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DIMENSION AND ATTACHED PRIMES OF AN ARTINIAN MODULE 

YUCEL TlRA§, Ankara 

(Received September 11, 1991) 

§1 INTRODUCTION 

One way to deal with an Artinian module A is to follow the produce of Sharp 

[13]; namely write A = 0 1 ^ / ( A ) , where the sum is over all maximal ideals M , and 

Fjv/(A) = U (0 :>% Mn) is zero for almost all M. The summand T A / ( - 4 ) is naturally 

a module over the completion RM of RM, and by Sharp's extension [13, (3.6)] of a 

theorem of Ileinzer and Lanz [2, Propositoin 4.3], RM I Ann^ VM{A) is Noetherian. 

Thus Matlis duality [5] allows results for Artiniau modules to be obtained from 

corresponding results for Noetherian modules over complete local rings. 

Before I s tate my aim in this paper I give some useful concepts which help me 

to explain it. The phase "(R,m) is quasi-local1' will mean that R has m as its 

unique maximal ideal; by "R is local" we shall mean that R is both quasi-local and 

Noetherian. 

1 begin by recalling the notion of dimension due to Roberts [10] extended in the 

manner dual to that employed by Rentschler and Gabriel [10] to extend Krull di

mension. 

(1 .1 ) D e f i n i t i o n . [10]. The Krull dimension, A' — dim/? A of an (Artinian) R-

module A is defined inductively as follows: 

K -dinifiA = - 1 &A = 0. 

Let r ^ 0 be an integer. Assume that those (Artinian) modules which have Krull 

dimension less than r have been specified. If A is an (Artinian) H-module which 

does not fall into this class then A is said to have Krull dimension r if, whenever 

AQ C. Ai C Ao C . . . is an ascending chain of submodules of A, then there exists an 

integer n such that K — d i m « ( A m + i / A m ) < r for all m ^ n. If A is an H-module 
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such that , for all integers r ^ 1 A does not have Krull dimension r, we say A has 

infinite Krull dimension. 

In [10] Roberts also defined the classical Krull dimension, denoted cl K — dim/*(A), 

as to be —1 if A = 0 and the least number of generators of a proper ideal I of ft 

such tha t (0 :A I) has finite length if A ^ 0. Moreover he proved, [10, Theorem 6] 

tha t K — dimn(-4) = cl K — dim/*(A). 

Now it is t ime to recall basic facts concerning a secondary module and a secondary 

representation of a module, for the details see [3], [5] and [8]. An .R-module A ^ 0 is 

called secondary if for each r G R the multiplication by r on A is either surjective or 

nilpotent. Then Rad Ann/* A = P is a prime ideal and A is called P-secondary. We 

say that A has a secondary representation if there is a finite number of secondary 

submodules A\,..., Ak such that A = A\ + . . . + A*- One may assume tha t the 

prime ideals Pt = Rad Ann/? At, i = l , . . . , f c are all distinct and, by ommiting 

redundand summands , tha t the representation is minimal. Then the set of prime 

ideals { P i , . . . , P*} depends only on A and not on the minimal representation, see 

[5, (2.2)]. This set is called the set of attached prime ideals AURA. Any Artinian 

.R-module A has a secondary representation, see [5, (5.2)]. 

Now I am able to explain my aim in this paper. The aim is to investigate whether 

there is any relation between Ii-dim of an Artinian module A and the attached 

primes of A. Indeed, Professor R.Y. Sharp asked the author whether the following 

is always true or not: Let (R,m) be a quasi-local ring. Let A be an Artinian R-

module with K — dim#(v4) = d. Let A = A\ + . . . + Ar be a minimal secondary 

representation with y/OTAi = Pt for i = 1 , . . . , r . Then Att/j A = { P i , . . . , Pr}. The 

question asked was whether if A' — dim ji(Ai) = d for some i, 1 ^ i $. r, then is Pt 

minimal among the primes corresponding to A. Since the answer to the question 

is positive for complete local rings, I will s tart by trying to reduce the problem to 

this case and use Matlis duality. In case R is quasi-local complete ring we obtain a 

positive answer to the question by using Sharp's method, [13]. But we are unable to 

say "yes" for the general case as will be shown in 2.7 we produce an example of a 

local domain for which the question has a negative answer. 

§2 T H E RESULTS 

I begin with some useful concepts which will be helpful for me to prove what I 

have been aiming. 

(2 .1 ) L e m m a . Let A be an Artinian module over the quasi-local ring (H, m). 

Then K — d im^ A = K — dim/* A where R is the m-adic completion of R. 
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P r o o f . This is immediate from [13,(1.11) and (1.12)]. D 

Since the following lemma is very clear, I omit its proof. 

(2.2) Lemma. Let A be non-zero Artinian module over the quasi-local ring 

(R,m). Regard A as a module over the m-adic completion R of R in the manner 

indicated in [13, (1.11)]. Let R! = R/0 :k A. Then K - dimH(^4) = K - d i m ^ ( ^ ) . 

(2.3) Proposition. Let (R,m) be a complete local ring. Let A be an Artinian 
module over R. Then 

K — dimR(A) = dim/i(-4) 

where "dim" refers to the classical Krull dimension. 

P r o o f . Let D denote Matlis duality which is available over R. Then 

dimMA) = dimR(R/(0 :R D(A))) (by [13,(2.7)]) 

= dim*(D(A)) 

= the least number of x\,..., xn € m such that 

the length of D(A)/(x\,..., xn)D(A) is finite 

by [14,(15.24)]). 

Now the result follows from [13,(2.1)(v) and (2.4)(ii)]. D 

Now 1 am able to give a positive answer to the question, which is mentioned in 
the introductory section, over a complete local ring. 

(2.4) Theorem. Let A be an Artinian module over a complete local ring (R, m). 
Let A = j4i-f . . .+A r be a minimal secondary representation for A with \/0 :R Ai = P, 
for i = 1 , . . . , r. Let K - d\mR(A) = d. Then if K - d\mR(A{) = rf, for some i, 
1 .$ Jt ̂  r, then Pi is minimal among the attached primes of A. 

P r o o f . Suppose that K — dim^(A,) = d, for some i, 1 ^ i ^ r, but P, is not a 
minimal member of Attji(A). Then there exists Pj E Attji(A) such that Pj C Pi-

Let Aj be the corresponding secondary component of A. Now by using the same 
argument as in (2.3) we get 

A' - dim/*(A,) > K - dimR(Ai). 

This is a contradiction to the maximality of K — dim/* A This completes the proof. 

D 
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Let A be a non-zero Artinian module over the quasi-local ring (R, m). Let R and 

R! be as in (2.2). Then by [13, (1.10)], 

At t / ? / (A ) = { P / 0 :k A : P G A t t ^ ( A ) } . 

There is one more very nice relation between R and R!. This is given in the 

following proposition without proof. 

(2.5) P r o p o s i t i o n . Let R and R! be as above. Let A = A\ -f . . . -f- Ar be a 

minimal secondary representation of A as R'-module. Then P / 0 .£ A is a minimal 

prime ideal of R! if and only if P is a minimal member of A t t ^ ( A ) . 

(2.6) T h e o r e m . Let A be a non-zero Artinian module over a quasi-local complete 

ring (R, m) . Let A = Ai + . . . + Ar be a minimal secondary representation of A with 

V̂ O :R Ai = Pi for i = 1 , . . . , r . K — d'uiiR(A) = d. If K — dim/* (./!,•) = d, for some i, 

1 ^ i ^ r, then Pi is minimal among the attached primes of A. 

P r o o f . Let R! = R/0 :R A. Then R' is a complete local ring. Let Iv — 

diniR(Ai) = d, for some i, 1 ^ i <C r. Then by (2.1) and (2.2), Iv — dimft(Az) = 

A' — d'miR'(Ai) = d. Now the result follows from (2.4) and (2.5). • 

Now it is t ime to produce an example of a local domain for which the question 

has a negative answer. Before doing this we want to note that we will need to use 

"contraction" of ideals under a ring honTomorphism. For the details the reader is 

referred to [14, (2.41)]. 

(2 .7 ) C o u n t e r E x a m p l e . First note that in [1] Ferrand and Raynaud showed 

tha t there exists a 2-dimensional local domain (R,m) such that R, the /n-adic com

pletion of R, has exactly one embedded associated prime a. 

It is known that if P G Spec (It), then depth Rp ^ depth Rpc where "c" refers to 

the natural ring homomorphism Rpc — • Rp (see [7, p. 181] or [11, (2.7)]. On the 

other hand, depth Ra = 0 and depth Rrnc = depth Rrn = depth R ^ 1 (because R is 

domain) . And a ^ m so h t^ a = 1. Also depth Rac = 0. Therefore ac = 0. Now let 

us choose another prime ideal P of R such that h t^ P = 1 and P c contains a non-zero 

element r of ft where V refers to the natural ring hoiTioinorphisnT R R. 

Let E be the injective hull of Rjm, i.e. E = E^(R/m). Then E is Artinian R-

module by [15,(4.30)]. Now by [12,(2.1)] we get the following Artinian P-modules: 

5 = Hom^( I? /P , E), P-secondary with annihilator P and K — dim^ S = I, and 

T = Uom^R/a, E), a-secondary with annihilator a and 1\ — dim^ T = 1. Let 

A = S ® T\ Then A is Artinian with A' - d i n i ^ A = 1 by [10, Proposition 1]. Over 
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R, A = S ® T is Art inian and that is still reduced secondary representat ion for A 

and K-diiriH-4 = 1. K-d\mRS= K - dim/? A = 1. By [13,(1.12)] Pc G AttR(A). 

But P c is no t a minimal pr ime o f A. D 

1 a m extremely grateful to Professor R . Y . Sharp , T h e University of Sheffield-

England , for his valuable advice and suggest ions on this work . I a lso w ish to thank 

H a c e t t e p e University , Turkey , for financial s u p p o r t . 
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