y^{(i)}(t)| \leq r_{i+1} \text{ for } t \in J \text{ and } i = 0, 1\}.$

If BVP (1), (2) with $\mu = \mu_0$, $\mu_0 \in I$ has a solution $y, y \in S$, then μ_0 and y are unique.

Proof. Let y_1 and y_2 be solutions of BVP (1), (2) with $\mu = \mu_1$ and $\mu = \mu_2$, respectively, $y_1, y_2 \in S$, $\mu_1, \mu_2 \in I$, $\mu_1 \leq \mu_2$. Using Taylor's formula we get

$$\begin{aligned} f(t, y_1(t), y_1'(t), \mu_1) &- f(t, y_2(t), y_2'(t), \mu_2) = \\ &= \left(f(t, y_1(t), y_1'(t), \mu_1) - f(t, y_1(t), y_1'(t), \mu_2) \right) \\ &+ \left(f(t, y_1(t), y_1'(t), \mu_2) - f(t, y_2(t), y_1'(t), \mu_2) \right) \\ &+ \left(f(t, y_2(t), y_1'(t), \mu_2) - f(t, y_2(t), y_2'(t), \mu_2) \right) \\ &= \left(f(t, y_1(t), y_1'(t), \mu_1) - f(t, y_1(t), y_1'(t), \mu_2) \right) \\ &+ g(t) \left(y_1(t) - y_2(t) \right) + h(t) \left(y_1(t) - y_2(t) \right)' \end{aligned}$$

with $g, h \in C^0(J)$ and $q(t) + g(t) \ge 0$ on J by (36). Setting $w := y_1 - y_2$ then if $\mu_1 < \mu_2$, we have

(37)
$$w''(t) < (q(t) + g(t))w(t) + h(t)w'(t)$$
 for $t \in J$

by (12) and if $\mu_1 = \mu_2$, we have

(38)
$$w''(t) = (q(t) + g(t))w(t) + h(t)w'(t) \quad \text{for} \quad t \in J$$

Let $\mu_1 < \mu_2$. If $w'(t_1) \leq 0$ then using (37) and Tschaplygin's lemma (see e.g. [1], p. 195) we get w(t) < 0 on (t_1, t_3) , which contradicts $w(t_2) = w(t_3) = 0$. If $w'(t_1) > 0$ then there exists $\eta, \eta \in (t_1, t_2)$ such that w(t) > 0 for $t \in (t_1, \eta)$, $w(\eta) = 0$ and $w'(\eta) \leq 0$. Therefore w(t) < 0 on (η, t_3) , which is a contradiction with $w(t_3) = 0$.

Let $\mu_1 = \mu_2$. Since $q(t)+g(t) \ge 0$ for $t \in J$, the equation y'' = (q(t)+g(t))y+h(t)y' is disconjugate on J, consequently in virtue of $w(t_1) = w(t_2) = w(t_3) = 0$ we have w = 0 and $y_1 = y_2$. This completes the proof.

Lemma 8. Let assumptions (19) be satisfied for a positive constant r. Let $\frac{\partial f_1}{\partial y}(t, y, \mu) \in C^0(H_1)$ and

(39)
$$q(t) + \frac{\partial f_1}{\partial y}(t, y, \mu) \ge 0 \quad \text{for} \quad (t, y, \mu) \in H_1,$$

where $H_1 = H \times I$. Define $S_1 = \{y; y \in C^0(J), |y(t)| \leq r \text{ for } t \in J\}$.

If BVP (17), (2) with $\mu = \mu_0$, $\mu_0 \in I$ has a solution $y, y \in S_1$, then μ_0 and y are unique.

The proof is entirely analogous to the proof of Lemma 7.

Theorem 3. Suppose that assumptions (11)–(14) are satisfied for positive constants r_1 , r_2 . Let $\frac{\partial f}{\partial y_1}(t, y_1, y_2, \mu)$, $\frac{\partial f}{\partial y_2}(t, y_1, y_2, \mu)$ be continuous on $D \times I$ and let S be defined as in Lemma 7.

If (36) holds then BVP (1), (2) has a solution $y, y \in S$ for a single value of the parameter $\mu (\in I)$. Moreover, this solution y is unique in the set S.

The proof follows immediately from Theorem 1 and Lemma 7.

Example 5. Consider BVP (26) as in Example 1. Since $q(t) + \frac{\partial f}{\partial y_1}(t, y_1, y_2, \mu) = q(t) - t^3 \sin y_1 \geq \frac{8}{3\pi} - \left(\frac{1}{3}\right)^3 > 0$ for $(t, y_1, y_2, \mu) \in \langle 0, \frac{1}{3} \rangle \times \mathbb{R}^2 \times \langle -\frac{4}{9}, \frac{4}{9} \rangle$ then Example 1 and Theorem 3 imply, that BVP (26) has a solution y for a single value of the parameter $\mu \ (\in \langle -\frac{4}{9}, \frac{4}{9} \rangle)$. This solution is unique in the set $\{y; y \in C^2(\langle 0, \frac{1}{3} \rangle), |y(t)| \leq \frac{\pi}{2}, |y'(t)| \leq 1$ for $t \in \langle 0, \frac{1}{3} \rangle$.

Theorem 4. Suppose that assumptions (18)-(20) are satisfied for a positive constant r. Let $\frac{\partial f_1}{\partial y} \in C^0(H \times I)$ and let S_1 be defined as in Lemma 8.

If (39) holds then BVP (17), (2) has a solution $y, y \in S_1$ for a single value of the parameter $\mu \in I$. Moreover, this solution y is unique in the set S_1 .

The proof follows immediately from Theorem 2 and Lemma 8.

Example 6. Consider BVP (27) as in Example 2 with the additional assumption that n is an odd integer. Then $q(t) + \frac{\partial f_1}{\partial y}(t, y, \mu) = q(t) + nt^{\nu}y^{n-1} > 0$ for $(t, y, \mu) \in \langle 0, 1 \rangle \times \langle -1, 1 \rangle \times \langle 1 - c, 1 \rangle$. Example 2 and Theorem 4 imply that BVP (27) has a solution y for a single value of parameter $\mu \in \langle 1 - c, 1 \rangle$. This solution y is unique in the set $\{y; y \in C^2(\langle 0, 1 \rangle), |y(t)| \leq 1 \text{ for } t \in \langle 0, 1 \rangle\}$.

References

- [1] Beckenbach, E. F. and Bellman, R.: Inequalities. Moscow, 1965. (In Russian.)
- [2] Greguš, M., Neuman, F. and Arscott, F.: Three-point boundary value problems in differential equations, J. London Math. Soc. 2 no. 3 (1971), 429-436.

Author's address: 77200 Olomouc, třída Svobody 26, Czechoslovakia (PF UP).