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1. INTRODUCTION 

Let / be a continuous function mapping a closed interval I into itself and let xo 

be a fixed point o f / . An elementary theorem asserts that if | / ' ( #o ) | < 1, then there 

is a neighborhood U of xo such that for each x £ U, the sequence {fn(x)} of iterates 

of x under / converges to XQ. Here / ° ( x ) = x and fn(x) — fn~l(x), n — 1, 2, .... 

A variant of this theorem can be obtained by replacing the condition on the deriva­

tive by a condition on the difference-quotient: if there is a number d £ (0, 1) such 

that 

( 1 ) _ r f < / ( * ) - / ( * o ) < ( , 
x - x0 

for all x £ U, then lim fn(x) — x 0 for all x £ {/. 
n—+oo 

Suppose, now, that we replace the full neighborhood U of xo with some other set E. 

We can ask whether the condition | / JE(XO) | < 1 where f'E(xo) denotes the derivative 

of / with respect to E at xo, or the condition (1) holding for all x £ F, still implies 

some sort of attraction to the fixed point xo- The strength of the conclusion will 

depend, of course, on the set E. It is, perhaps surprising that porosity conditions, 

rather than density conditions, are the relevant ones. 

* This paper was prepared while the second listed author visited University of Carolina at 
Davis. 
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2. M A I N RESULTS 

Suppose xo is a fixed point of / and 0 < ff(xo) < 1. It is then clear that for x 

sufficiently close to xo the sequence {fn(x)} approaches xQ monotonically. Suppose 

we weaken the assumption to 0 < ff
ap(xo) < 1. This means that there is a set E 

having #0 as a point of density that 

0 < l h n ^ ) - / M < 1 . 

**TE° X ~ X° 

If x £ E and fn(x) £ E for all n = 1, 2, . . . , then fn(x) — xQ. Perhaps the fact 

that E has XQ as a density point suggests there must be an x attracted to XQ whose 

orbit lies entirely in E. We shall see that this is not necessarily the case, although 

there will be a point not necessarily in F, whose orbit approaches xQ. Our goal in 

this section is to obtain two theorems. The first provides a condition on a set E that 

guarantees that any continuous function such that 0 < lim f\x)-f(xo) — d < \ 
x-+x0;x£E r " r ° 

has some point x (not necessarily in E) whose orbit is attracted to the fixed point 

xo without landing on xo- The second theorem provides a condition that guarantees 
that if 0 < lim f\x)-J\xo) < j then there is a point x £ E whose orbit is 

x-+x0;xeE x~x° 
attracted to xQ without landing on xQ. Actually each theorem reveals a bit more. 

We begin with an example that may be instructive. 

E x a m p l e 2.1. Assume that 0 £ int(I), where int(I) denotes the interior of the 

interval I. Then there exists a continuous function / : I —• I and a set E such that 

/ ( 0 ) = 0, 0 is a right point of F, 0 < lim - ^ - = ±, and \fn(x)\ > Sx > 0, n = 1, 
r \ 0 ; x £ E x 

2, . . , for every x £ E) x > 0. The notation x \ y means that x converges to y from 

the right. 

V e r i f i c a t i o n of Example 2.L Before turning to the details we want to sketch 

the idea of our example . We split each interval [ 2 - n , 2 - n + 1 ] into 2n subintervals /-,.m , 

71 = 1, 2, . . , m — 1, 2, . . , 2n and we choose small subintervals Jn|Tn about the 

endpoints of / n ) m . The set E will be (0, 1] \ (J Jnnl and the function / will be 
n,m 

constant on each set E C\ / n > m . These constants will be choosen so that we can 

obtain 0 < lim -------- = \ and each constant will equal a fixed point of / . Hence 
x\0;xeE x 2 

for any x £ E we have fk(x) = f(x), k = 1, 2, . . , that is, no point of E will be 

at tracted to 0. 
Put In>m = [ 2 - n + ( ? 7 i - l ) 4 - n , 2 - n + ??«4-n]andJ , l f m = ( 2 - n + ( ? 7 i - 4 - n ) 4 " n , 2 ~ n + 

(?7i + 4 - n ) 4 " n ) for 77 = 1, 2, . . , 777 = 1,2, . . , 2 n . Put E = (0, 1] \ l j Jn,m and 
n ,rn 

f(x) = \(2~n + ?D4-n) for x £ In>m O F, 77 = 1, 2, . . , m = V 2, . . ., 2" . We also 
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put / ( 2 ~ n + 7H4~n) = 2 " n -f- ?7?A~n for n = 1, 2, . . . , m = 1, 2, . . ., 2 n . Otherwise 

define / arbitrarily so as to be continuous. Then for every x G E there exist n and 

?/i such that x G In,m. Thus f(x) = \(2~n + ?7i4~n) = 2~n~l + 2 m 4 " n - 1 and hence 

fk(f(x)) = /(J-), & — -j 2, • • •• As the reader easily can verify 0 is a right density 

point of E and lim ^ - - = \. 
x\0;xeE x 2 

We remark that it will follow from Theorem 2A below that there is one point x 

not in E whose orbit is at tracted to 0. 

L e m m a 2 .1 . Suppose that / ( 0 ) = 0 G int(I), 0 < f(x) ^ x for x > 0, f: I -> I 

is continuous, there exists an \ 0 such that ^an' < d G (0, I), and a n + i / a n > d. 

We also assume that an interval [c0,60] is given such that 0 < c0 < d • 60 <̂  a i , 

/ ( [ c 0 , 60]) H [co, 60] ? 0. Then 0 G c l (u{ / n ( [ c 0 , 60]): n = 1, 2, . . .}) . 

P r o o f . Since / is continuous fn ([c0, 6o]) is an interval denoted by [cn, 6n]. From 

0 < f(x) <C x it follows that 0 <C . . . <j cn <C cn_i <C . . . < Co, and 0 <C . . . <C 6n <C 

6n_i <C . . . <C 60. From / ( [c 0 , 60])n[c0 , 60] 7- 0 it follows that there exist z,w G [c0, 60] 

such t h a t / ( u ; ) = 2. T h e n / n + 1 ( H j ) = / n ( z ) G [ c n + i , 6 n + 1 ] n [ c n , 6 n ] for every n £ 1. 

Thus U /fc([co,6o]) = [cn,6o]. 
fc_0 

00 

To obtain a contradiction suppose that lim cn = 7 > 0. Then (J ([cfc.&fc]) = 
n ^ ° ° A; = 0 

(X) 

U /*([co> M ) -̂  (7) M - We also have f(j) = 7 since otherwise f(j) < 7 and by the 
k=o 
continuity o f / there would exist a cn such that f(cn) < 7 which is clearly impossible. 

00 

If there is x G (7, 60] such that f(x) < 7 then from (7, 60] C (J [cfc, 6^] it follows that 

•P C [c^,6jt] for a k G N. This wtould imply c^+i <C f(x) < 7 which again contradicts 

the definition of 7. Therefore f(x) ^> 7 for x G (7,6 0] . Since a n + i / a n > J and 

60 < ai there exists an n such that 7 < an <C 7/d. By the assumption of this lemma 

f(an) < d-an. On the other hand also by the assumption of this lemma 7 <C c0 < d-60 

and hence 7 /d G (a n , 60]. Thus f(an) ^ 7 = d • j/d ^> d • an, a contradiction proving 

lim cn = 0, which implies 0 G c l (u{ / n ( [ c 0 , 60]): n = 1 ,2 , . . .}) . D 
n—+oo 

L e m m a 2.2 . If / ( 0 ) = 0, 0 < f(x) <C x for x > 0, / is continuous, and there 

exist 0 < c0 < 60 such that 0 G c l (u{ / n ( [ c 0 , bo]): n = 1,2, . . .}) then there exists 

y G [c0, 60] such that lim / n ( g ) = 0 and fn(y) > 0 for n = 1, 2, . . .. 
n—*oo 

P r o o f . From the continuity o f / n it follows that /n([co,60]) is an interval 

[cn, 6n]. Since f(x) <: x we have c0 ^ ci > . . . ^ cn ^ . . . > 0, 60 ^ 61 > . . . ^ 6n > 

. . . > 0. The assumption of this lemma implies that lim cn = 0. If there exists cn 
n—•oo 

such that cn = cn + i then / ( [ c n , 6 n ] ) = [ c n + i , 6 n +i ] = [c n ,6 n + i] C [cn ,6n] and hence 

/ m ( [ c n A J ) C / m _ 1 ( [ c n , 6 n ] ) C / ( [ c n , 6 n ] ) C [cn ,6n] contradicting the fact that 
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lim cn = 0. Thus c0 > c{ > . .. > cn > . .. > 0. Put Fn = / ~ n ( [ c n , cn_i]) n [c0, 60]. 
n—+ 0 0 

If we have finitely many Fns say Fni, Fn2, . .., Fnm, n\ > n2 > • • • > nm then we 

show that their intersection is nonempty. Choose a z £ [c n . m , c n m _i) n [<\iTO-&nm]-

Then there exists a u £ Fn.m such that fnm(u) = : . Suppose that there exists a 

j such that u £ FTlj} that is, fn>(u) £ [ c n j , c r i j _ i ] . Thus fUj(u) £ ( c n j _ i , 6 n J C 

[cn i , 6 n _i] and hence there exists a w £ [c0,60] such that fUj(u) = / n j _ 1 ( u ' ) 

and hence z = f + ( n ™ - ^ ) ( u ) = / " i - i + C " - - ^ ) ^ = / n m - i ( u , ) - [cn ,__i, 6„TO_ J 

contradicting to z £ [ c n m , c n m _ i ) . Thus by compactness there exists a y £ n ^ = 1 F n . 

Since / n ( g ) £ [c n , c n _i ] we obtain lim fn(y) = 0. D 
71 — o o 

L e m m a 2 . 3 . Suppose that / (0 ) = 0, / is continuous, ancJ tJiere exist </n, 7'n —-» 0, 

9i > H > 72 > r2 > . . . > <U- > a- > . . . > 0, SUCJJ that f(qk) > 0, ancJ f(rk) = 0, 

k = 1,2, . . . tJien there exists a nonempty perfect set P such that lim fn(y) = 0, 
71 — OO 

/ n ( y ) > 0, for every y £ F, ?? = 1, 2, . . .. 

P r o o f. P>ut J0 = [?*i, or]. Suppose that s is a finite zero-one sequence of length 

m £ {0, 1,2, . ..} (when ??? = 0 then s = 0) and J5 = [rn ( 5 ) , qn(s)]. Since f(qn(s)) > 0 

we can choose ??(s0) > n(sl) > n(s) such that J50 = [rn(s0),qn(s0)] C [0, f(qn(S))], 

and J5i = [ r n ( 5 i ) , o n ( 5 l ) ] C [0,/(tfn(*))]-

Put F^ = J0. Suppose that s is of the length 7? — 1, the closed set F5 is defined, 

and fn~l(Fs) = Js. Then put F50 = f~n (Js0) D Fs and F5l = / ~ n ( J 5 i ) n F 5 . From 

Js0 C [0, f(qn(S))] it follows that for every x £ Js0 there exists a z £ Js such that 

f(z) = x. Since fn~x(Fs) = J, we can find a w £ F5 such that / " " ^ u ' ) = z. Thus 

fn(w) = 2! and w; £ F50. This implies that fn{Fs0) = Js0. A similar argument shows 

that / n ( F , i ) = J5i. 

Put Hm = U{F5 : s is a zero-one sequence of length m} and H = n ^ . . Hrn. Since 

the sets Fs are closed and there are 2 m zero-one sequences of length ??? the set Hm 

is closed. Therefore H is also closed. 

Suppose that y £ H. Then fm(y) £ [Tn(5), </n(5)], where 5 is of lenght ?7?. It is 

easy to see that ??(.s) > ???. Thus fm(y) —• 0 and fm(y) > 0. 

If <p is an infinitive zero-one sequence then denote by p\m the first ??? terms of p. 

For arbitrary zero-one sequence p choose a y(p) £ Dn^=lF^\Tn £ H. We remark 

that y(p) is well defined since F^j-j, 7?? = 1, 2, . . . is a nested sequence of closed 

sets. If <£>, V' a r e different zero-one sequences then there exists an m such that >̂|?7? = 

?/;|?7i = s and p\m + I 7̂  V'|™ + 1. By symmetry we may assume that p\m + 1 = s0 

and ^ | m + 1 = 5V Then i/fa) £ F50 and y(i/>) £ F5]. Since fm + l (y(p)) £ Ja0. 

/ m + - (y(ij)}) £ Jsl and JiSOnJ5i = 0 we obtain g(<£>) 7- y(xp). Therefore the cardinality 

of H is that of the continuum and there exists a nonempty perfect subset P C H. 

This proves Lemma 2.3. • 

It will be convenient to state our results in the language of porosity. Let S be 

a set, x0 a point and /? > 0. Let £(h) denote the length of the longest interval in 
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[XQ, XO -f h] \ S. The right porosity of S at XQ is defined as 

p+(x0,S) = lim sup — — . 
/l — 0 ti 

If p+(xo, S) = 0, we say S is nonporous from the right at xo. If p+(xo, S) = 1 we say 
S is strongly porous from the right at XQ. The notions of left porosity and (bilateral) 
porosity are now defined in the obvious way. 

T h e o r e m 2.1. If XQ is a fixed point of the continuous function f and 

0 < / ( ' ) - / ( « ° > < d < i 
X - Xo 

for all x in set E such that p+(E,x0) < \ — d, then there exists y such that 
lim fn(y) = xo and for every JI, fn(y) / XQ. 

n—>oo 

P r o o f . Replacing / by f(x -f XQ) — XQ we may assume that XQ = 0. The 
porosity condition now implies the existence of a strictly decreasing sequence {an} 
such t h a t an —> 0, 0 < f(an)/an < d, and an+\/an > d. 

If there exist xn \ 0 such that f(xn) ^ 0 then using 0 < f(an) one can choose 
qn,rn --> 0, q\ > r\ > . . . > qk > rk > . . . > 0, such that f(qk) > 0, f(rk) = 0 for 
k = 1 ,2, . . . . In this case applying Lemma 2.3 we can complete the proof of Theorem 
2 .F 

Thus we may assume that there exists S > 0 such that 0 < f(x) for x G (0, S]. Put 

/.(*) = < 

Since an \ 0 there exists in G N such that am < S. Put a'n — an+m for n = 1, 2, . . .. 
Obviously 0 < f\(x) <C x for x > 0. Put b0 = a\ and choose a CQ G ( 0 , / I ( 6 O ) ] . 

Then /i([<~0, bo]) n [c0, 60] ^ 0. Applying Lemma 2.1 for f\, an and [c 0,6 0] we obtain 
that 0 E cl(u{f?([c0ybo\): n = \, 2 , . . .}). Therefore we can apply Lemma 2.2 for fx 

and hence there exists y G [co, 6o] such that lim /in(}y) = 0 and fn(y) > 0 for n = 1, 
n — o o 

2, . . .. From 0 < f?(x) ^ x it, follows that 0 < . .. ^ f"+l(y) < f?(y) • • • <. y. If 
/;'+1(2/) = /r(2/) for an » e N then / f + 1 ( y ) = / ; l + , + ( ' - " ) ( 2 / ) = / n * ' - n , ( y ) = /f(i/) 
for every l7 ^ n and this would contradict the fact that lim f\(y) = 0. Therefore 

n—t-oo 

0 < /i (/[Hi/)) < /r(2l) for n = 0, 1, . . .. Since 0 < . . . < fn(y) < . . . < y < b0 = 
«m+i ^ am < S we obtain that 0 < fn(y) < S and f\{fn)(y) < f\(y) n = \, 2, 
. . .. From the definition of fx it follows that fn(y) = fn(y) for n = \,2, .... Thus 
lim fn(y) = 0 and this completes the proof of Theorem 2.1. • 

n — oo 
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Example 2.2 below shows that the porosity condition in Theorem 2.1 cannot be 

weakened. 

E x a m p 1 e 2.2. Suppose that 0 < e < ±. Put f(x) = 2 " n for x £ 2~ n 

П + 1 
1 + f 

n = 1, 2, . . . . If ^y—- < x < 2~ n + 1, n = 1, 2, . . . choose 2 " n <$ f(x) <C 2" 71+1 

so that it continuously connects / ( ^ r " ) = 2 " n and / ( 2 " n + 1 ) = 2" T l + 1 . If x <$ 0 
o r 2 ' > T+7 choose / so that /(0) = 0, / ( y r j ) = 1 and / is continuous. Then the 

porosity of E = {x: f(x) < (^ -\- e)x] at 0 is no greater than \ since / ( 2

1 . ) = 

•^("T+T • 2~ n + 1 ) < (^ -f e) 2
l+£ n = 1, 2, . . . . It is also clear that each interval 

[ 2 - n , 2 - n + 1 ] is mapped into itself and hence no point is attracted from the right to 0. 

We saw Example 2.1 that even when E is nonporous at XQ and fE(x0) = ^ there 

may be no point in E whose orbit is attracted from the right to x0 . Observe that 

R \ E was also nonporous from the right at XQ in that example. One can rectify this 

flaw by requiring R \ E to be strongly porous from the right at XQ. 

T h e o r e m 2.2 . Suppose E is nonporous from the right at XQ and R\ E is strongly 

porous from the right at XQ. If f is a continuous function having XQ as a fixed point 

and satisfies an inequality 

n ^ A / / ( • c ) - / ( ^ o ) . A / , 
U < di < < d2 < 1 

X - XQ 

for all x in E then there exists y £ E such that lim fn(y) = XQ and fn(y) > 0 
n — • o o 

for n = V 2, . . . . In particular, if f'E(xo) exists and 0 < / ^ ( x 0 ) < 1, the conclusion 

follows. 

P r o o f . Replacing / by f(x -+ XQ) — XQ we can reduce the proof to the case 

that .To — 0. The assumptions of the theorem imply that there exist Co < &o, a n a > a 

sequence {an} converging monotone decreasingly to 0 such that for each n,an £ F, 

an+l/an > r/2, [c0,/lo] C Fn[0,ai] and ^ < d\. Put 

{/(*), if f(x) <C x, and 0 ^ x\ 

if f(x) > x, and 0 <S x; 

if x < 0. 
/ i W = < *, 

{/(*), 
Observe that f\(an)/an < J2, Co < Ji^o < J2^o < bo ^ a\ and finally / i ( 6 0 ) / b 0 > 

d\ > c0 /b0 . Therefore / i (6 0 ) > c0, and hence /i([Co, bo]) n[co,bo] ^ 0- Thus we 

can apply Lemma 2A and Lemma 2.2 for f\ with {a n}, do, c0, b0 and find a point 

y £ [c0,b0] C E such that lim fn(y) = 0, fn(y) > 0, n = 0, 1 If there 
n — • o o 

exists an n ^ 1 such that f\l(y) £ fn(y) then / i ( /J 1 - 1 (y)) = f"~l{y) and hence 

f\n{y) = / r l " " + ' ( / ; ' " ' ( 2 / ) ) = f?~l{y) which contradicts to lim /['(</) = 0. Thus 
n—•oo 

fn(y) = fn(y) and this proves Theorem 2.2. • 
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E x a in p i e 2.3. In this example we want to show that in Theorem 2.2 the con­

dition 0 < d{ < f{x)
xJ}XQ) < d2 < 1 cannot be replaced by 0 < J{x)

xJ}Xo) < V 
Put 

" 1 1 1 1 
[cn, bn] 

n (n. -I- 1)!' n n\ 

and E = U^- j [cn, bn]. Then E is non porous from the right at 0 and R \ E is 

strongly porous from the right at 0. Put f(bn+lJCn) = b«+\+c», n = 1, 2, . . . , and 

f(x) = n-H+Cn for x G [c n ,b n ] , ri = 1, 2, Otherwise choose / so that it is 

continuous on R. Then, obviously no point from E is at tracted to 0. 

3 . RESULTS FOR "TYPICAL" CONTINUOUS FUNCTIONS 

The previous results show that adequate behavior of the difference quotient 

J \ X ) ~ J \ T ° ) o n set,s satisfying certain porosity conditions with respect to a fixed 

point XQ will guarantee certain attractive behavior to XQ. But "must" continuous 

functions will not exhibit this behavior with respect to any fixed point [BH]. In this 

section, we make this s tatement precise and show that , nonetheless, most continuous 

functions have the property that to each fixed point XQ corresponds a nonempty 

perfect set P(XQ) such that for each y G P(XQ), lim fn(y) = XQ with fn(y) ?- XQ for 
n —• o o 

each n = \, 2, . . . . 
Let C denote the class of continuous functions mapping I into 1. When C is 

furnished with the sup norm it becomes a complete metric space. 

T h e o r e m 3 .1 . a) Let A consist of those functions f in C such that for each XQ G I 

the set 

i/(*)-/(*<>) S(J-0) = {X: < 1 
X - XQ 

is bilaterally strongly porous at XQ. Then A is a residual subset of C. 

b) Let B consist of those functions f in C such that to every fixed point XQ of f 

corresponds a nonempty perfect set P(XQ) such that lim fn(y) = XQ for y G P(-Cn) 
n—• o o 

and fn(y) ?- XQ for all n. Then B is a residual subset ofC. 

P r o o f , a) In [BH] one finds that for / in some residual subset D of C, the set 
,S' = {x : f(x) = g(x)} is bilaterally strongly porous at each point of S whenever / 
satisfies a Lipschitz condition. If for some XQ G I the set S(XQ) in part a) of the 
s tatement fails to be bilaterally strongly porous at XQ, we can argue as in the proof 
of [BH] Thin. 3.2, that is, we can find a Lipschitz function g that agrees with / on 
a subset of S(x0) that is also not strongly porous at XQ. It follows that D C A so A 

is residual in C. 

To prove b) assume that I = [ao,M and put C\ = {/ G C: f(cio) 7- CIQ and 
/(bo) -̂  b0}. Obviously C\ is a residual subset of C. 
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Assume that J = [a,b] C 1 is given. Denote by M(J) the set of functions / G t-i 

such that the maximum of / on J is achieved at a fixed point of. / and this fixed 

point is different from b. First we show that for a given J the set M(J) is nowhere 

dense in C\. Let N(f,e) be the sphere in ci that is centered at / and has radius 

e > 0. We find a sphere N(g,6) inside N(f,e) whose intersection with M(J) is 

empty. Without loss of generality, suppose / G M(J) with / (c ) = c = m a x j ( i ' ) , 
xeJ 

a <i c < b. We may also assume e < b — c and choose d G (c, b) with d — c < e/2. 
Let g G N(f,e/2) satisfy d < g(c) < f(c) + e/2, g(x) ^ c for x ^ d. This is possible 

since / <j c on J. Let u be the maximum fixed point of g in J. Then c < u < d. 

Choose S G (0, e/2) such that g(c) — S > d and g(x) + <S < d for x ^ w. If /i G N(</, c7) 

then h(c) > d and h has no fixed points greater than d G J. Thus N(g, 6) H M(J) is 

empty and N(g,S) C N(f,e). It follows that M(J) is nowhere dense in Ci. 

By applying the above result to each interval with rational endpoints and by-

applying a similar argument for "minimum" instead of "maximum", we find that 

the set of functions E in C\ that achieve a local extremum at a fixed point is first 

category in C\ and hence these functions form a first category subset of C. 

Now according to a theorem of Jarnik [B: p. 213], each function in some residual 

subset S of C has every real number as a derived number at every point. This means 

that for / G S, xo G / and t G R, there exists a sequence xn converging to XQ such 

that (f(xn) — f(x0))/(xn — xo) converges to t. Let / be in (C\ f) S) \ E. Applying 

Lemma 2.3 to / (with respect to XQ and f(x0) instead of 0 and / (0 ) ) we find / in the 

required set B. Thus the residual set (C\ D S)\ E is contained in B so B is residual 

in C. This concludes our proof. • 

Finally we remark that using similar techniques to those in Chapter VIII of [B] 

one can show that for the typical / : I —* I the fixed point set is a nowhere dense 

non-empty perfect set. 
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