Czechoslovak Mathematical Journal

Josef Šlapal
Relations and topologies

Czechoslovak Mathematical Journal, Vol. 43 (1993), No. 1, 141-150
Persistent URL: http://dml.cz/dmlcz/128381

Terms of use:

© Institute of Mathematics AS CR, 1993

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

RELATIONS AND TOPOLOGIES

Josef Šlapal, Brno

(Received August 5, 1991)

Recently, ternary relations have been intensively studied by V. Novák and M. Novotny in a series of papers. In [6] these authors dealt with the problem of representation of ternary relations on a set G by binary relations on G^{3}. In [7] M. Novotný represented the former ones by grupoids on the power set of G. In this note we investigate the possibility of representing ternary relations on a given set by topologies in Čech's sense on this set. First of all, however, with any relation of type α (α an ordinal) we associate a topology and study these associated topologies.

1. Preliminaries

Following the convention introduced by J. von Neumann, we identify ordinals with the set of their predecessors, and cardinals with their initial ordinals (see e.g. [1]).

Let α be an ordinal and G a set. By a relation of type α on G we understand any subset $R \subseteq G^{\alpha}$ (where G^{α} denotes the set of all mappings of α into G). The set G is then called the underlying set of R. In other words, a relation of type α on G is a set of sequences of type α consisting of elements of G. These relations are introduced and studied in [9]. The ordered pair (G, R) where G is a set and R is a relation of type α on G is said to be a relational system of type α. Given two relational systems $(G, R),(H, S)$ of type α, a homomorphism of (G, R) into (H, S) is any mapping f : $G \rightarrow H$ such that $\left(x_{i} \mid i<\alpha\right) \in R \Rightarrow\left(f\left(x_{i}\right) \mid i<\alpha\right) \in S$.

We shall use some fundamental concepts of the category theory-they can be found e.g. in [5]. For an ordinal α, by $\operatorname{Rel}_{\alpha}$ we denote the category of relational systems of type α with homomorphisms as morphisms.

By a topology on a set G we mean a topology in Čech's sense [3], i.e. a mapping u : $\exp G \rightarrow \exp G$ satisfying $u \emptyset=\emptyset, X \subseteq G \Rightarrow X \subseteq u X$, and $X \subseteq Y \subseteq G \Rightarrow u X \subseteq u Y$. The ordered pair (G, u) is then called a topological space and the elements of G are called points. If (G, u) is a topological space and $x \in G$ a point, then a set $X \subseteq G$ is
said to be a neighborhood of x if $x \notin u(G-X)$. A complete system of neighborhoods of x is any system $\mathcal{T}(x)$ of neighborhoods of x such that for each neighborhood X of x there exists $Y \in \mathcal{T}(x)$ with $Y \subseteq X$. The topology u is uniquely determined by complete systems of neighborhoods $\mathcal{T}(x)$ of all $x \in G$ because for any subset $Z \subseteq G$ and any point $x \in G$ we have $x \in u Z \Leftrightarrow Z \cap X \neq \emptyset$ for every $X \in \mathcal{T}(x)$.

According to [3], for a topology u on a set G we consider the following two axioms:

$$
\begin{array}{cl}
X \subseteq G \Rightarrow u u X=u X & F \text {-axiom } \\
X, Y \subseteq G \Rightarrow u(X \cup Y)=u X \cup u Y & \text { A-axiom }
\end{array}
$$

Next, for any cardinal $n>1$ we introduce another axiom:

$$
X \subseteq G \Rightarrow u X=\bigcup\{u A \mid A \subseteq X, \operatorname{card} A<n\} \quad S_{n} \text {-axiom }
$$

A topology fulfilling a λ-axiom $\left(\lambda \in\left\{F, A, S_{n}\right\}\right)$ is said to be a λ-topology, a topology fulfilling both a λ-axiom and a μ-axiom is said to be a $\lambda \mu$-topology. The topologies of Bourbaki [2], most frequently understood under topologies in literature, are exactly the $F A$-topologies. In [4], S_{2}-topologies are called quasi-discrete closure operations and it is shown that they coincide with reflexive binary relations. Of course, any S_{2}-topology is an A-topology. Next, any S_{n}-topology is an S_{m}-topology whenever $m>n$. Since any topology u on a set G is obviously an S_{n}-topology for each cardinal n with $n>\operatorname{card} G$, there exists a least cardinal n for which u is an S_{n}-topology. In [3] this cardinal is mentioned as an important invariant of the topology u. Clearly, if $n \leqslant \omega_{0}$, then any $A S_{n}$-topology is an S_{2}-topology. Finally, let us note that we need the axiom of choice whenever we consider the S_{n}-axiom with $n>\omega_{1}$.

Lemma 1. Let $n>1$ be a cardinal and let u be an S_{n}-topology on a set G. For any $x \in G$ put $\mathcal{T}(x)=\{X \subseteq G \mid$ for each subset $A \subseteq G$ fulfilling card $A<n$ and $x \in u A$ there exists a non-empty subset $X_{A} \subseteq A$ such that $X=\bigcup\left\{X_{A} \mid A \subseteq\right.$ $G, \operatorname{card} A<n, x \in u A\}\}$. Then $\mathcal{T}(x)$ is a complete system of neighborhoods of x in (G, u).

Proof. As u is an S_{n}-topology, a subset $X \subseteq G$ is a neighborhood of x in (G, u) iff $x \in u A \Rightarrow A \cap X \neq \emptyset$ for each subset $A \subseteq G$ with card $A<n$. Therefore $\mathcal{T}(x)$ is a system of neighborhoods of x in (G, u). Let $Y \subseteq G$ be an arbitrary neighborhood of x in (G, u). For any subset $A \subseteq G$ with $\operatorname{card} A<n$ and $x \in u A$ put $X_{A}=A \cap Y$ $(\neq \emptyset)$ and $Z=\bigcup\left\{X_{A} \mid A \subseteq G, \operatorname{card} A<n, x \in u A\right\}$. Then clearly $Z \subseteq Y$ and $Z \in \mathcal{T}(x)$. The lemma is proved.

For any two topologies u, v on a set G we put $u \leqslant v$ iff $u X \subseteq v X$ for each $X \subseteq G$. If $(G, u),(H, v)$ are topological spaces, then a continuous mapping of (G, u)
into (H, v) is any mapping $f: G \rightarrow H$ fulfilling $f(u X) \subseteq v f(X)$ whenever $X \subseteq G$. By Top we denote the category of topological spaces with continuous mappings as morphisms.

2. Topologies Associated with relations of type α

Throughout this section, α denotes an ordinal with $\alpha>1$, and $|\alpha|$ denotes the least cardinal fulfilling $|\alpha| \geqslant \alpha$.

Let R be a relation of type α on a set G. Then for any subset $X \subseteq G$ we put
$u_{R} X=X \cup\left\{x \in G \mid\right.$ there exist $\left(x_{i} \mid i<\alpha\right) \in R$ and an ordinal i_{0},
$0<i_{0}<\alpha$, such that $x=x_{i_{0}}$ and $x_{i} \in X$ for all $\left.i<i_{0}\right\}$.
Clearly, u_{R} is a topology on G. For relations R of type 2 the topologies u_{R} coincide with those dealt with in [8]. In the next section we shall study topologies u_{R} for relations of the particular type 3 .

For any object (G, R) of $\operatorname{Rel}_{\alpha}$ we put $F_{\alpha}(G, R)=\left(G, u_{R}\right)$ and for any morphism f in $\operatorname{Rel}_{\alpha}$ we put $F_{\alpha} f=f$.

Theorem 1. F_{α} is a faithful (covariant) functor from $\operatorname{Rel}_{\alpha}$ into Top.
Proof. Let $(G, R),(H, S)$ be relational systems of type α and let $f: G \rightarrow H$ be a homomorphism of (G, R) into (H, S). Let $X \subseteq G$ be a subset and let $y \in f\left(u_{R} X\right)$. Then there exists $x \in u_{R} X$ with $y=f(x)$. If $x \in X$, then $y \in f(X) \subseteq u_{S} f(X)$. Suppose $x \notin X$. Then there exist $\left(x_{i} \mid i<\alpha\right) \in R$ and an ordinal $i_{0}, 0<i_{0}<\alpha$, such that $x=x_{i_{0}}$ and $x_{i} \in X$ for all $i<i_{0}$. Consequently, there exist $\left(f\left(x_{i}\right) \mid i<\alpha\right) \in S$ and an ordinal $i_{0}, 0<i_{0}<\alpha$, such that $y=f\left(x_{i_{0}}\right)$ and $f\left(x_{i}\right) \in f(X)$ for all $i<i_{0}$. Hence $y \in u_{S} f(X)$ and the inclusion $f\left(u_{R} X\right) \subseteq u_{S} f(X)$ is valid. Therefore f is a continuous mapping of the space $\left(G, u_{R}\right)$ into $\left(H, u_{S}\right)$. Thus F_{α} is a covariant functor from Rel_{α} into Top and it is evident that F_{α} is faithful.

Proposition 1. Let R be a relation of type α and let $n=|\alpha|$. Then u_{R} is an S_{n}-topology.

Proof. Let G be the underlying set of R and let $X \subseteq G$ be a subset. Let $x \in u_{R} X$ be a point. If $x \in X$, then $x \in u_{R}\{x\} \subseteq \bigcup\left\{u_{R} A \mid A \subseteq X, \operatorname{card} A<n\right\}$. Suppose $x \notin X$. Then there exist $\left(x_{i} \mid i<\alpha\right) \in R$ and an ordinal $i_{0}, 0<i_{0}<\alpha$, such that $x=x_{i_{0}}$ and $x_{i} \in X$ for all $i<i_{0}$. Hence $\left\{x_{i} \mid i<i_{0}\right\} \subseteq X$ and $\operatorname{card}\left\{x_{i} \mid i<i_{0}\right\} \leqslant \operatorname{card} i_{0}$. But card $i_{0}<\alpha=n$ whenever α is a cardinal and card $i_{0} \leqslant \operatorname{card} \alpha<n$ whenever α is not a cardinal. Since $x \in u_{R}\left\{x_{i} \mid i<i_{0}\right\}$, we have $x \in \bigcup\left\{u_{R} A \mid A \subseteq X, \operatorname{card} A<n\right\}$. Therefore the inclusion $u_{R} X \subseteq \bigcup\left\{u_{R} A \mid\right.$ $A \subseteq X$, card $A<n\}$ is valid and the proof is complete.

By virtue of Proposition 1 one can use Lemma 1 for defining u_{R} by determining complete systems of neighborhoods of all points of G.

For any topology u on a set G we denote by R_{u} the relation of type α on G defined as follows:

$$
\left(x_{i} \mid i<\alpha\right) \in R_{u} \Leftrightarrow x_{i_{0}} \in u\left\{x_{i} \mid i<i_{0}\right\} \text { for any } i_{0} \text { with } 0<i_{0}<\alpha .
$$

Obviously, for each relation S of type α we have $S \subseteq R_{u_{s}}$.

Proposition 2. For any topology v we have $u_{R_{v}} \leqslant v$.
Proof. Let v be a topology on a set G, let $X \subseteq G$ be a subset and $x \in u_{R_{v}} X$ a point. If $x \in X$, then $x \in v X$. Suppose $x \notin X$. Then there exist $\left(x_{i} \mid i<\alpha\right) \in R_{v}$ and an ordinal $i_{0}, 0<i_{0}<\alpha$, such that $x=x_{i_{0}}$ and $x_{i} \in X$ for all $i<i_{0}$. Consequently, $x \in v\left\{x_{i} \mid i<i_{0}\right\} \subseteq v X$. Thus $u_{R_{v}} X \subseteq v X$ and the assertion is proved.

Theorem 2. Let v be an S_{n}-topology on a set G where $n=|\alpha|$. Then the following conditions are equivalent:
(i) $v=u_{R_{v}}$,
(ii) there exists a relation R of type α on G such that $v=u_{R}$,
(iii) if $\alpha>2$ and $X \subseteq G$ is a subset with $1<\operatorname{card} X=m<n$, then for any point $x \in v X-\bigcup\{v A \mid A \subseteq X$, card $A<m\}$ there exists a subset $Y \subseteq X$ with card $Y=m$ such that both $x \in v Y$ and there exists a bijection $p: m \rightarrow Y$ with the property $p(j) \in v\{p(i) \mid i<j\}$ whenever $0<j<m$.

Proof. For $\alpha=2$ the assertion states that $v=u_{R_{v}}$, which is well known-see [4]. Suppose $\alpha>2$.

The implication (i) \Rightarrow (ii) is trivial.
Let the condition (ii) be true. Let $X \subseteq G$ be a subset with $1<\operatorname{card} X=m<n$ and let $x \in v X-\bigcup\{v A \mid A \subseteq X$, card $A<m\}$. Then obviously $x \notin X$. Thus $x \in u_{R} X-X$ and $x \notin u_{R} A$ for any subset $A \subseteq X$ with card $A<m$. Consequently, there exist $\left(x_{i} \mid i<\alpha\right) \in R$ and an ordinal $i_{0}, 0<i_{0}<\alpha$, such that $x=x_{i_{0}}$ and $x_{i} \in X$ for all $i<i_{0}$. Put $Y=\left\{x_{i} \mid i<i_{0}\right\}$. Then $x \in v Y$ and since $Y \subseteq X$, we have card $Y=m$ and $x_{j} \in v\left\{x_{i} \mid i<j\right\}$ whenever $0<j<i_{0}$. Put $p(0)=x_{0}$ and for each ordinal j with $0<j<m$, having defined $p(i)$ for all $i<j$, put $p(j)=x_{k}$ where $k<i_{0}$ is the least ordinal such that $x_{k} \neq p(i)$ for all $i<j$. Then clearly $p: m \rightarrow Y$ is a bijection with the property $p(j) \in v\{p(i) \mid i<j\}$ whenever $0<j<m$. The implication (ii) \Rightarrow (iii) is proved.

Let (iii) be true. Let $X \subseteq G$ be a set with $1<\operatorname{card} X<n$ and let $y \in v X$. If there exists a point $x \in X$ such that $y \in v\{x\}$, then putting $x_{0}=x$ and $x_{i}=y$
for all ordinals i with $0<i<\alpha$ we get $\left(x_{i} \mid i<\alpha\right) \in R_{v}$. Hence $y \in u_{R_{v}}\{x\} \subseteq$ $u_{R_{v}} X$. Suppose $y \notin v\{x\}$ for every $x \in X$. Let $Y \subseteq X$ be a subset with the minimal cardinality such that $y \in v Y$. Denote card $Y=m$. Since $y \notin \bigcup\{v A \mid A \subseteq$ Y, card $A<m\}$, there exists a subset $Z \subseteq Y$ with card $Z=m$ such that both $y \in v Z$ and there exists a bijection $p: m \rightarrow Z$ with the property $p(j)=v\{p(i) \mid i<j\}$ whenever $0<j<m$. For each $i<m$ put $x_{i}=p(i)$ and for each i with $m \leqslant i<\alpha$ put $x_{i}=y$. Then $\left(x_{i} \mid i<\alpha\right) \in R_{v}$ and consequently $y \in u_{R_{v}}\{p(i) \mid i<m\}=$ $u_{R_{v}} Z \subseteq u_{R_{v}} X$. We have proved the inclusion $v X \subseteq u_{R_{v}} X$. Thus, as v and $u_{R_{v}}$ are S_{n}-topologies, we have $v \leqslant u_{R_{v}}$. Since the inverse inclusion is valid according to Proposition 2, the equality $v=u_{R_{v}}$ is true. Therefore (iii) \Rightarrow (i) and the proof is complete.

Theorem 2 immediately results in

Corollary 1. Let S, T be relations of type α on a given set. Then $u_{S} \neq u_{T}$ iff $R_{u_{S}} \neq R_{u_{T}}$.

The following proposition is obvious:

Proposition 3. Let R be a relation of type α. Then u_{R} is an S_{2}-topology iff for every $\left(x_{i} \mid i<\alpha\right) \in R$ the following condition is true:
for any ordinal $i_{1}, 1<i_{1}<\alpha$, with the property that $x_{i} \neq x_{i_{1}}$ for all $i<i_{1}$ there exist $\left(y_{j} \mid j<\alpha\right) \in R$ and ordinals $i_{0}, j_{0}, i_{0}<i_{1}, 0<j_{0}<\alpha$, such that $y_{j_{0}}=x_{i_{1}}$ and $y_{j}=x_{i_{0}}$ for all $j<j_{0}$.

Proposition 4. Let R be a relation of type α and let $\alpha \leqslant \omega_{0}$. If u_{R} is an F-topology, then u_{R} is an S_{2}-topology.

Proof. Let G be the underlying set of R and let $X \subseteq G$ be a subset with $\operatorname{card} X<\alpha$. We are to prove that $u_{R} X \subseteq \bigcup_{x \in X} u_{R}\{x\}$. To this end, let $y \in u_{R} X$ be a point. If $y \in X$, then $y \in u_{R}\{y\} \subseteq \bigcup_{x \in X} u_{R}\{x\}$. Let $y \notin X$. Then there exist ($x_{i} \mid$ $i<\alpha) \in R$ and an ordinal $i_{0}, 0<i_{0}<\alpha$, such that $y=x_{i_{0}}$ and $x_{i} \in X$ for all $i<i_{0}$. Consequently, $y \in u_{R}\left\{x_{0}, \ldots, x_{i_{0}-1}\right\}$ and $\left\{x_{0}, \ldots, x_{j}\right\} \subseteq u_{R}\left\{x_{0}, \ldots, x_{j-1}\right\}$ whenever $1 \leqslant j \leqslant i_{0}-1$. Hence, we have $y \in u_{R}\left\{x_{0}, \ldots, x_{i_{0}-1}\right\} \subseteq u_{R} u_{R}\left\{x_{0}, \ldots, x_{i_{0}-2}\right\}=$ $u_{R}\left\{x_{0}, \ldots, x_{i_{0}-2}\right\} \subseteq u_{R} u_{R}\left\{x_{0}, \ldots, x_{i_{0}-3}\right\}=u_{R}\left\{x_{0}, \ldots, x_{i_{0}-3}\right\} \subseteq \ldots=u_{R}\left\{x_{0}\right\}$. Thus $y \in \bigcup_{x \in X} u_{R}\{x\}$ and the inclusion $u_{R} X \subseteq \bigcup_{x \in X} u_{R}\{x\}$ is proved.

3. Topologies associated with ternary relations

In this section we further investigate topologies associated with relations of type α for the special case $\alpha=3$, i.e. for ternary relations. Clearly, for any ternary relation R on a set G the S_{3}^{\prime}-topology u_{R} on G is given by

$$
\begin{gathered}
X \subseteq G \Rightarrow u_{R} X=X \cup\{z \in G \mid \exists x \in X, y \in G:(x, z, y) \in R \text { or } \exists x, \\
y \in X:(x, y, z) \in R\} .
\end{gathered}
$$

In [6] and [7] some properties of ternary relations are introduced and subsequently used such as symmetry, asymmetry, antisymmetry, transitivity and cyclicity. However, among them only the cyclicity is useful for the study of topologies associated with ternary relations. For our purpose we introduce several other properties of ternary relations:

A ternary relation R on a set G will be called
irreflexive if $(x, y, z) \in R \Rightarrow y \neq x \neq z$,
irreversible if $(x, y, z) \in R \Rightarrow(y, x, p) \notin R$ for any $p \in G$,
feebly regular if $(x, y, p) \in R,(y, z, q) \in R \Rightarrow(x, y, z) \in R$,
regular if R is feebly regular and $(x, y, p) \in R,(x, z, q) \in R \Rightarrow(x, y, z) \in R$,
feebly translative if $(x, y, z) \in R,(y, p, q) \in R \Rightarrow \exists r \in G:(x, p, r) \in R$,
translative if R is feebly translative and $(x, y, z) \in R \Rightarrow \exists r \in G:(x, z, r) \in R$ or $(y, z, r) \in R$,
cyclic if $(x, y, z) \in R \Rightarrow(y, z, x) \in R$.

Theorem 3. Let $(G, R),(H, S)$ be ternary relational systems and $f:(i \rightarrow H$ a continuous injective mapping of the space $\left(G, u_{R}\right)$ into $\left(H, u_{S}\right)$. If R is irreflexive and S is both irreflexive and regular, then f is a homomorphism of (G, R) into (H, S).

Proof. Let $(x, y, z) \in R$. Then $y \in u_{R}\{x\}$ and $z \in u_{R}\{x, y\}$. Hence $f(y) \in$ $u_{S}\{f(x)\}$ and $f(z) \in u_{S}\{f(x), f(y)\}$. As R is irreflexive and f is injective, we have $f(y) \neq f(x) \neq f(z)$. Thus, by virtue of the irreflexivity of S, it follows from $f(y) \in u_{S}\{f(x)\}$ that there exists $p \in H$ with $(f(x), f(y), p) \in S$. If $f(y)=f(z)$, then the regularity of S implies $(f(x), f(y), f(z)) \in S$. Suppose $f(y) \neq f(z)$. As S is irreflexive, it follows from $f(z) \in u_{S}\{f(x), f(y)\}$ that $(f(x), f(y), f(z)) \in S$ or $(f(y), f(x), f(z)) \in S$ or there exists $q \in H$ such that $(f(x), f(z), q) \in S$ or there exists $r \in H$ such that $(f(y), f(z), r) \in S$. If $(f(y), f(x), f(z)) \in S$, then the regularity of S yields $(f(x), f(y), f(z)) \in S$, which is a contradiction with the irreflexivity of S. In both cases $(f(x), f(z), q) \in S$ and $(f(y), f(z), r) \in S$ the regularity of S results in $(f(x), f(y), f(z)) \in S$. Thus, $(f(x), f(y), f(z)) \in S$ always holds and the statement is proved.

Corollary 2. Let R, S be ternary relations on a given set. If R is irreflexive and S is both irreflexive and regular, then the equivalence $R \subseteq S \Leftrightarrow u_{R} \leqslant u_{S}$ is valid.

Proof. Let G be a set and let α be an ordinal. Then clearly \subseteq and \leqslant are orderings of the fibres of G in $\operatorname{Rel}_{\alpha}$ and Top, respectively, i.e. for any two relations R, S of type α (topologies $u, v)$ on G we have $R \subseteq S(u \leqslant v)$ iff the identity mapping of G is a homomorphism (continuous mapping) of (G, R) into (G, S) (of ($G, u)$ into $(G, v))$. By this fact, the corollary follows from Theorems 1 and 3.

Corollary 3. Let R, S be irreflexive and regular ternary relations on a given set. Then $R \neq S$ implies $u_{R} \neq u_{S}$.

Proof. Let G be the underlying set of both R and S and let id ${ }_{G}$ denote the identity mapping of G. Assume $u_{R}=u_{S}$. Then id_{G} is a continuous mapping of $\left(C^{\prime}, u_{R}\right)$ into $\left(G, u_{S}\right)$ as well as of $\left(G, u_{s}\right)$ into $\left(G, u_{R}\right)$. Thus, by Theorem $3, \mathrm{id}_{G}$ is a homomorphism of (G, R) into (G, S) as well as of (G, S) into (G, R). Therefore $R \subseteq S$ and $S \subseteq R$, i.e. $R=S$. This proves the statement.

We denote by $\widetilde{R e l}_{3}$ the full subcategory of Rel_{3} whose objects are precisely the ternary relational systems (G, R) for which R is both irreflexive and regular. As a consequence of Theorem 1 and Corollary 3 we get

Corollary 4. The functor F_{3} (restricted onto $\widetilde{\operatorname{Rel}}_{3}$) is an embedding of the category $\widetilde{\mathrm{Kel}}_{3}$ into Top.

Next, for any set $\left(\boldsymbol{i}\right.$ we denote by $\mathcal{R}(G)$ and $\mathcal{U}(G)$ the fibres of G in $\widetilde{\operatorname{Rel}}_{3}$ and Top, respectively, i.e. $\mathcal{R}(G)$ is thee set of all irreflexive and regular ternary relations on G ordered by the set inclusion and $\mathcal{U}(G)$ is the set of all topologies on G ordered by \leqslant. Then Corollaries 2 and 3 result in

Corollary 5. For any set G the correspondence $R \mapsto u_{R}$ defines an embedding of the ordered set $\mathcal{R}(G)$ into $\mathcal{U}(G)$.

Remark. By Theorem 2, for any S_{3}-topology u on a set G there exists a ternary relation R on G such that $u=u_{R}$ if and only if the following condition is fulfilled:
for any two points $x, y \in G$ the implication $u\{x, y\} \neq u\{x\} \cup u\{y\} \Rightarrow x \in u\{y\}$ or $y \in u\{x\}$ is valid.
Thus, if we denote by Top_{3} the full subcategory of Top whose objects pre precisely the topological spaces (G, u) for which u is an S_{3}-topology fulfilling the condition mentioned above, then ('orollary 4 is still valid when Top is replaced by Top 3_{3}. Similarly, in Corollary 5 we can consider the fibre $\mathcal{U}(G)$ of G in Top ${ }_{3}$ instead of in Top.

Example 1. Let ϱ be an asymmetric binary relation on a set G. Let us define $R_{\varrho} \subseteq G^{3}$ as follows:

$$
(x, y, z) \in R_{\varrho} \Leftrightarrow x \varrho y \text { and either } x \varrho z \text { or } y \varrho z .
$$

Then R_{ϱ} is an irreflexive and regular (and irreversible) ternary relation on G. In particular, if $<$ is a strict order (i.e. an asymmetric and transitive binary relation) on G, then $(x, y, z) \in R_{<}$iff $x<y$ and $x<z$, i.e. iff x is a lower bound of the set $\{y, z\}$.

Obviously, if R is a cyclic ternary relation, then u_{R} is an S_{2}-topology. Unfortunately, if a non-empty cyclic ternary relation is regular, then it is not irreflexive (because any regular ternary relation R fulfills $(x, y, z) \in R \Leftrightarrow(x, y, y) \in R)$. Therefore Corollary 3 can not be applied to cyclic ternary relations. Nevertheless, we have

Proposition 5. Let R, S be irreflexive, feebly regular and cyclic ternary relations on a given set. Then $R \neq S$ implies $u_{R} \neq u_{S}$.

Proof. Let G be the underlying set of both R and S. Assume $R \neq S$. Without loss of generality we can suppose that $R \nsubseteq S$. Then there exists $(x, y, z) \in R$ such that $(x, y, z) \notin S$. Suppose $u_{R}=u_{S}$. Since $y \in u_{R}\{x\}$ and $z \in u_{R}\{y\}$, we have $y \in u_{S}\{x\}$ and $z \in u_{S}\{y\}$. The irreflexivity and cyclicity of R imply $x \neq y \neq z$. Therefore there exist $p, q \in G$ with $(x, y, p) \in S$ and $(y, z, q) \in S$. Thus, by the feeble regularity of S, we have $(x, y, z) \in S$. But this is a contradiction. Hence $u_{R} \neq u_{S}$.

Example 2. Let $G=\{x, y, z, p, q\}$ and let $R \subseteq G^{3}$ be defined as follows: $R=\{(x, y, z),(x, y, p),(y, p, q),(y, z, q)\}$. Denote by R^{c} the cyclic hull of R, i.e. the least (w.r.t. the set inclusion) cyclic ternary relation on G fulfilling $R \subseteq R^{c}$. Then R^{c} is an irreflexive, feebly regular and cyclic ternary relation on C.

Theorem 4. Let R be a ternary relation. If R is translative, then u_{R} is an F-topology.

Proof. Let G be the underlying set of R and let R be translative. As u_{R} is evidently and S_{2}-topology, u_{R} is an F-topology iff $u_{R} u_{R}\{x\} \subseteq u_{R}\{x\}$ holds for any $x \in G$. Let $x \in G, y \in u_{R} u_{R}\{x\}$ and suppose $y \notin u_{R}\{x\}$. Then there exists $p \in u_{R}\{x\}$ with $y \in u_{R}\{p\}$. Because $x \neq p \neq y$, we have $(x, x, p) \in R$ or there exists $q \in G$ such that $(x, p, q) \in R$, and either $(p, p, y) \in R$ holds or there exists $r \in G$ such that $(p, y, r) \in R$. By virtue of the translativity of R there always exists $s \in G$ with $(x, y, s) \in R$. Consequently, $y \in u_{R}\{x\}$, which is a contradiction. Therefore $u_{R} u_{R}\{x\} \subseteq u_{R}\{x\}$ and the proof is complete.

Example 3. Let ϱ be a preorder on a set G. Let us define a ternary relation R on G as follows:

$$
(x, y, z) \in R \Leftrightarrow x \varrho y, y \varrho z .
$$

Then R is translative.
Obviously, a cyclic ternary relation is translative iff it is feebly translative. Thus, Theorem 4 results in

Corollary 6. Let R be a cyclic ternary relation. If R is feebly translative, then u_{R} is an F-topology.

Example 4. Let $G=\{x, y, z, p\}$ and let $R=\{(x, y, z),(x, z, p),(x, p, y)$, $(y, p, z),(x, x, x),(y, y, y),(z, z, z),(p, p, p)\}$. Then R^{c} (see Example 2) is a feebly translative cyclic ternary relation on G.

Proposition 6. Let R be an irreflexive and irreversible ternary relation. If u_{R} is an F-topology, then R is translative.

Proof. Let G be the underlying set of R and let u_{R} be an F-topology. Let $(x, y, z) \in R,(y, p, q) \in R$. Then $p \in u_{R}\{y\}$ and $y \in u_{R}\{x\}$, hence $p \in u_{R} u_{R}\{x\}=$ $u_{R}\{x\}$. Since R is irreversible, we have $p \neq x$. Thus, by the irreflexivity of R, there exists $r \in G$ with $(x, p, r) \in R$. By Proposition $3, u_{R}$ is an S_{2}-topology. Therefore it follows from $(x, y, z) \in R$ that $z \in u_{R}\{x\}$ or $z \in u_{R}\{y\}$. If $y=z$, then $(x, z, z) \in R$. Suppose $y \neq z$. Because $x \neq z$ and R is irreflexive, there exists $r \in G$ with $(x, z, z) \in R$ or $(y, z, z) \in R$. Hence R is translative.

References

[1] Bar-Hillel, Y., Fraenkel, A. A., and Lévy, A.: Foundations of Set Theory, North Holand, Amsterdam, 1973.
[2] Bourbaki, N.: Topologie générale, Eléments de Mathématique, I. part., livre III, Paris, 1940.
[3] Čech, E.: Topological spaces, Topological papers of Eduard Čech, Academia, Prague, 1968.
[4] Čech, E.: Topological Spaces (Revised by Z. Frolík and M. Katětov), Academia, Prague, 1966.
[5] Mac Lane, S.: Categories for the Working Mathematician, Springer-Verlag, New York-Heidelberg-Berlin, 1971.
[6] Novák, V., and Novotný, M.: Transitive ternary relations and quasiorderings, Arch. Math. Brno 25 (1989), 5-12.
[7] Novotný, M.: Ternary structures and grupoids, Czech. Math. J. 41 (1991), 90-98.
[8] Slapal, J.: On closure operations induced by binary relations, Rev. Roum. Math. Pures et Appl. 33 (1988), 623-630.
[9] Šlapal, J.: Relations of type α, Zeitschr. für Math. Logik und Grundl. der Math. 34 (1988), 563-573.

Author's address: Technická 2, 61669 Brno, Czech Republic (katedra matematiky FS VUT).

