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INTRODUCTION 

A well-known folklore result states that the set of edges of an arbitrary cotree of a 

plane graph G corresponds to the edge-set of a spanning tree of the dual graph G*. 

Thus there exists a natural 1-1 correspondence between the spanning trees of G and 

those of G*. 

The aim of the present note is to extend this correspondence to surfaces other than 

the plane (or sphere). Let G be a connected graph 2-cell embedded in a closed surface 

S with Euler characteristic v, and let G* —• S be the dual embedding . Suppose that 

G dissects S into r >̂ 2 faces. Since G is connected, there exists an edge e\ of G 

which lies on the boundary of two distinct faces. Thus G — e\ is embedded in S 

with r — 1 faces. If r — 1 ^ 2 the process can be repeated. Continuing in this way 

one obtains a set {e l 5 . . ., e r _ i } = A of edges of G such that G — A is a connected 

spanning subgraph of G 2-cell embedded in S with a single face. It turns out that 

the subset A* C E(G*) of the edges dual to those in A induces a spanning tree of G*. 

Moreover, each spanning tree of G* arises in this way. More generally, we show that 

the assignment A' •—> E(G*) — X, X a subset of E(G), defines a 1-1 correspondence 

between certain spanning subgraphs of G with Betti number k £ [0, 2 — \] anc^ those 

of Gt+ with Betti number 2 — \ — k. 

The relationship between the surface duality and spanning trees has already been 

examined. It is known (see Biggs [1] for the orientable case and Richter and Shank 

[4] for the general case) that , for any spanning tree T of a graph G with a cellular 

embedding in a surface S, the complement of the edges dual to T contains a spanning 

tree of G*. The methods include rotation systems ([1]) and the cycle-cocycle duality 

in embedded graphs ([4]). Our approach is based on the result of Edmonds [2] and 

Richter and Shank [4] that , in dual graphs, bounding cycles and cocycles correspond 

to each other. 
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DEFINITIONS 

We use the standard graph theoretic terminology with minor deviations. We also 

assume that the reader is familiar with the basic notions of topological graph theory 

(see, e.g., [3]). 

Let G be a connected graph with edge-set E. The term subgraph will always refer 

to a spanning subgraph. Thus every subgraph of G may be identified with its edge-

set; conversely, every subset of E can be viewed as a subgraph of G. Accordingly, if 

H is a subgraph of G, we denote by G—H the subgraph obtained from G by deleting 

the edges of H. 

A cycle in G is a subgraph z C G such that for every vertex v of G degz(v) is even. 

For a set W of vertices of G let SW denote the set of edges with one end in W and 

the other end not in W. A cocycle in G is a set q of edges of the form q = SW, for 

some W. 

Now assume that G is 2-cell embedded in a closed surface 5 , possibly non-

orientable. Tha t is, there exists an embedding i: G —> S such that each connected 

component of the space S — i(G) is homeomorphic to the Euclidean plane R2. For a 

subset D of faces of G, let 3D denote the set of edges e of G such that there exists 

a face / in D and a face / ' not in D, both containing the edge e on its boundary. It 

is a straightforward matter to see that , for every subset D of faces, 3D is a cycle in 

G. We say tha t z is a bounding cycle of G if z = dD for some D. 

It is well-known that the set of cycles (cocycles, bounding cycles) of G forms a 

vector space over G F ( 2 ) under the operation of the symmetric difference of sets. 

Let G* be the dual graph of G with respect to the given embedding of G in S. 

For any edge e of G the corresponding dual edge of G* will be denoted by e*. If P is 

a subset of E, the symbol P* will stand for {e*; e G P}. In general, for any pair of 

mutually corresponding dual sets of edges P and P*, the presence of* will indicate 

the context in G* while its absence the context in G. 

We shall use P(G) for the Betti number (i.e., the cycle rank) of a graph G and 

x(S) for the Euler characteristic of a surface S. We shall also employ the quantity 

y(S) — 2 — , \ (5) , the Euler genus of S. Recall that if G is 2-cell embedded in 5 and 

V, E and F are the vertex-set, the edge-set and the set of faces of G, respectively, 

then (3(G) = \E\ - \V\ + 1 and \ ( 5 ) = \V\ - \E\ + |F | . The latter is usually known 

as the Euler-Poincare formula. 
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RESULTS 

Our point of departure is the following elementary but important observation due 

to Edmonds [2] and Richter and Shank [4]. 

T h e o r e m 0. Let G be a connected graph 2-ceII embedded in a surface S, and let 

G* be the corresponding dual graph. Then z is a bounding cycle in G if and only if 

z* is a cocycle in G*. 

P r o o f ([4]). Assume that D is a set of faces of G with 3D = z. Let e G dD. 

Then there is a face f in D and a face / ' not in D such that e G df O df. Let W 

be the set of vertices of G* which correspond to the faces in D, and let v and v' be 

the vertices of G* corresponding to / and / ' , respectively. Then e* joins v to v'. 

Since v belongs to W and v' does not, we have e* G 6W. Thus z* C 6W. By similar 

arguments, 6W C z*, and hence z* is a cocycle. The converse statement is proved 

similarly. • 

We shall continue with the above notation. Throughout the section we shall 

assume that G is a connected graph with a cellular embedding in a closed surface S 

of Euler characteristic \ and that G* is the corresponding dual. It will be convenient 

to denote the Euler genus of 5 , 7 (5) = 2 — 7\, by n. 

To proceed further we shall need one more notion which, in a sense, can be regarded 

as a higher-surface analogue of a spanning tree. 

Def in i t ion . Let k be an integer with 0 ^ k ^ n. A connected spanning subgraph 

Q C G will be called a k-frame of G provided that : 

(1) j3(Q) = k; and 

(2) Q does not contain a non-zero bounding cycle. 

We shall see that the duality between spanning trees in the plane extends to the 

duality between "complementary" k-frames in closed surfaces. (Note that a 0-frame 

is simply a spanning tree.) 

T h e o r e m 1. Let G be a connected graph 2-ceII embedded in a closed surface of 

the Euler genus n, and let Q be a k-frame of G, 0 ^ k ^ n. Then (G — Q)* is an 

(n — k)-frame of G*. 

P r o o f . We first show that R* = (G — Q)* is a connected spanning subgraph of 

G*. Assume, on the contrary, that this is not the case. Then there exists a cocycle 

q* ^ 0 in G* such that q* C Q*. So q C Q is a bounding cycle. Since Q is a 

k-frame, we have q = 0 and hence q* = 0, a contradiction. Thus R* is a connected 

subgraph of G*. We proceed to prove that R* is an (n — k)-frame. Routine calculation 
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involving the Euler-Poincare formula and the surface duality yields )3(R*) = n — k. 

Thus it remains to show that no cycle of It*, except zero, is bounding. To derive 

a contradiction, assume that Ft* contains a non-zero bounding cycle z*. It follows 

that z is a cocycle in G with : C It = G — Q. On the other hand, Q is a connected 

spanning subgraph of G, so it must contain an edge of z. Hence Q fl (G — Q) ^ 0, 

which is absurd. Thus we may conclude that R* = (G — Q)* contains no bounding 

cycle z 7- 0, that is, R* is an (n — k)-frame. D 

An immediate corollary of the above theorem is that the dual of a cotree of G is 

an n-frame of G*. Since an n-frame is a connected spanning subgraph of the graph 

in question, this strengthens Theorem 1 of [4] (as well as similar results in [\, 2]): 

The dual of a cotree of G contains a spanning tree of G*. 

As far as 7i.-frames are concerned, a little more can be said: 

T h e o r e m 2. The following statements are equivalent: 

(i) Q is an n-frame of G; 

(ii) Q is a k-frame of G, 0 <C k <J n, such that the induced embedding of Q in the 

surface S is cellular; 

(iii) Q is a connected spanning subgraph of G such that the induced embedding 

of Q in S is cellular with one face. 

P r o o f , (i) --> (ii): We have to show that the induced embedding of an arbitrary 

7i-frarne is cellular. Assume that G divides 5 into r faces, and that Q is an 7.-frame 

of G. By Theorem 1, R* = (G — Q)* is a 0-fraine, that is, a spanning tree of G*. 

Thus there are v — 1 edges of G not in Q, each of them lying on the boundary of two 

distinct faces. Now glue together the pairs of faces of G sharing a common boundary 

edge in R = G — Q. Note that the way of pasting the faces together is determined 

by the tree R*. Since R* is connected, without cycles, and each face of G is a 2-cell, 

the resulting space / is again a 2-cell. With some abuse of notation, S ~ Q — f, 

which means tha t the embedding of Q is cellular. 

(ii) => (iii): Assume that (ii) holds. Then (3(Q) ^ n. Since the embedding of Q is 

cellular, the Euler-Poincare formula implies the reverse inequality. Hence }3(Q) = n 

and the number of faces of Q is one. 

(iii) r=> (i): Let Q be a connected spanning subgraph of G for which the induced 

embedding is cellular with one face, denoted by / . From the Euler-Poincare formula 

we have f3(Q) — n. Furthermore, df — 0 and there are no other bounding cycles in 

Q. Therefore Q is an 7i-fraine. This completes the proof. D 

Note that if B is the set of face boundaries of G, less any one, and if U is a basis 

for the cycle space of an 7i-frame Q of G, then B U U is a basis for the cycle of G. 

Indeed, B is independent since B* = {C*: C G B) is a basis for the cocycle space of 
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G* by Theorem 0. Moreover, no cycle in U is bounding, so B U U is independent as 

well, and \B U U\ = \B\ + n = \B\ + 2 - x (S) = /?(G). This observation generalizes 

the well-known fact that if G is a graph embedded in the plane then B is the basis 

for the cycle space of G. A similar but more complicated generalization (leading to 

the same type of basis) can be found in [4, Theorem 2]. 

We now turn back to the general case. Our final result characterizes those edges 

of a k-frame that do not lie on a cycle. In fact, this is a higher surface version of the 

obvious fact that , for a spanning tree T of G and for any edge e of the corresponding 

cotree, T + e contains a cycle. 

T h e o r e m 3 . Let Q be a k-frame ofG,0^k^. n, and let e be an edge ofG — Q. 

Then e* is a cut-edge of the (n — k)-frame (G — Q)* if and only if Q + e contains a 

non-zero bounding cycle. 

P r o o f . Let R* = (G — Q)* be the (n — k)-frarne corresponding to Q. First 

assume tha t Q + e contains a non-zero bounding cycle z. Then e necessarily belongs 

to z. Theorem 0 implies that z* is a cocycle of (7*, that is, G* — z* is disconnected. 

Consequently, It* — e* = (G* — z*) C\ R* is disconnected, too, and hence e* is a 

cut-edge of It*. 

For the converse, assume that e* is a cut-edge of It*. Let W be the vertex-set of 

one of the components of It* — e*. Consider the cocycle q* = 6W in G*. Then q is 

a bounding cycle of G. We show that q C Q + e. Since e* is a cut-edge of 1t*, we 

have q* n R* = e*. Therefore q* - e* C G* - R* = Q*, whence qQQ + e. Thus q is 

a non-zero bounding cycle contained in Q + e. • 
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