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and M. S. SAMMAN, Jeddah, 

(Received July 8, 1991) 

l . INTRODUCTION 

There is a multitude of conditions each of which implies the commutativity of 
certain rings. The equivalence of few such conditions to that of commutativity of 
rings was established by Tominaga and Yaqub [17]. The list of these equivalent 
conditions was further enlarged by these authors in [18]. 

The major purpose of this paper is to extend the work of Tominaga and Yaqub 
[19], Ashraf et. al. [7], and Abujabal [4], for rings satisfying more general polynomial 
identities. In fact, several commutativity theorems can be obtained as corollaries to 
our results, for instance, [1, Theorem], [2, Theorem], [3, Theorem], [6, Theorem], [12, 
Theorem], [16, Theorem], [17, Theorem], and [18, Theorem]. 

Throughout this paper, R represent an associative ring not necessarily with unity 
1. Let Z(R) denotes the center of ft, N(R) the set of all nilpotent elements of ft, 
C(R) the commutator ideal of ft, A(R) a non-empty subset of ft, and VR(A(R)) 

the centralizer of a subset A(R) of ft. Z[t] stands for the totality of polynomials 
in t with coefficients in Z, the ring of integers. For any x, y in ft, we set as usual 
[x,y] = xy- yx. 

In the present paper, we consider the following properties: 

(I — _4(ft)): For each x € ft, there exists a polynomial /(A) in Z[A] such that 
x - x2f(x) € A(R). 

(I — A(R)): For each x 6 ft, either x £ Z(R), or there exists a polynomial /(A) 
in Z[A] such that x - x2f(x) G A(R). 

(II -A(R)): For every a£ A(R) and x G ft, [[a, x],z] = 0. 
(Ill): For every i , t /G ft, there exists integers k = k(x,y) ^ 0, rn = m(x,y) > 1 

and n = n(x, y) ^ 0 such that [#, xny — ymxk] = 0. 
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(Ill)': For every x, y G R, there exist integers k = ib(x, y) ^ 1, and m = m(x, y) > 

1 such that [x, xy - ymx f c] = 0 

(III)": For every x,y E R, there exist integers m = m(x, y) > 1 and n = n(x, y) ^ 

1 such that [x, x n y - y m x] = 0 . 

(Ill)"': For every x,yER, there exist integers ib = k(x,y) ^ 1, m = m(x ,y ) > 1 

and n = n(x, y) ^ 1 such that [x, x n y — ymx fc] = 0. 

(III)k: For every x , y G I?, there exist integers ib = ib(x,y) ^ 1, m = m(x,y) > 1 

and n = n(x, y) ^ 0 such that [x, x n y - ymx fc] = 0. 

(III)n: For every x , y G R, there exist integers ib = k(x,y) > 0, m = m(xyy) > 1 

and n = n(x, y) ^ 1 such that [x, x n y — ymx fc] = 0. 

( IV ) : For each y E R, there exists an integer m = m(y) > 1 such that [x ,x n y -

ymx f c] = [ x , x n y m - y m V ] = 0 for all x G R, where k ^ 0 and n ^ 0 are fixed 

integers. 

(IV)': For each y E R, there exists an integer m = m(y) > 1 such that [x ,xy — 

ymx f c] = [x, x y m - y m xfc] = 0 for all x G R, where Jb ^ 1 is fixed positive integer. 

(IV)": For each y E R, there exists an integer m = m(y) > 1 such that [x ,x n y — 

y m x] = [x, x n y m — y m x] = 0 for all x E R, where n ^ 1 is fixed positive integer. 

(V): For every x,y E R, there exist fixed integers k ^ 0, m > 1 and n ^ 0 such 

that [ x n y - y m x f c , x ] = 0. 

The major purpose of the present paper is to study the equivalence of the above 

listed properties with reference to the commutativity of the ring under consideration. 

2 . PRELIMINARY RESULTS 

In preparation for the proofs of our results, we first collect a number of well-known 

concepts and results. 

D e f i n i t i o n 1. A ring R is called left (resp. right) s-unital if x G Rx (resp. 

x G xR) for each x in R. Further, R is called s-unital if it is both left as well as right 

5-unital, that is x G xRC\ Rx for all x in R. 

D e f i n i t i o n 2. If R is 5-unital (resp. left or right), then for any finite subset F 

of R, there exists an element e in R such that ex = xe = x (resp. ex = x or xe = x) 

for all x in F. Such an element e is called the pseudo (resp. pseudo left or pseudo 

right ) identity of F in R. 

D e f i n i t i o n 3 . A ring R is said to be normal if every idempotent element in R 

is in Z(R). 
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L e m m a 1 ([15, Lemma 3]). Let R be a ring such that [x,[x, y]] = 0 for all x and 

y in R. Then [xk,y] = kxk~l[x,y] for any positive integer k. 

L e m m a 2 ([5, Lemma]). Let R be a ring with unity I and suppose that f is any 

polynomial function of two variables on R with the property that f(x + l,y) = f(x, y) 

for all x,y G R. If there exists a positive integer n such that xn f(x,y) = 0 for all 

x, y G R, then f(x, y) = 0 for all x, y G It. 

L e m m a 3 ([18, Lemma 1]). (i) Let <I> be ring homomorphism of R onto R*. If 

R satisfies (I - A(R)), ( / ' - A(R)) or (II - A(R)), then R* satisfies (I - <&(A(R))), 

(I - $(A(R))) or (II - <$>(A(R))) respectively. 

(ii) If A(R) is commutative and R satisfies (I — A(R)), then N(R) is commu

tative nil ideal of R containing C(R) and is contained in VR(A(R)). In particular, 

(iV(fl))2 C Z(R). 

(iii) If there exists a commutative subset A(R) of N(R) for which R satisfies 

(I — A(R)) and (II — A(R)), then R is commutative. 

L e m m a 4 ([20, Lemma]). Let It be a left (resp. right) s-unital ring. If for each 

pair of elements x and y in R, there exists a positive integer k = k(x,y) and an 

element e = e(x,y) of R such that xke = xk and yke = yk (resp. exk = xk and 

eyk = yk), then R is an s-unital ring. 

L e m m a QK ([17, Lemma 3]). Let R be a ring and let x,y G 12. If x = ykx for 

some natural number k, then x = ykmx for every natural number m. 

T h e o r e m K ([11, Theorem]). Let f be a polynomial in n non-commuting in-

determinates x\, X2, . . . , xn with relatively prime integral coefficients. Then the 

following are equivalent: 

(a) Every ring satisfying the polynomial identity f = 0 has a nil commutator ideal. 

(b) Every semi-prime ring satisfying f = 0 is commutative. 

(c) For every prime p, (GF(p))2, the ring of 2 x 2 matrices over the Galois held 

GF(p), fails to satisfy f = 0. 

Now, let P be a ring property . If P is inherited by every subring and every 

homomorphic image, then P is called an h-property. More weakly, if P is inherited 

by every finitely generated subring and every natural homomorphic image modulo 

the annihilator of a central element, then P is called an H-property. A ring property 

P such that a ring R has the property P if and only if all its finitely generated 

subrings have P, is called an F- property. 
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Proposition 1 ([10, Proposition 1]). Let P be an H-property, and let P' be an 
F-property. If every ring R with unity 1 having the property P has the property P', 
then every s-unital ring having P has P'. 

The following theorems are due to Herstein. 

Theorem H\ ([9, Theorem 3]). If R is a ring with center Z(R) such that for 

every a £ R there exists a polynomialpa(t) such that a — a2pa(t) G Z(R), then R is 

commutative. 

Theorem Hi ([8, Theorem 19]). Let R be a ring and let n = n(x) > I be an 
integer depending on x. If xn — x G Z(R) for all x G R, then R is commutative. 

3. MAIN RESULTS 

We obtained the following results. 

Theorem 1. The following statements are equivalent: 

(i) R is commutative. 
(ii) R satisfies (III)"' and (i' - A(R)) for a commutative subset A(R) ofN(R). 

Theorem 2. Let R be a ring. Then the following are equivalent: 

(i) R is s-unital and commutative; 

(ii) R is s-unital and satisfies (III) and (V — A(R))\ 

(ii)' R is left (resp. right) s-unital and satisfies (III)k (resp. (III)n) and (I,—A(R)) 
for some subset A(R) of N(R); 

(in) R is left or right s-unital and satisfies (IV). 

Following lemmas are essential in proving our theorems. 

Lemma 5. Let k = k(x,y) ^ 1, m = m(x,y) > 1, and n = n(x,y) ^ 1. If R 

is an associative ring which satisfies [xny — ymxk, x) = 0 for all x, y G R, then R is 

normal. 

P r o o f . Let e be an idempotent element in R and let x G R. Then there 
exist integers n = n(e,e -f ex(l — e)) ^ 1, m = m(e,e -f ex(l — e)) > 1 and k = 
k(e,e -f ex(l — e)) ^ 1 such that for x = e and y = e -f ex(l — e), we have [e,en(e -f 
ex(l - e)) - (e + ex(l - e))me*] = 0. So, en+1(e -f ex(l - e)) - c(e -f ex(l - e))me* -
en(e -f ex(l - e))e -f (e -f ex(l - e))me fc+1 = 0 . As ek = e for all Jb J> 1, we get 
ex(l — e) — ex(e — e2) = 0. Hence, ex(l — e) = 0 , that is exe = ex. Similarly. 
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there exist integers, n = n(e,e + (1 - e)xe) ^ 1, m = m(e,e + (1 — e)xe) > 1, and 
k = Jfc(e, e+( l - e )xe ) ^ 1 such that [e, e n (e+( l -e )xe) - (e+( l -e )xe) m e f c ] = 0. Thus, 
en+1(e + ( l - e ) x e ) - e ( e + ( l - e )xe ) m e f c - e n ( e + ( l -e)xe)e + (e + ( l -e)xe) m e f c + 1 = 0. 
So (1 — e)xe = 0 and thus exe = xe. Therefore, ex = xe for all x £ R. Hence, we 
find that e is central, and thus R is normal. • 

Lemma 6. Let R be a ring with unity 1 satisfying (III). Then N(R) C Z(R). 

P r o o f . Let a G N(R) and x G R. Then, we may assume that there are integers 
m\ = m(xia) > 1, ni = n(x,a) ^ 0 and k\ = k(x,a) ^ 0 such that xn i[x,a] = 
[x,ami]xkl for all x G R. Now, consider m2 = m(x,ami) > 1, n2 = n(x,am i) ^ 0, 
and Jt2 = Jfc(x,ami) ^ 0. Then as above we can write xn 2[x,am i] = [x, (ami)m2]x*2 = 
[x,amim2]x*2 for all x G ft. So xn i + f l 2[x,a] = [x, amim2]x*1+*2 for all x e R. Thus 
for any positive integer *, we have x n i + n 2 + +n<[x,a] = [x,amim2 m<]x fc l+ / :2+ +/:< 

for all x G ft. As a is nilpotent, a
m i m 2 m< = 0 for sufficiently large t. Hence, 

x n i + n 2 + +n«[x,a] = OforallxG R. Let n'(x) = n i + n 2 - + n t . So xn/W[x,a] = 0 
for all x G # . Set n' = max{n;(x), n ;(x+ 1)}. Thus xn'[x,a] = 0 = (x+l) n ' [x , a] for 
all x G I2 which by Lemma 2 yields [x, a] = 0 for all x £ R. Hence a G Z(R). • 

From Theorem I/2, we have the following. 

Theorem 3. Let R be a ring with unity 1 satisfying (III) and (I — A(R)) for a 
subset A(R) of N(R). Then R is commutative. 

Lemma 7. Let R be a ring with unity 1 satisfying (IV). Then C(R) C Z(R). 

P r o o f . The polynomial identity in (IV) can be rewritten as 

(1) xn[x,y) = [*,ym]xk forallxGI*, 

and 

(2) xn[x, ym] = [x, ym2]x* for allx G R. 

For n ^ 1 and k ^ 1, R is commutative (see the proof of Lemma 8). Thus, we can 
assume that n > 1 or Jb > 1. 

Now, replacing x by x + 1 in (1), we get 

(x + l)n[x, y]xk = [x, ym](l + x)*x* = xn[x, y](\ + x)k for all x, y G R. 
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So by Theorem K, we observe that C(R) C N(R), since x = en = I ) , and 

y = e\2 + ^21=1 ) fail to satisfy the identity 

(x + l ) n [x ,y]x*-x n [x ,y]( l + x ) * = 0 

in (GF(p))2. Hence, by Lemma 6, C(R) C N(R) C Z(R). • 

Lemma 8. Let R be an associative ring with unity 1 satisfying (IV). Then R is 

commutative. 

P r o o f . For n ^ 1 and k ^ 1, R is commutative by Theorem H2-
Now, we suppose that n > 1 or k > 1. If k = n, then xn[x,y] = [x,ym]xn , 

and by Lemma 7, we get xn[x,y] = xn[x,ym] . Therefore, xn[x,y — ym] = 0 and 
(x + l)n[x,y — ym] = 0 for all x,y £ R. By Lemma 2, we have [x,y— ym] = 0 for all 
x,y £ R. Therefore, R is commutative by Theorem H2- Without loss of generality, 
we suppose that n > k. Let t = 2 n + 1 - 2*+1. Then t > 0, for n > fc. By using (1), 

we see that 

*xn[x,y] = (2 n + 1 -2* + 1 )x n [x ,y ] 

= 2 n + 1 x n [x ,y]-2* + 1 x n [x ,y] 

= (2x)n[(2x),y]-[(2x),ym](2x) fc 

= 0. 

Hence by Lemma 2, t[x,y] = 0. Again, Lemma 1 and Lemma 7 together imply that 
[x',y] = J x ' - ^ y ] = 0 for all x and y in R. So xt G Z(#) for all x G ft. 

Further, using (1), (2) and the fact that C(R) C Z(R) by Lemma 7, we see that 

( l - y ^ - 1 ) 3 ) ^ ^ ^ - ^ ^ ^ ^ - * - ^ - - 1 ) 2 ^ ^ ^ ^ 

= [x ,y m ]x n -y( m - 1 ) 3 [x ,y m ]x n 

= xn[x,ym]-7nym-1y<m-1)2[x,y]xn 

= x n [x ,y m ] -my m ^ m - 1 )x n [x ,y] 

= xn[x, ym] - mym ( m"1 )[x, ym]xfc 

= xn[x,ym]-[x,ymV 
= 0. 

This implies that (1 - y ( m"1 ) 2)[x, y]x2 n" k = 0 for all x,yeR. Replacing x by x + 1 
and using Lemma 2, we get 

(3) ( l - t / ( m " 1 ) 2 ) [x ,y ] = 0 for all x ,yG ft. 
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Since, xx G Z(R), for all x G R, then by (3), we get 

[*,y- yiim-1)2+-] = (1 - 2/ t (m-1)2)[x,y] = 0 for all x,y G «. 

Thus y — t/ t(m"_1) + 1 G Z ( # ) , for m = m(y) > 1. Hence, ft is commutative by 

Theorem //2. • 

Now, we are in a position to prove our main results. 

P r o o f of T h e o r e m 1. It is straightforward to see that (i) implies (ii). 

Now, if R has unity 1, then the result follows from the Theorem 3. So we suppose 

that R does not contain unity 1. In view of Lemma 3 (i), R can be assumed to be 

a subdirectly irreducible ring without unity 1. Let x G R \ Z(R) be an arbitrary 

element. By hypothesis, R satisfies (I — A(R)) for some commutative subset A(R) 

of N(R), and thus there exists an element y G (x), the subring generated by x, and 

a positive integer m such that xm = xm~*~ly. Clearly, e = xmym is idempotent with 

xm = x m e , and also e is a central element by Lemma 5. Since R has no identity, 

e = 0. Again by Lemma 3 (ii), x is in the commutative ideal N(R) and [x, [x, a]] = 0 

for all a G A(R). Hence R is commutative by Lemma 3 (iii). This completes the 

proof. D 

P r o o f of T h e o r e m 2. Every commutative .s-unital ring satisfies (ii), (ii)', 

and (iii). 

If R satisfies (ii)', then we claim that R is s-unital. Let I? be a right s-unital 

ring, and let x,t/ G R- Then there exist an element e G R such that xe = x 

and ye = y. Also, there are integers m = m(x,e) > 1, n = n(x,e) ^ 1 and 

k = k(x,e) ^ 0 such that e

mxn+k+l = [x,xne - emxk]xn + xn+k+x = x n + f c + 1 . 

Similarly, if m = m(y, e) > 1, n = n(y, e) ^ 1 and k = k(y}e) ^ 0 are integers, 

then we have 

Hence, 

and 

So 

and 

em n +k +1 _ n +k +1 

emxn+n +k+k +2 _ xn+JЬ+n +k +2 

em n+k+n +к +2 _ n+k+n +k +2 

гmm xn+n +k+k +2 _ ^n+n +k+k +2 

emm n+n +k+k +2 _ n+n +k+k +2 

Then by Lemma 4, R is an s-unital ring. 
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Now, suppose that R is left s-unital. Let x and y be arbitrary elements of R. 

Then we can find an element e G R such that ex = x and ey = y. Further, there 
are integers ra = ra(x,e) > l ,n = n(x,e) ^ 0, and k = k(x,e) ^ 1 such that 
x n + 1 e = [ x , x n e - e m x * ] + x n + 1 = x n + 1 . Similarly, yn '+ 1e = y n ' + 1 . So by Lemma 4, 
R is s-unital, since x n + n ' + 1 e = x n + n ' + 1 , t /n + n '+ 1e = y n + n ' + 1 . 

According to Proposition 1, in both cases (ii) and (ii)', we may assume that R has 
unity 1. Hence, R is commutative by Theorem 3. Thus, any of the conditions (ii) 
and (ii)' implies (i). 

In case R satisfies (iii), then for n = k = 0 and for k ^ 1, R left s-unital (resp. 
n ^ 1, R right s-unital) as argued above, we may assume that R has unity 1. But 
also, for k = 0 (n ^ 1) and R left s-unital (resp. for n = 0 (k ^ 1) and R right s-
unital) one can see that R is in fact s-unital, and we can assume that R has unity 1. 
Hence again by Lemma 8, R is commutative. • 

Corollary 1 ([7, Theorem 1]). A ring R is commutative if and only if R satisfies 

(III)' and (I' - A(R)) for a commutative subset A(R) of N(R). 

Corollary 2 ([19, Theorem 1]). A ring R is commutative if and only if R satisfies 
(III)" and (I' - A(R)) for a commutative subset A(R) ofN(R). 

Corollary 3 ([7, Theorem 2]). If R is a left or right s-unital ring, then the 

following statements are equivalent: 

(i) R is commutative. 

(ii) R satisfies (III)1 and there exists a subset A(R) of N(R) for which R satisfies 

(I'-A(R)). 
(iii) R satisfies (IV)'. 

Corollary 4 ([19, Theorem 2]). If R is a left or right s-unital ring, then the 

following statements are equivalent: 

(i) R is commutative. 

(ii) R satisfies (III)" and there exists a subset A(R) ofN(R) for which R satisfies 

(I'-A(R)). 
(iii) R satisfies (IV)". 

Corollary 5 ([4, Theorem 1]). If R is a left or right s-unital ring which satisfies 

(V), then R is commutative. 

Corollary 6 ([12, Theorem]). Let m, n be fixed non-negative integers. Suppose 
that R satisfies the polynomial identity xn[x, y] = [x, ym] for all x, y G R. 
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(a) If R is left s-unital, then R is commutative except the case (m,n) = (1,0). 

(b) If R is right s-unital, then R is commutative except for (m,n) = (1,0); and 

aiso m = 0, n > 0. 

E x a m p l e 1. Let R be an algebra over GF(2) of dimension 4 with {l,a,6,c} 

as a basis which also satisfies the multiplication rule: 

a 2 = 1 -f a, a6 = c, ca = 6, ac = 6a = 6 -I- c, and 6c = c6 = 62 = c2 = 0. 

Then R becomes a non-commutative ring whose nilpotent elements commute among 

themselves. Let A(R) = N(R) which is a commutative subset of R. Then for any 

x G R, we see that x - x4 = x - x2(x2) G N(R) and also x - x 5 G N(R). Thus R 

satisfies (/ — A(R)). So R fails to be commutative if it does not satisfy (///)• 

E x a m p l e 2. Theorem 1 need not be true if we drop the condition that A(R) 

is commutative. For this, consider 

«0 a 6\ 

0 0 c ] : a , 6 , c E C F ( 2 ) 

Then R is a nilpotent ring of index 3 and thus, N(R) = R. Further, R satisfies 

(///). However, with A(R) = N(R), R also satisfies (/' - A(R)). But R is not 

commutative. 

R e m a r k 1. Example 2 also shows that Theorem 2 can not be extended for 

arbitrary rings. 

E x a m p l e 3. This example shows that condition (///) in Theorem 2 (ii) is 

essential for the ring R with unity 1 to be commutative. Let 

Я= ìа ( 0 6 c\ / l 0 0\ 

0 0 d ] and / = 1 0 1 0 I : a, 6, c, d G GF(2) 

0 0 0 / \0 0 1/ Then, it is easy to check that N(R) = {S}, and R does not satisfy (III). Let A(R) = 

N(R). Then for all x £ R, we have x - x2f(x) G A(R). However, R is not commu

tative. 

R e m a r k 2. In Theorem I, the condition (III)'" cannot be substituted by (III), 

and in Theorem 2, the condition (III)n, by ( / / / ) • In fact, we have the following: 
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( 0 C1FI1)\ 

) satisfies the con

ditions ( / / / ) and (/ - N(R)). Obviously, N(R) = [ ( ° ° J , ( ° M | is commu

tative. If y = ( I ° ) , ( ° ° ) o r ( ° | ) . t h e n y - y - = 0 . 1 f y = ( [ j J ) , t h e n 

y — y2 = y € N(R) and it is easy to see that xy — y2 = 0 for all x £ R. 

Acknowledgment . The authors are indebted to Professor V. Peric for the valu
able advice, which simplified several proofs or inspired the authors to improve some 
of the results. Thanks is also due to the learned referee for most valuable comments. 
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