Czechoslovak Mathematical Journal

Thérèse Merlier

On lattice ordered periodic semigroups

Czechoslovak Mathematical Journal, Vol. 43 (1993), No. 1, 95-106

Persistent URL: http://dml.cz/dmlcz/128377

Terms of use:

© Institute of Mathematics AS CR, 1993

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

ON LATTICE ORDERED PERIODIC SEMIGROUPS

Thérèse Merlier, Paris

(Received April 22, 1991)

As in our previous papers [3], [4], [5], by a lattice ordered semigroup, we mean a semigroup S on which we can define an order relation \leqslant such that
$-(S, \leqslant)$ is a distributive lattice; \wedge and \vee are the least upper bound and the greatest lower bound.
$-\forall a \forall b \forall c \quad a(b \wedge c)=a b \wedge a c$ and $(b \wedge c) a=b a \wedge c a$
$-\forall a \forall b \forall c \quad a(b \vee c)=a b \vee a c$ and $(b \vee c) a=b a \vee c a$.
The purpose of this note is to give some algebraic properties of lattice ordered periodic semigroups and particularly in the finite case.

1. Lattice ordered nilsemigroups. Lattice ordered periodic SEMIGROUPS

Proposition 1. Let S be a lattice ordered finite semigroup, generated by the element " a ". If the order of S is n, then $\left\{a^{n}\right\}$ is the unique subgroup of S and a^{n} is a zero of S '. Moreover, S is totally ordered.

Proof. We know, cf. [2], chapter 1 , that $S=\langle a\rangle=\left\{a, a^{2}, \ldots, a^{r}, \ldots, a^{n}\right\}$, where $K=\left\{a^{r}, a^{r+1}, \ldots, a^{n}\right\}$ is a cyclic subgroup of S of order $n-r+1$, with $a^{n+1}=a^{r}$. Let $a^{k}=e$ be the idempotent of K, the identity element of $K ; k \geqslant r$ and $(e \vee a)^{k}=\left(a^{i}\right)^{k}$ for some integer i and consequently $(e \vee a)^{k}=\left(a^{k}\right)^{i}=e$. But since S is abelian, we have $e=e \vee e a \vee e a^{2} \vee \ldots e a^{k-1} \vee a^{k}$ and $e a \leqslant e$, $e a^{k}=e \leqslant e a^{k-1} \ldots \leqslant e a \leqslant e$ and $e=e a(=a e) ; e$ is the zero of S. Clearly, $K=\{e\}$.

Let us now show that S is totally ordered. If a and a^{2} are incomparable, then $a \vee a^{2}=a^{i}, i>2$ and $a \wedge a^{2}=a^{j}, j>2$. From $a \wedge a^{2}=a^{j}$, we deduce $a^{n-1} \wedge a^{n}=$ $a^{j+n-2}=e a^{j-n}=e=a^{n}$ and $a^{n} \supsetneqq a^{n-1}$ and from $a \vee a^{2}=a^{i}$, we deduce similarly $a^{n-1} \supsetneqq a^{n}$, contradicting $a^{n} \supsetneqq a^{n-1}$. Hence a and a^{2} are comparable and S is totally ordered.

Proposition 2. Every lattice ordered nilsemigroup is locally finite.
Proof. Let S be a such semigroup, of zero 0 . Let $a_{1}, a_{2}, \ldots, a_{p}$ be elements of S and denote by A the subsemigroup they generate. We show that A is finite. (We know that this property is true if S is abelian, or if S is totally ordered, cf. [6]). As S is a nilsemigroup, we can suppose $a_{1}^{n}=a_{2}^{n}=\ldots=a_{p}^{n}=0=\left(a_{1} \vee a_{2} \vee a_{3} \ldots \vee a_{p}\right)^{n}=$ $\left(a_{1} \wedge a_{2} \wedge \ldots \wedge a_{p}\right)^{n}$, since $a^{n_{t}}=0$ implies $a^{k n_{1}}=0$ for every integer $k, k \geqslant 1$. Let a be in $A: a=\prod_{i=1}^{N} x_{i}$, with $x_{i} \in\left\{a_{1}, a_{2}, \ldots, a_{p}\right\}$. Suppose that $N \geqslant n$.

Then $\quad a=\left(x_{1} x_{2} \ldots x_{n}\right) x_{n+1} \ldots x_{N}$, and $a \leqslant\left(a_{1} \vee a_{2} \vee \ldots \vee a_{p}\right)^{n} x_{n+1} \ldots x_{N}=0 \quad$ and $a \geqslant\left(a_{1} \wedge a_{2} \wedge \ldots \wedge a_{p}\right)^{n} x_{n+1} \ldots x_{N}=0 \quad$ since, for each x_{i},
we have $\left(a_{1} \wedge a_{2} \wedge \ldots \wedge a_{p}\right) \leqslant x_{i} \leqslant\left(a_{1} \vee a_{2} \vee \ldots \vee a_{p}\right)$.
Finally $a=0$, and every element of $A \neq 0$ is a product of at most $n-1$ elements, chosen among p elements. Therefore A is finite and S is locally finite.

Theorem 1. Let S be a periodic ordered semigroup, and suppose that the idempotents of S form a bisimple semigroup of S. Then every spindle F_{e} is a subsemigroup of S, convex sublattice of S, nilsemigroup of zero e.
"Let us recall that in a periodic semigroup S we can define the equivalence relation \mathscr{F} by

$$
a \equiv b \mathscr{F} \Leftrightarrow \exists e \in S, \quad e=e^{2} \quad \text { and } \quad \exists n \in \mathbf{N}^{*}, \quad a^{n}=b^{n}=e .
$$

Every class is called a spindle and will be denoted by F_{e}, where e is the idempotent of this class. It is well known, cf. [6] that if S is totally ordered, F_{e} is a subsemigroup of S."

Proof. In a first time, we show that e is zero of F_{e}. Let x be in $F_{e} ; x^{n}=e$ for some integer n. As

$$
\begin{aligned}
x e & =e x=x^{n+1}, \quad(x \vee e)^{n}=x^{n} \vee x^{n-1} e \vee x^{n-2} e \ldots \vee x e \vee e \\
& =x^{n-1} e \vee x^{n-2} e \ldots \vee x e \vee e
\end{aligned}
$$

and $x(x \vee e)^{n}=x^{n} e \vee x^{n-1} e \vee \ldots \vee x^{2} e \vee x e=e \vee x^{n-1} e \vee x^{n-2} e \ldots \vee x^{2} e \vee x e$. Then $x(x \vee e)^{n}=(x \vee e)^{n}$ and $x^{k}(x \vee e)^{n}=(x \vee e)^{n}$ for any integer k. Finally $(x \vee e)(x \vee e)^{n}=\left(x \vee x^{n}\right)(x \vee e)^{n}=x(x \vee e)^{n} \vee x^{n}(x \vee e)^{n}=(x \vee e)^{n}$ and $(x \vee e)^{n}=$ $f=f^{2} .(x \vee e)^{n}=f$ is an idempotent such that $x f=f=f x$ by symmetry. We deduce $e f=f e=f$. But efe $=e, f e f=f$ since the idempotents of S form a bisimple subsemigroup. Hence $e=f$ and $x^{n}=(x \vee e)^{n}=e$. Similarly, $(x \wedge e)^{n}=e$.

From $(x \vee e)^{n}=e$, we deduce $x e \leqslant e$ and $x^{n} e=e \leqslant x^{n-1} e \leqslant x e \leqslant e$. In conclusion, e is zero of the spindle F_{e}.

Now let x and y be two elements of $F_{e}: x^{n}=y^{n}=e$. From $x e=e x=e y=y e=e$, we find $(x \vee y) e=c$, and if $x \vee y$ belongs to F_{g}, with $g=g^{2}, g e=e g=e$. But $e g e=e, g e g=g$, and $g=e$. And we have $x \vee y \in F_{e}$ and similarly $x \wedge y \in F_{e}$. Therefore F_{e} is a sublattice of S, evidently a convex sublattice.

From the inequality $(a \wedge b)^{2} \leqslant a b \leqslant(a \vee b)^{2}$, we deduce that F_{e} is a subsemigroup of S.

2. Weakly negative lattice ordered periodic semigroups

Definition. An ordered semigroup is said to be weakly negative if for all x, $x^{2} \leqslant x$.

Lemma 1. In a weakly negative lattice ordered periodic semigroup, every spindle F_{e} is a subset of zero e and e is the least element of F_{e}.

It is routine to prove these properties. We note that generally F_{e} is not a subsemigroup.

In the following, S is a weakly negative lattice ordered periodic semigroup. The definition of "height" is given in [1]. We suppose that S is a distributive lattice of finite length.

Lemma 2. Let a be an element of height 2 in a spindle F_{e} of S. Then a permute with all elements b of height 1 of F_{e} which are comparable with a, and we have $a b=b a=e$ or $a b=b a=a^{2}$.

Proof. Suppose $e<b<a$ with a of height 2 and b of height 1 . Necessarily $b^{2}=e$. We have $e \leqslant a b \leqslant(a \vee b)^{2} \leqslant a \vee b$. But $a b=a$ is impossible since $a b=a$ implies $a b^{2}=a e=a b=a=e$. Therefore $a b=e$ or $e \supsetneqq a b \nsupseteq a$ with $a b \neq b$ ($a b=b \Rightarrow a^{i} b=b=e b=e$).

If $a^{2}=e$, then $a b=b a=e$ since $e \leqslant a b \leqslant a^{2}, e \leqslant b a \leqslant a^{2}$ by isotony.
If $a^{2} \neq e, e<a^{2}<a$ and $a^{3}=e, a^{2}$ is of height 1 . We have then two possibilities:

or

In the first case, $a^{2} \vee b=a$ which implies $a^{3} \vee a b=a^{2}=e \vee a b=a b$ and similarly $a^{3} \vee b a=a^{2}=e \vee b a$ and $a b=b a=a^{2}$.

In the second case, $a^{2}=b$ which implies $a b=b a=a^{3}=e$. Finally in all cases $a b=b a$.

Lemma 3. If two elements a and b are of height 1 in a spindle F_{e}, then $a b=$ $b a=e$.

If $a \neq b$, we have $a \wedge b=e$ and $a b \leqslant(a \vee b)^{2} \leqslant a \vee b$. The equality $a b=a \vee b$ is impossible, as $a \leqslant a \vee b=a b$ implies $e \varsubsetneqq a \leqslant a b \leqslant a b^{2}=e$ by isotony. Therefore, $a b<a \vee b$. But a covers $a \wedge b=e, b$ covers $a \wedge b=e$, therefore $a \vee b$ covers a and b, and $a \vee b$ is of height 2. Lemma 2 implies $a(a \vee b)=(a \vee b) a$ e.g. $e \vee a b=e \vee b a\left(a^{2}=e\right)$, and $a b=b a$. But, from $e \leqslant a b \supsetneqq a \vee b$

we deduce $a b=e$ or $a b$ is of height 1. Suppose that $a b=b a$ is of height 1: then, $a \wedge a b=e=a \wedge b=b \wedge a b(a b \neq a, a b \neq b$ otherwise $a=e, b=e)$ and $a b \vee a, a b \vee b$ are of height 2. But $a b<a \vee b$ implies $a \vee a b \leqslant a \vee b, b \vee a b \leqslant a$; as $a \vee a b, b \vee a b$, $a \vee b$ are of the same height 2 , we will have in this case a lattice of type:

with $a \vee b=a \vee a b=b \vee a b$. But this lattice, sublattice of S, is not distributive.
Then, $a b=b a=e$.

Lemma 4. In a spindle F_{e}, the product of an element of height 2 by an element of height 1 is an element of height 1 or is egal to e (height 0).

If $e<a<b$ with a of height 1 and b of height 2 , we have seen, in lemma 2, that $a b=b a=e$ or b^{2}. As b^{2} is of height 1 or $b^{2}=e$, we have the result.

We consider now the following case:

and we examine the product $a_{2} b$ with $b \nless a_{2}$.
$a_{1} \wedge b=e, a_{1}$ and b cover e, then $a_{1} \vee b$ covers a_{1} and b; therefore $a_{1} \vee b$ is of height 2 .
$a_{2} \wedge b=e$ is covered by b, therefore $a_{2} \vee b$ covers a_{2} and $a_{2} \vee b$ is of height 3 .
$b \nless a_{2}$ implies $a_{1} \vee b \neq a_{2}$. Therefore $a_{1} \vee b$ and a_{2} are of same height and incomparable. So, we have an ordered set of the following type:
height 3
height 2
height 1

But in a spindle F_{e} containing x and y, we have always $x y \leqslant(x \vee y)^{2} \leqslant x \vee y$ and the equality $x y=x \vee y$ is impossible if $x \neq e, y \neq e$ because it implies $x^{2} y=$ $x^{2} \vee x y=x^{2} \vee x \vee y=x \vee y=x y$ and $x \vee y=x^{2} y=\ldots=x^{n} y=e$ which is not. Therefore, here, $a_{2} b \nsupseteq a_{2} \vee b, b a_{2} \varsubsetneqq a_{2} \vee b$ and also $a_{2} b \neq a_{2}, a_{2} b \neq b, b a_{2} \neq a_{2}$, $b a_{2} \neq b$.

Suppose now $a_{2} b$ is of height 2 .
If $b<a_{2} b$, then $a_{2} b \leqslant a_{2}^{2} b \leqslant a_{2} b$ and $a_{2} b=a_{2}^{2} b \ldots=a_{2}^{k} b=e$ which is not.
Therefore $b \nless a_{2} b$ and of course $a_{1} \vee b \neq a_{2} b, b \wedge a_{2} b=e$.
Suppose, moreover, that $a_{1}<a_{2} b$.
In this case, we have:

$a_{1} \vee b \vee a_{2}=a_{2} \vee b ; a_{2} \vee a_{2} b=a_{2} \vee b$ necessarily because $a_{2}<a_{2} \vee b, a_{2} b<a_{2} \vee b$ and the heights are 2 for $a_{2}, a_{2} b, 3$ for $a_{2} \vee b ;\left(a_{1} \vee b\right) \vee a_{2} b=a_{2} \vee b$ for the same reasons.

But this is impossible, as this sublattice is not distributive.
Therefore $a_{1} \nless a_{2} b$ and necessarily we have a scheme of this following type:
height 3
height 2
height 1

Effectively, $\left(a_{1} \vee b\right) \vee\left(a_{2} b\right)=a_{2} \vee b$, because $a_{2} b<a_{2} \vee b, a_{1} \vee b<a_{2} \vee b$ and the heights of $a_{1} \vee b, a_{2} b$ are 2, the height of $a_{2} \vee b$ is 3 .
$\left(a_{1} \vee b\right) \wedge a_{2} b=\left(a_{1} \wedge a_{2} b\right) \vee\left(b \wedge a_{2} b\right)$. But $a_{1} \nless a_{2} b, b \nless a_{2} b, a_{2}$ and b are of height 1. Therefore $a_{1} \wedge a_{2} b=e, b \wedge a_{2} b=e$, and we have $\left(a_{1} \vee b\right) \wedge a_{2} b=b \wedge a_{2} b=c$. But this sublattice cannot exist: This lattice is not modular!...

Consequently $a_{2} b$ (and $b a_{2}$) are of height 1 or 0.

Theorem 2. Let S be a finite weakly negative lattice ordered semigroup and let F_{e} be a spindle. If a, element of F_{e} is of height 2 and if b, element of F_{e}, is of height 1 , there are two possibilities:
either $a b=b a$ is an element of height 1 or 0
or $a b \neq b a$, and one of these two elements is of height 1 , the other being of height 0 .
1°) If $e<b<a$, then, from lemma 2, we deduce $a b=b a$, and $a b=b a=e$ or $a b=b a=a^{2}$, which is of height 1 .
2°) Now, we suppose that a and b are incomparable; we put $a=a_{2}$, and of course we have a diagram of this type:

From lemma 4, we know that $a_{2} b$ and $b a_{2}$ are of height 1 or 0 .
If we suppose $a_{2} b \neq b a_{2}$, and if we suppose moreover that $a_{2} b$ and $b a_{2}$ are both of height 1 , then we have the following properties:
$a_{2} b$ and $b_{2} a$ are distinct of $b\left(a_{2} b=b \Rightarrow a_{2}^{n} b=b=e\right)$; therefore $a_{2} b \wedge b=b a_{2} \wedge b=e$, $a_{2} b \wedge b a_{2}=e$ too, since $a_{2} b$ and $b a_{2}$ are of height 1 and different. As the double equality $a_{2} b \vee b=b a_{2} \vee b, a_{2} b \wedge b=b a_{2} \wedge b$ implies $a_{2} b=b a_{2}$ in a distributive lattice, we necessarily have $a_{2} b \vee b \neq b a_{2} \vee b$. Moreover $a_{2} b$ and b cover $a_{2} b \wedge b=e$, then $a_{2} b \vee b$ covers $a_{2} b$ and b; similarly $b a_{2} \vee b$ covers $b a_{2}$ and b. So, $a_{2} b \vee b$ and $b a_{2} \vee b$ are of height 2 . And we finally obtain the diagram

Consequently, $a_{2} b \vee b$ and $b a_{2} \vee b$ being of the same height 2 and incomparable, $a_{2} b \vee b \vee b a_{2}$ is of height $\geqslant 3$.

But $a_{2} b \vee b \leqslant a_{2} \vee b, b a_{2} \vee b \leqslant a_{2} \vee b\left[a_{2} b \leqslant\left(a_{2} \vee b\right)^{2} \leqslant a_{2} \vee b\right]$ and $a_{2} \vee b$ is of height 3. (In a finite distributive lattice, $h[x]+h[y]=h[x \vee y]+h(x \wedge y])$. Therefore,

$$
a_{2} b \vee b \vee b a_{2}=a_{2} \vee b=\left(a_{2} b \vee b a_{2}\right) \vee b
$$

Elsewhere, $\left(a_{2} b \vee b a_{2}\right) \wedge b=\left(a_{2} b \wedge b\right) \vee\left(b a_{2} \wedge b\right)=e=a_{2} \wedge b$.

$$
\text { And finally, we oltain }\left\{\begin{array}{l}
\left(a_{2} b \vee b a_{2}\right) \vee b=a_{2} \vee b \\
\left(a_{2} b \vee b a_{2}\right) \wedge b=a_{2} \wedge b
\end{array}\right.
$$

and, as S is a distributive lattice $a_{2}=a_{2} b \vee b a_{2}$. From $b a_{2} \vee a_{2} b=a_{2}$, we deduce $b a_{2} b \vee a_{2} b^{2}=a_{2} b$, and $b a_{2} b \vee e=a_{2} b=b a_{2} b$; now $a_{2} b=b a_{2} b$ implies $b^{2}\left(a_{2} b\right)=$ $b a_{2} b=a_{2} b=e$, which is impossible. [$a_{2} b$ is of height 1).

Therefore $a_{2} b \neq b a_{2}$ implies that one of the two elements $a_{2} b, b a_{2}$ is of height 0 , e.g. is e.

Example. We built a finite weakly negative lattice ordered semigroup, which is a nilsemigroup (e.g. it is reduced to an unique spindle). The diagram of the order relation is the following:

If we put $a_{2} b=a_{1}, b a_{2}=e$, we obtain the following multiplication table, which is effectively the one of a semigroup

	e	a_{1}	a_{2}	b	$a_{1} \vee b$	$a_{2} \vee b$
e						
a_{1}	e	e	e	e	e	e
a_{2}	e	e	e	a_{1}	a_{1}	a_{1}
b	e	e	e	e	e	e
$a_{1} \vee b$	e	e	e	e	e	e
$a_{2} \vee b$	e	e	e	a_{1}	a_{1}	a_{1}

Lemma 5. Let S be a lattice ordered periodic semigroup. If e is a maximal idempotent among the idempotents, then e is the greatest of idempotents.

Let e be a maximal idempotent and let f be in S so that $f=f^{2} ; e \vee f \in S$ and $e \leqslant e \vee f$. As $e^{n}=e$ for all integers $n, e \leqslant(e \vee f)^{n}$ too. As S is a periodic semigroup, there exists $p \in \mathbb{N}^{*}$ so that $(e \vee f)^{p}$ is idempotent and $e=(e \vee f)^{p}$. If we develop the product $(e \vee f)^{p}$ we find an expression of the type $e \vee f \vee x$ and consequently $e \vee f \vee x=e \geqslant f$.

Corollary 1. Let S be a lattice ordered periodic semigroup. If e is a maximal idempotent, among the idempotents, then $e f$ and $f e$ are idempotents, for any idempotent f of S.

From lemma 5, we deduce $f \leqslant e$ for every idempotent f. And it is well known that if two idempotents are comparable, their product is an idempotent.

Notation. In the following we say that b covers a (and we note $b \succ a$ (or $a \prec b)$) if there is no such element c that $a \supsetneqq c \supsetneqq b$.

Lemma 6. Let S be a finite weakly negative lattice ordered semigroup and let e be the greatest idempotent of S.

If $f=f^{2}$ and if $f \prec e$ (in the ordered subset of idempotents), then for all integers $k, k \neq 0$, and for all b in $F_{f} b e \leqslant e, e b \leqslant e$, and $(e \vee b)^{k}=e \vee b^{k}$.

Proof. For some integer $n \in \mathbf{N}^{*},(e \vee b)^{n}=e$; from this equality we deduce $e=e \vee b^{n} \vee e b \vee b e \vee y, y \in S$, and we obtain $e b \leqslant e, b e \leqslant e$ and $(e \vee b)^{k}=e \vee b^{k}$.

Notation. If F_{e} and F_{f} are two spindles, we put $F_{f}<F_{e}$ if: $\forall x \in F_{f}$, $\forall y \in F_{e} \Rightarrow x<y$.

Theorem 3. Let S be a weakly negative lattice ordered periodic semigroup. Let e and f be two idempotents such that e covers f in the ordered subset of idempotents, $F_{f}<F_{e}$, and $\left(F_{f}\right)^{2} \neq\{f\}$.

Then $e f=e$ if and only if $f e=e$ and in this case, $F_{e} F_{f}=F_{f} F_{e}=e$.
Proof. Suppose for example that $e f=e$. If $a \in F_{f}$, and if $b \in F_{e}$, from the hypothesis and from Lemma 1 , we deduce $f \leqslant a \varsubsetneqq e \leqslant b$. Consequently, we obtain $e f=e \leqslant b a \leqslant b e=e$ and $b a=e$.

And we have $F_{e} F_{f}=e$. Moreover, as $f<e, f e$ is an idempotent between e and f and as e covers $f, f e=e$ or $f e=f$.

We suppose now that $f e=e$. Let be $x \in F_{f} ; f \leqslant x<e$. Then $f \leqslant x^{2} \leqslant x e \leqslant e$, $f \leqslant(x e)^{k} \leqslant e$ for each integer k.

As $f \prec e$ (in the ordered subset of idempotents) and as $F_{f}<F_{e}, x e \in F_{e}$ or $x e \in F_{f}$. If $x e=a \in F_{e}$, we have $x e^{2}=a e=x e=e$. But, from $x e=e$, it results $f e=e$, which is not. Therefore, $x e=y \in F_{f}$ and we obtain $(x e)(x e)=y^{2}=$ $x(e x) e=x e=y$ since $F_{e} F_{f}=e$. But f is the idempotent of F_{f} and $y=f$, and finally we obtain $F_{f} \cdot e=f$. As we have supposed $\left(F_{f}\right)^{2} \neq\{f\}$, there exists two elements r and s of F_{f} so that $f \varsubsetneqq r \supsetneqq e, f \varsubsetneqq s \varsubsetneqq e$ with $f \neq r s$. By isotony, we obtain

$$
f=f s \leqslant r s \leqslant r e=f . \quad \text { Contradiction. }
$$

So ef $=e$ implies $f e=e$, and $F_{e} F_{f}=F_{f} F_{e}=e$. Conversely, if $f e=e$ we obtain $e f=e$ by symmetry.

Theorem 4. Let S be a weakly negative lattice ordered periodic semigroup. Let e and f be two such idempotents that e covers f (in the ordered subset of idempotents) and $F_{f}<F_{e}$.

Then, F_{f} is a nilsemigroup, with f as zero.
Proof. If $\left.\left\{F_{f}\right)\right\}^{2}=f$, it is trivial.

If $\left\{F_{f}\right\}^{2} \neq f$, we can apply Theorem 3 .
Let x and y be two elements of $F_{f}: f \leqslant x \nsupseteq e, f \leqslant y \varsubsetneqq e$.
Therefore $f \leqslant x y \leqslant e, f \leqslant(x y)^{n} \leqslant e$ for any integer n, and $x y \in F_{f} \cup F_{e}$. If $x y \in F_{e}, x y=e$, because e is the least element of F_{e}. If $x^{n}=y^{n}=f$, we have $f=x^{n+1} y^{n+1}=x^{n} e \cdot y^{n}=f e f$. Consequently, $e f=e=f e$ is impossible and necessarily, ef $=f=f e$. But from $x<e, y<e$, we deduce, by isotony, $x y \leqslant e y \leqslant e^{2}=e$, and $x y=e$ implies $e y=e, e f=e(=f e)$. Contradiction.

So, $x y$ belongs to F_{f}, which is a subsemigroup of S, and of course a nilsemigroup of zero f.

Remark. With the same hypothesis, as in theorem 4 , if $\left(F_{f}\right)^{2}=\{f\}$ it is possible to have ef $\neq f e$. We can give an example.

S	f	b	b^{\prime}	e	a^{2}	a
f						
b	f	f	f	f	f	f
b^{\prime}	f	f	f	f	f	f
e						
a^{2}	e	e	e	e	e	e
a	e	e	e	e	e	a^{2}

ordered by $f<b<b^{\prime}<e<a^{2}<a$.

3. Construction of periodic weakly negative LATTICE ORDERED SEMIGROUPS

Let $F_{1}, F_{2}, \ldots, F_{n}$ be n nilsemigroups whose zeros are respectively $e_{1}, e_{2}, \ldots, e_{n}$. Suppose each F_{i} is a weakly negative lattice, ordered by order relation \leqslant and e_{i} is the least element of each F_{i}. We put $S=\bigcup_{i=1}^{n} F_{i}$ and we define in S the product $x_{i} \cdot y_{j}$ where $x_{i} \in F_{i}, y_{j} \in F_{j}$ by

$$
\begin{aligned}
x_{i} \cdot y_{j} & =x_{i} y_{j}=\text { product of } x_{i} \text { and } y_{j} \text { in } F_{i} \text { if } i=j \\
& =e_{j} \text { if } i<j \\
& =e_{i} \text { if } j<i .
\end{aligned}
$$

In particular, $e_{i} e_{j}=e_{j} e_{i}=e_{j}$ if $i<j$

$$
=e_{i} \text { if } j<i
$$

Then we define on S an order relation by

$$
x_{i} \leqslant y_{j} \Leftrightarrow i=j \text { and } x_{i} \leqslant y_{j} \text { in } F_{i} \text { or } i<j
$$

$(S, ., \leqslant)$ becomes an ordered semigroup. It is easy to see that $x_{i} \cdot\left(y_{j} \cdot z_{k}\right)=\left(x_{i} \cdot y_{j}\right) \cdot z_{k}=$ $x_{i} y_{j} z_{k}$ if $i=j=k$ and that $x_{i} \cdot\left(y_{j} \cdot z_{k}\right)=x_{i} \cdot\left(y_{j} \cdot z_{k}\right)=e_{\sup (i, j, k)}$ if the cardinality of $\{i, j, k\}$ is greater that 2 . In each $F_{i}, e_{i} \leqslant x$ and $x_{i}^{2} \leqslant x_{i}$ by hypothesis. So S is a weakly negative lattice ordered periodic semigroup,

Conversely, suppose that S is a periodic weakly negative lattice ordered semi-group and that moreover, if $F_{e_{1}}, F_{e_{2}}, \ldots, F_{e_{n}}$ design the spindles of $S, F_{e_{1}}<F_{e_{2}}<$ $F_{e_{3}} \ldots<F_{e_{n}}$. We also suppose that $e_{i+1} e_{i}=e_{i+1} e_{i}=e_{i+1}$ for $i=1,2, \ldots, n-1$.

Then $F_{e_{1}} \cdot F_{e_{j}}=e_{j}$ if $e_{i}<e_{j}$ for all $(i, j), i \neq j$

$$
=e_{i} \text { if } e_{j}<e_{i} \text { for all }(i, j), i \neq j .
$$

In Theorem 3, we see that $e_{i} \prec e_{i+1}, F_{e_{i}}<F_{e_{+1}}$, and $e_{i} e_{i+1}=e_{i+1}=e_{i+1} e_{i}$ implies $F_{e_{1}} F_{e_{1+1}}=F_{e_{1+1}}=F_{e_{1+1}} F_{e_{1}}$.

Now we calculate $F_{e_{1}} F_{e_{k}}$ with $i<k$:

$$
\begin{aligned}
F_{e_{1}} F_{e_{k}} \geqslant F_{e_{1} \cdot e_{k}} & =F_{e_{1}} \cdot\left(e_{k}\right)^{k-i+1} \\
& \geqslant F_{e_{i}} \cdot e_{i} e_{i+1} \ldots e_{k} \\
& =c_{i} e_{i+1} \ldots e_{k}=e_{k} .
\end{aligned}
$$

But $F_{e_{1}} F_{e_{k}} \leqslant e_{k} \cdot F e_{k}=e_{k}$.
So $F_{e_{1}} F_{e_{k}}=e_{k}$, and similarly $F_{e_{k}} F_{e_{1}}=e_{k}$ if $i<k$. So, we have

Theorem 5. Let S be the union of n weakly negative lattice ordered nilsemigroups $F_{e_{1}} ; S$ becomes a weakly negative ordered periodic semigroup with the properties $F_{e_{1}}<F_{e_{2}}<\ldots<F_{e_{n}}, e_{i} e_{i+1}=e_{i+1} e_{i}=e_{i+1}$ for $i=1,2, \ldots, n-1$, if and only if $F_{e_{i}} F_{e_{j}}=e_{j}$ for $i<j$ and $F_{e_{i}} \cdot F_{e_{j}}=e_{i}$ for $j<i$.

References

[1] G. Birkhoff: Lattice theory, AMS, Providence, 1967.
[2] Clifford A. H. and G. B. Preston: The algebraic theory of semigroups. vol I, AMS, Providence, 1961.
[3] Merlier Th.: Sur les bandes réticulées, Semigroup Forum 22 (1981), 191-198.
[4] Merlier Th.: Sur les demi-groupes réticulés et les o.demi.groupes, Semigroup Forum 2 (1971), 64-70.
[5] Merlier Th.: Some properties of lattice ordered Rees Matrix semigroups, Czech. Math. Jour. 38 (113) no. 4 (1988), 573-577.
[6] Merlier Th:: Totally orderable semigroups and locally finite semigroups, Colloq. Math. Soci. Janos Bolyai. 20 Algebraic theory of semigroups SZECED, 1976.

Author's address: Université Pierre et Marie Curie, Mathématiques, Tour 46, 4, Place Jussieu, F-75252 Paris Cedex 05, France.

