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Czechoslovak Mathematical Journal, 43 (118) 1903, Pralia 

NOTE ON TURAN'S GRAPH 

DXNUT MARCU, Bucharest 

(Received November 11, 1991) 

Graphs considered in the paper are finite, undirected and simple (without loops 
or multiple edges), [1, 2] being followed for terminology and notation. We denote by 
S(p, q) the Stirling number of the second kind, that is, the number of partitions of a 
p-set into q classes. 

A k-partite complete graph is a graph consisting of k independent sets, such that 
two vertices are adjacent if and only if they belong to different independent sets. 

Turdn's graph, denoted by T(n,Ar), is a Ar-partite complete graph with n vertices, 
for which m parts contain t + 1 vertices and k — m parts contain t vertices, where 
n = kt + m and 0 -̂  m ^ k — 1. According to [3], T(n, k) is the unique (up to an 
isomorphism) graph with n vertices which does not contain (k + l)-cliques and has 
the chromatic number equal to k, its number of edges being maximal in the class of 
graphs with these properties. 

A (k-\-r)-colouring of a graph with n vertices and the chromatic number equal to k 
is a partition of its vertex set into Jb + r classes (0 .$ r ^ n — k) such that two vertices 
belonging to the same class are not adjacent, the order of class being indifferent. 

Theorem 1. The number C(n, k,r) of(k + r)-cohurings of T(?i, k) is given by 

C(n,k,r)= £ ( n ^ + l ,»0) ' ( ft S(t,m)\ 
ni + ...+ni. = fc+r 

P r o o f . By nt- for i = 1, . . . , k let us denote the number of classes of the 
partition of the i-th part of T(n, k) induced by a (k + r)-colouring of T(n, k). Then 

ni + . . . + njb = k + r 
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and 

n, ^ 1 for i = 1 , . . . , k. 

One can observe that all colourings with k + r classes of T(n, k) are obtained without 

repetitions from the divisions of k + r into k parts, two divisions being considered 

different if they differ only by the order of terms. 

Obviously, C(n, k, r) = 1 for r = 0 and r = n — k, and C(n, Ar, r) = 0 for r > n — k. 

D 

T h e o r e m 2. If we denote [A]* = A(A — 1) . . .(A — k + 1), then the chromatic 
polynomial ofT(n, k) is equal to 

P(T(n,k);X)= T ( m ) ( k ~ m ) 

9i + ...+<7.=fc-m 

xn(5(.+i,or-n(5(<,i))w[Au„ 
»=2 j = 2 

where 

p 0 9 = Pi + 2p2 + • • • 4- (t + l)pt+i + q\ + 2q2 + • • • + tqt. 

P r o o f . Obviously, the chromatic polynomial of a graph consisting of p isolated 
vertices is equal to 

Ap = £S(p,*)[A]fc. 
Jfc = l 

Thus, having in view the method of Read [4], we obtain 

/t + 1 \ m / t \ fc —m 

P(T(n,k);X) = l~2S(t + l,p)[X]p) ( $ > ( < , g)[A], ) , 
\ > = i ' \ = i ' 

where, by definition, 

[A]P[A]̂  = [\]p+q for all p and 9. 

Using the multinomial formula we obtain the result. D 
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comments, kindness and interest in this paper. 
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