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(Received July 30, 1987) 

1, Let r be the formal differential operator 

and let 

(1.1b) Tqu = TU + qu. 

For a given domain Q in Rn, this formal operator Tq may give rise to a variety of 

selfadjoint operators in the weighted Hilbert space L^(ft) consisting of all measurable 

complex-valued functions u defined on tl for which 

|H|=[jf Mamd*]* < oo. 

We are concerned with problems in which there are points on the boundary of fi for 
which Tq is singular, and we wish to obtain criteria which guarantee that particular 
selfadjoint realizations of Tq have discrete spectra. In fact, we shall state conditions 
under which our operators have compact inverses. In order to minimize technical 
considerations, we shall treat the case that Q is a Cartesian product of n bounded 
open intervals, and for convenience we take Q = X£=1(0,1). 

In the general theory for the one-dimensional problem [4], one generally starts with 
the minimal operator LQU = Tqu for u G CQ°(0, 1), the class of infinitely differentiable 
functions with compact support in (0,1). Assuming this operator LQ is symmetric, 
selfadjoint extensions are obtained by imposing boundary conditions on the domain 
of the adjoint operator LQ in such a way that the restriction of LjJ to the functions 
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satisfying the boundary conditions is selfadjoint. One of the beautiful central results 
of the theory is that every selfadjoint extension of Lo is determined in this fashion. 
Another attractive result (again for one dimension) is that every selfadjoint extension 
of Lo has the same essential spectrum. Hence if one such selfadjoint extension has a 
purely discrete spectrum, so does every other selfadjoint extension of Lo. 

For dimensions higher than one, this last result is not true. Thus the character of 
the spectrum, whether it is discrete or not, must be considered for every selfadjoint 
realization of Tq. 

The basic idea of this paper is to use the extension method of Fredrichs [4, 
pp. 1240-1242], By considering a variety of initial domains on each of which Tq gives 
rise to a symmetric semibounded operator, the extension method of Friederichs gives 
generally a variety of selfadjoint operators, some of which may not be distinct. We 
shall describe conditions under which all these selfadjoint operators have compact 
inverses and hence discrete spectra. 

These techniques were used earlier, in the one-dimensional case, in [1] and [2]; and 
later by Rollins [11] to obtain criteria close in spirit to those of Eastham [5]. More 
recent one-dimensional criteria, using other methods, were given by Hinton and Lewis 
[8]. Very interesting, albeit older criteria, were obtained by Friedrichs [6, 7]. The 
application of our present methods in the less complicated two-dimensional setting 
can be found in [3]. Related results using different methods have been obtained by 
Lewis [9, 10]. 

2. With fi = K?=1(0,l), let T = dQ. Let Tj C T be the pointsx = (x j ,x 2 , . . . , x n ) 
of T with xjk = 1 for at least one k. Let T2 = T — Ti. Singularities of the formal 
operator r of (1.1) will be confined to T2. We shall assume: 

(i) q, m € C(Q U TO; pk E C'(Sl U Tj), for k = 1, 2, . . . , n. 

(ii) m, pk are strictly positive on Q, U Ti, k = 1, 2, . . . , n. 

(iii) sup{|g(x)| : x £ ft} < oo. 

Thus q, m, or any pk may tend to 0, oo, or oscillate as x approaches a point in 
T2, so any or all points in T2 are allowed to be singular. 

(iv) J [m(x)]n[ny [p*(x)]-1dxJb]dx<oo. 

Now let To be an arbitrary subset of T2. Corresponding to To, we define Do as 

follows: u £ Do if and only if 

(aluGHfiur)), 
(b) u = Oon IY 
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(c) there exists 6U > 0 (depending on u) such that if 0 < xk < 6U and 

Xk ^ Xj < 1 for .; ± Jb, then | ^ ( x ) = 0 if Pkx e T0, ti(x) = 0 if Pkx £ T0, 

where Pkx is the natural projection of x onto the coordinate hyperplane xk = 0. 

For 0 < 6 < 1, let ft* = X?=1(<$, 1) C ft. If u 6 Do and 6 < 6U (see (c) above), 

then either u or the normal derivative of u is zero at each point of dtts • 

3. Let Lu = Tquy for u G D(L) == £>o. In order to use the Friedrichs' extension, 

we need the following lemma, where a = inf {q(x): x 6 ! ! } . 

Lemma 3.1. L is symmetric and semibounded below by a. 

P r o o f . Both assertions follow by integrating by parts (using Green's theorem) 

on Qs for 6 > 0 sufficiently small and then letting 6 —* 0. Hypothesis (iii) is needed 

to guarantee the existence of (Lu, u). • 

It follows from Lemma 1 that L has a Friedrichs' extension F. By varying the 

subset To of T2, many different initial domains Do will be obtained, giving rise to 

correspondingly different operators L. The corresponding extensions F will usually, 

though not necessarily, be distinct. 

Lemma 3.2. For k = 1, 2, . . . , n, (or u 6 DQ and for x £ ft U T\, 

W - O I 2 * / \pk{x)]-xdxk J p t ( x ) | ^ ( x ) | 2 d x t . 

P r o o f . Using the fundamental theorem of calculus and the Schwarz inequality, 

we obtain 

and the desired result is immediate. D 

Lemma 3.3. For ft* C ft, put a = inf {q(x): x G ft} and 

A/p) = {/ M-)r[n / W r ^ M " 
JO* I. _ I J.T* 
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Then for u € D0, 

( |u|2mdx^M(fi*)(ru,u), 
Jn-

(u, u) ^ M(il)(ru, u), ||u|| <J M(ft)||ru||, 

^ ^ ( M k + a ) ( M ) ' IMI > (iSrJs) + a ) I H | -
(Note: If a ^ — j ^ / ^ , t.he 7ast inequality above says nothing; indeed, this is the reason 

why, in our main result (Theorem 4.4 below), we need to assume that a > — M)^\ >) 

P r o o f . Put Qk(x) = n Jo Pj(x) 3F" ^Sj- From Lemma 3.2, we have 

for each ib = 1, 2, . . . , n. Multiplying these inequalities and integrating gives 

/ |u |2md*s: / m(«)[TT / M -OV 'd**] *$*(*,*.* 
•ln* J a* lj~:r1J*i, ' 

^M(n*)[ygrT(.r)dr]V; 

we used Holder's inequality with p = n, q = -j-̂ y, - + - = 1 to obtain the last 

inequality and further replaced fl* by Ct in the final integral. 

To expedite the remainder of the proof, we make the following conventions. For 

k < n, we put Q* = X*=1(0,1) and in any integral of the form f .. .dx, we shall 

intend dx = dxidx2 .. .dx*. On the other hand, in any integral of the form f .. .dx, 

we use the caret to intend dx = dx n dx n _i . . .dxn_jk+i. 

Returning to our argument, we observe that one factor of our last integrand is 

independent of xn and so we iterate this last integral as an n— 1 dimensional integral 

and a one dimensional integral to obtain 

J \u\2mdz^M(W)[ J [ / 1 ^ ( « ) | ^ f d * n ] ^ [ j [ l Q ^ ( * ) d * n ] d * ] V 

n»_, 

(3.1) ^ ( ^ [ / ' " M j x r f H * . / (jf<?»^(-0d*»)^d.-]V, 
n» n„_, 
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where now we have used Holder's inequality with p = n — 1, q = j — ^ on the n — 1 

dimensional integral over ftn_i. 

Our last integral has the form 

(3.2) Ik = [ / (jQ^-ix^^dx]*^. 
nn-fc nfc 

We factor Qn-k(x) = (foPn-k(x)\j£^\ dxn_*)Qn_*_i(x) and use Holder's in­

equality on the inside integral (with p = n — it, q = 2jb*i) t o obtain 

/<*&**<(/ ^--wl^r^^t/^Hfewa.)"5^-
nk nfc+, nfc 

Thus 

»—*—i 

nn- ic n f c +i n f c 

(3.3) Ik$ [ / ( / P„-t(x)|-^|2dr)í:=^(/Q.Ť!tír
1(x)ax)dx] 

We now note that the integral over £lk+\ is independent of xn_* and interate the 

integral over Qn-k to obtain 

/»<[ / ( / P » - * ( * ) | - ^ f d ^ 
nn--fc-i ni..4.i n*+i 

Now Holder's inequality with p = n — ib — l,g = .̂".£-.-2 gives 

(3.4) h ^ ( /pn-*(«) | -^-; | 8 d«)*/»+!• 
П n 

Returning to (3.1) and using (3.4) repeatedly a total of n — 3 times, we arrive at 

(3.5) 

/ju | 2 mdx^M(n*)(n/p*W|^| 2 d a : )"[/( / Ql(x)dx)2dx]\ 
П 2 Пn-a 

Nothing that Q2(x) has two factors and using the Schwarz inequality on the integral 

over Qn_2> we get 

(3-6) ( / QŠ(x)ďx)2 $ J ( / Pl{x)\£L\*dxl)ďz J P2(x) 
дu i-Ҷ 

тғH dx-
дx2 I 

П n _ ! 
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Since the first factor on the right of (3.6) is independent of x\ (it depends only on 

X2), we iterate the integral over £1? in (3.5) and get 

(3-7) / ( / gj(*)dx)2d, ̂  Jart*)\£\*tejart*)\$**-

Using (3.7) in (3.5) leads to 

(3.8) J Itipmdx ^M(ft*)(f[ hPk{x^Sdx) ^ 

For ti € Do, integration by parts gives 

(-«,«) = £ / P t ( t 5 ) | |L | 2 d* ^ j£w(,)| *L|'d« 

for each j = 1, 2, . . . , n. Thus all parts of Lemma 3 follow immediately from 

(3.8), and the observation that (Lu} ti) = (rtz, ti) -f (qu, u) ^ ^L^t i , ti) + a(ti, ti) = 

(wte + °)(-.«)- a 

Theorem 3.4. For each ti in the domain of the Friedrichs extension F, we have 

( F u - ^ (MTn)+Qr)(u'ti)' l|Fu|1^ (MW)+Q)M 

P r o o f . By construction of the Friedrichs extension [4, pp. 1240-1242], there 
exists a sequence {tin} in Do so that ||tin — u\\ —• 0 and (Ltzn,tin) —• (Fu,u) as 
n —* 00. By Lemma 3.3, (Ltin,tin) ^ {jmn + <*)(un,t-n)- Letting n —• 00 yields the 
first inequality; the second follows from the Schwarz inequality. 

4. We continue to let ft = Kn
=1(0,1) and for 0 < 6 < 1, ft6 = X n

= 1 (6 , l ) . 
In addition, for x £ ft, with x* ^ 6 for every k} we put ftx = Kn

=1(6, x*) and 
Qx j = Xk=x(6, Xjt), so that ftxn = ftx. To simlify the notation, we have sublimated 
the dependence of ftx and ftX|J on 6, which will generally be fixed in our discussion. 

We also define for t; £ Do. 

(4.1) Wj(x)= J V(x)dx, j = l , 2 , . . . , n - l 

where, as before dx = dxi .. dxj, and 

(4.2) W0(x) = v(x). 
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Note that 

(4.3) Wj(x)^J\Vj^(x)dxj 
s 

and therefore that 

(4.4) ™J- = Wi-X(z). 

Finally, we put 

(4.5) Ms = max [maxlp^x)]"1] 

D 

Lemma 4.1. Ifx,yG && and differ only in the tth coordinate, then for v € DQ 

|W„-,(y) - W„_i(-) | < [Mt\\y - x\\(rv, v)] * 

where \\y — x|| is the Euclidean norm of y — x G Rn. 

P r o o f . First consider the case i = n. We may clearly assume yn > xn . Then 

from (4.1) and the fundamental theorem of calculus 

Vn 

Wn-1(y)-Wn.l(z)= J (J^-dxn)dx. 

Hence using the Schwarz inequality: 

п»,,._, *« 

Vn 

|W„-,(y)-W„_,(*)|J^ J (Jp-'dx^dxJ^^-fdx 

^ Mb\yn - x n | ( r v , v ) 

which gives the lemma for t = n. 
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The case 1 .$ i < n is essentially the same for each such i. Suppose i = n - 1 and 

j / n _ i > x n _ i . Then from (4.3) 

W, n-i(y) - Wn.^x) = J rVn_2(*)d_n_1 - J Wn_2(_)d_n_i 
í i 

У»-I » n - l 

= j rVn_2(*)d*„_, = У [ y »(_)d_]d_n_, 
* n - l -^n-l П x , n _ 2 

=-/(/'[/ ._н*~к 
*n * n - l ft*,*-. 

Hence, using the Schwarz inequality as before: 

1 yn-i 

\Wn-l(y)-Wn.l(x)\2^(Tv,v)J[ J ( J p-1dx)d_n_1]dxn 

*n -Pn-1 ftx,n-2 

<$ M .5 |y n _l - Xn-l\(TV,V) 

which gives the lemma for i = n — 1. D 

Lemma 4.2. if x, j/ G fi$, then 

\Wn.l(y)-Wn.i(x)\ $ n[M,\\y-z\\{TV,v)]i. 

P r o o f . Beginning with k = 1, and continuing to k = n, we may change x* to 

!/* to get a pair of points in £__ which differ only in the kth coordinate. For each such 

pair, we may apply lemma 4.1; adding up the resulting inequalities and applying the 

triangle inequality gives the desired result. D 

Lemma 4 .3 . Suppose that {vk(x)} is a sequence in Do for which (TVk.Vk) is a 

bounded sequence of numbers. Then given S with 0 < 6 < 1, every subsequence of 

{vk(x)} has a further subsequence which is Cauchy in L^(Q,). 

P r o o f . Define 

(4.6) W f c l i(*)= / M * ) d 
x 

Пx., 
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as in (4.1). By lemma 4.2, for x,y G fi_, 

|Wb,„-i(y) - Wktn-X(z)\ ^ n[Mi\\y-z\\(Tvktvk)]*. 

Since for A = (£, 6 , . . . , 6) G £fc$, we have lVfcin-.i(A) = 0, it follows that the se­

quence {W7jb,r»—1} is uniformly bounded and equicontinuous on $1$. Thus, by Ascoli's 

theorem, any subsequence of {Wktn-i} has a further subsequence which converges 

uniformly on &s. Let us pass to such a subsequence, but for simplicity, we continue 

to use the same notation. Thus, we assume {Wkin-i} converges uniformly and also 

certainly is Cauchy in £/„.($}$). We claim that for each i = 0, 1, . . . , n— 1, {Wkj} 

is Cauchy in ._,„-(£_$). We proceed by (backwards) induction. Since our claim is 

already true for j = n — 1, we assume it is true for j = it > 1 and prove it true for 

j = k — 1. We shall show that there exists a constant c$, depending only on 5, so 

that 

(4.7) ||W0,*-i - VV/jb-iH2 ^ c6\\Wj)k - Wt>k\l 

from which our induction argument is finished. Letting Ks = maxm(x), we have 
*€ft« 

from (4.4) 

IMA-i - Wi,*-...1 *K,J (-^-. - -^-)(fT.j-, - Wtj-i)dx 

and applying the divergence theorem to integrate by parts gives 

m^ - wt,^ $ -iu J(wkJ - ^ ) ( -^j=i - -^-"-)dx 

because the boundary term is zero since Wkj(Wtj) vanishes on the face Xj = 6 and 

Wkj-i(Wij-i) vanishes on the face Xj = 1. From (4.6), 

,,j-i = / дvk 

кj J дxj 
д ^ = I ^dx 

•Vi­

and thus 

\\WJ,k-1-Wt,k-i\\3ZKlJ\Wkj-Wtj\( J |^-gt |d«)dx. 
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Applying the Schwarz inequality first to the integral over flzj-i a n d then to the 

integral over Q$, we get 

l |W i f f c . i -Wi l f t . i | | 2 < 

< ̂  V^Kll^j - Wij||(j [ / P i | ^ - ^ | 2 d x ] d x ) ' 
n« n«fi.i 

where Ms is defined in (4.5) and Ls = max[m(x)]~l. Replacing flxj-i by Xjli(6,1) 

in the last integral, we see easily that 

and (4.7) follows. 

Thus, by induction {vk} = {W^.o} is Cauchy in L^(fi). • 

Theorem 4.4. Suppose the coefficients of the formal differential operator Tq sat­

isfy (i)-(iv) and that a = inf{q(x): x € -3} > — ̂ L . Then the Friedrichs extension 

F has a compact inverse and hence a purely discrete spectrum. 

P r o o f . Suppose uk is in the domain of F and ||Ftijt|| = 1 for each ib = 1, 2, 

We shall show that {uk} has a subsequence which is Cauchy in L^(fi) and the 

completeness of L£,(ft) gives the desired conclusion. 

By construction of the Friedrichs extension [4, pp. 1240-1242], we may choose 

vk 6 Do such that 

(4.8) l l " * - t > * | | < p \(Fuk,uk)-(Lvkivk)\<± 

for k = 1, 2, It follows from Theorem 3.4 and the Schwarz inequality that 

(4.9) \(LvkyVk)\^ljJ&— + i for every k. 

Fortx e Do, (Lu,u) = (rti, u) + (qu,u) ^ (rti, u) + a(u,u) ^ (ru, u ) - / ^ n j ( t i , ti); this 

inequality and Lemma 3.3 give 0 -̂  (rvkyvk) ^ (Lvklvk) + j^(vkivk) ^ (Lvk, vk) + 

i+aM(n)(Lvk, vk) and hence {(Tvkivk)} is a bounded sequence of numbers. Let 

6j = -r-L. so that 6j —• 0 as j —• oo. By Lemma 4.3, the sequence {vk} has a 
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sub-sequence {v^ } which is Cauchy in L^flaJ. This same lemma then gives a 
subsequence {v^ '} of {v[ '} which is Cauchy in L^(ft$a). Continuing in this way, 
we get at the j t h stage a subsequence {vj. } of {vĵ  } which is Cauchy in L^(n^). 

We claim that the "diagonal" sequence {vj } is Cauchy in L^(fi). Let e > 0 be 
given. For 0 < 6 < 1, Lemma 3.3 gives 

/ \vf-v[k)\2mdx^2 J \v\j)\2mdx + 2 J \v(k)\2mdx 
n-n* n-n* n-n« 

< 2M(fi - Qt)[(rvf, v?) + («,<*>, »<*>)]. 

Since (TV*, v*) is bounded, we may thus choose N so large that for 6 = 6^ 

(4.10) / \v^ - t/£*}|2mdz < | , for all j , t . 
n-n« 

The sequence {vj- } is clearly Cauchy in L^(Q^) for £ = 6^. Thus, there exists N\ 
such that 

(4.11) J\vf-v^mAx<e-t ifi.ft^.VL 
n< 

Combining (4.10) and (4.11), we get 

l l ^ - ^ l l ^ e for i,*>*Vi 

and thus {v̂  } is Cauchy in Lj*>(tQ). Since {vj } is a subsequence of {v*}, it follows 
from (4.8) that tfye corresponding subsequence of {ti*} is Cauchy in L^(ft), and the 
proof is complete. D 

Corollary, If the coefficients of T\ satisfy (i)-(iv), then the Friedrichs extension 
F has a purely discrete spectrum. 

Proof . Add an appropriate constant to q(x) and apply Theorem 4.4. D 

413 



References 

[1] J. V. Baxley: The Friedrichs extension of certain singular differential operators, Duke 
Math. J. 35 (1968), 455-462. 

[2] J. V. Baxley: Eigenvalues of singular differential operators by finite difference methods, 
I, II, J. Math. Anal. Appl. 57(1972), 244-254, 257-275. 

[3] J. V. Baxley: Some partial differential operators with discrete spectra, Spectral Theory 
of Differential Operators (Birmingham, AL, 1981), North-Holland Math. Studies 55, 
North-Holland, Amsterdam, 1981, pp. 53-59. 

[4] N. Dunford and J. T. Schwartz: Linear Operators, Part II, Wiley (Interscience), New 
York, 1963. 

[5] M. S. P. Eastham: The least limit point of the spectrum associated with singular dif­
ferential operators, Proc. Camb. Phil. Soc. 67(1970), 277-281. 

[6] K. O. Fredrichs: Criteria for the discrete character of the spectra of ordinary differential 
operators, In Courant Anniversary Volume, Interscience, New York, 1948. 

[7] K. O. Friedrichs: Criteria for discrete spectra, Comm. Pure Appl. Math. 3 (1950), 
439-134. 

[8] D. B. Hinton and R. T. Lewis: Singular differential operators with spectra discrete and 
bounded below, Proc. Royal Soc. Edinburgh Sect. A 84 (1979), 117-134. 

[9] R. T. Lewis: Singular elliptic operators of second order with purely discrete spectra, 
Trans. Amer. Math. soc. 271 (1982), 653-666. 

[10] R. T. Lewis: The spectra of some singular elliptic operators of second order, Spectral 
Theory of Differential Operators (Birmingham, AL, 1981), North-Holland Math. Studies 
55, North-Holland, Amsterdam, 1981, pp. 303-318. 

[11] L. W. Rollins: Criteria for discrete spectrum of singular self-adjoint operators, Proc. 
Amer. Math. Soc. 34 (1972), 195-200. 

Authors' address: J. V. Baxley and R. O. Chapman, Department of Mathematics and 
Computer Science, Wake Forest University, Winston-Salem, NC 27 109. 

414 


		webmaster@dml.cz
	2020-07-03T08:52:57+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




