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1. INTRODUCTION AND PRELIMINARIES

Let © be bounded domain of R? (d > 2) with boundary T; let f be a given function
defined in  and ¢ and g two given functions defined on I', ¢ and ¢ satisfying adequate
compatibility conditions. Recall that the Stokes problem consists in finding a pair
of functions (u, p) solution of:

—Au+Vp=f 1nQ,
divu = ¢ in Q,

u=g¢ onrl.

In two dimensions, this system is fairly simple because it can be reduced to a bihar-
monic equation. In higher dimensions, this problem is substantially more difficult;
it has been studied by many authors, from different points of view, and it would be
too long to list them all here. But to our knowledge, Cattabriga [13] was the first
to establish complete results of existence and regularity of the solution in the case
of an open subset of R3; he achieved this by using techniques of integral representa-
tions. Yudovich [40] and later on Solonnikov [33] obtained similar results by other
approaches. About the sane period, Geymonat [17] solved general elliptic systems,
that are extensions of the Stokes problem. More recently, Ghidaglia [18] studied,
in arbitrary dimensions, another generalization of the Stokes problem by means of
differential quotients.

The purpose of this paper is to propose a new approach to establish existence,
uniqueness and regularity of the solution of the Stokes problem in W™7(Q) x
Wm=1r(Q) for m > 0, namely by linking these results to a Helmholtz decomposition
of vector fields. Besides the fact that Helmholtz decompositions are very interesting
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as such (particularly, in practical applications), this approach has the advantage of
leading to a well-constructed theory, the arguments developed here being not only
straightforward, but also applicable to higher-order problems. Another advantage
is that it applies to domains of arbitrary dimensions, in many cases with optimal
regularity assumptions on the boundary and also to singular data. A sketch of this
theory has been announced in a note by the authors [5] and the complete proofs are
given in the report [6].

The regularity of the solution of the continuity equation:
divu=¢ inQ,
w=gy¢ on /I,

plays a fundamental part in studying the Helmholtz decomposition of vector fields.
The best-known contribution in this area is that of Bogovskii in [9] and [10], who
established regularity by considering an integral representation of the solutions. In
this paper we use a different argument, that does not require integral representations.
Instead, we use a powerful equivalence of norms proved by Necas in [27], on which
this work is based, and theorems on the trace of the divergence, proved by Héron in
[22]. One advantage of proceeding thus is that it extends, the results of Bogovskii,
and that of latter authors such as Borchers & Sohr [11], to singular data on the
boundary.

An outline of the paper is as follows. Paragraph 2 derives a simplified version
of De Rham’s theorem [30] which has here two important applications. First, it
permits to characterize a family of “divergence-free” function spaces. The lower
order spaces are associated with the Stokes operator and the higher order spaces

)

are assoclated with “generalized Stokes” operators, where the Laplace operator is
replaced by the biharmonic (or higher-order operators) and boundary conditions on
the normal derivative (or higher-order normal derivatives) are added to the standard
Dirichlet boundary condition. We refer to [7] for a study of “generalized Stokes”
operators. A second very useful application is a characterization of some distributions
by means of their gradient and is an extension of Necas’ theorem [27]. Somne of the
results of this paragraph have heen announced in a note by Amrouche [4]. We also
refer to a recent work of Simon [31] for a different proof of De Rham’s theorem and
its consequences.

Paragraph 3 uses the results of Paragraph 2 to show that the divergence operator
is an isomorphism between adequate spaces, which is a generalization of the well-
known “inf-sup” condition of Babuska [8] and Brezzi [12]. This, comnbined with an
important result of lléron [22] (that expresses the traces of the divergence of functions
in W™ (Q)), allows to construct functions in W™ () with prescribed divergence

and trace.
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Paragraph 4 is devoted to the Stokes problem. For m > 2, we first establish a
Helmholtz decomposition of the space W™ (Q) N W]’r(Q) by applying a result of
Agmon, Douglis & Nirenberg [3] valid for elliptic systems. From this we derive the
existence and uniqueness of the solution of Stokes problem in W™ (Q) x W™ =1L (Q).
By a duality argument introduced by Lions & Magenes [25], this result carries over
to m = 0 and by interpolating between m = 2 and m = 0, we complete the case
m = 1 and arbitrary . In turn, this permits to establish a Helinholtz decomposition
of the space W ().

We end with a short Paragraph 5 that decouples the pressure from the velocity

by a penalty method.

In the sequel, » denotes a real number such that 1 < r < oo and 7' stands for
its conjugate: 1/r+ 1/7" = 1. Recall that Z(Q) is the space of € functions with
compact support in  and 2'(Q) is its dual space. For any multi-index & in N¢, we
denote by 0% the differential operator of order k:

ok Ikl .
ot = 9k 0xkz | ggke’ with [k = ky + ko + .. ky
"y SR d

Then for i in N, 17 (Q) is the standard Sobolev space:
W Q) = {v e L'(Q); Yk e N 1 < [k <m, oFv e L7(Q)),

and W (Q) is the closure of Z(Q) in W7 (Q). It can be shown that for the

domiains € in which we shall work and for m > 1, this space is characterized by:
W) = {ve W™ (Q); Yk eN,OLk<m—1, po=0o0n I'},

where 7¢ denotes the normal trace operator of order k. The dual space of 1V, (2)
is denoted by 1= (), and this extends the definition of W™ () to all integer
values of m. If m = 0, Wi (Q) reduces to L7(2). When » = 2, the space 1V"7(Q)
(resp. W"T(82)) is usnally denoted by H™(2) (resp. HZ*()). The reader can refer
to Necas [28] or Adams [1] for other properties of the above spaces and to Grisvard

[21] for a careful study of the effect of nonsmooth boundaries.
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2. A SIMPLIFIED VERSION OF DE RHAM’S THEOREM

For any nonnegative integer m and any real number r such that 1 < r < oo, we

introduce the following spaces, closely related to the Stokes operator:

(2.1) Y ={vePN); dive =0},
(2.2) Vin,r = closure of % in W7 (Q),

where X denotes the space X“. For each integer m > I, we also define the space:
(2.3) U, ={ve Wy " (R); dive =0},

and for m = 0,

(2.4) Upr(2) ={veL"(Q); divv=0, v-n=0o0nT}.

When » = 2, it is proved in Temam [37] (cf. also Girault & Raviart [20]) that the
%

normal trace v - n belongs to H~2(I'). The arguments extend readily to the case
where » # 2.

The theorem below states De Rham’s Theorem, not with all its generality, since
De Rham established it for flows on a variety (cf. [30], Théoréne 17, p. 114).

Theorem 2.1. (De Rham) Let  be any open subset of R? and let f be a distri-
bution of 9/ (§2) that satisfies:

(2.5) Ve, (fv)=0.
Then there exists a distribution p in 2'(Q) such that

(2.6) f=Vp.

This theorem has an immediate application to the Stokes problemn (cf. the approach
of Temam in [37] and Lions in [24]), but De Rham’s Theorem is a very powerful and
difficult result because it deals with arbitrary distributions, whereas Stokes problem
involves in fact distributions for which we have much more information. In the case
where f belongs to H™!(Q) and satisfies (2.5), Tartar arrives in [35] at the conclusion
of Theorem 2.1, but with a much simpler proof; this approach is also developed by
Girault & Raviart in [20]. In this paragraph, we propose to extend the argument

of Tartar to the case where the distribution f belongs to W="7(Q). Previously,
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we require two basic results. The first one is an abstract algebraic result which is
known as the “Peetre-Tartar Lemma”, (cf. Peetre [29] and Tartar [34]), and has

many valuable applications.

Theorem 2.2. (Peetre & Tartar) Let Ey, E2, E3 be three Banach spaces, A an
operator in Z(Ey; E2) and B a compact operator in £(Ey; E3) satisfying:

(2.7) Vue By, lulle, = [ Aulle, + ||BullEs-

Then the following properties hold:

1) The dimension of Ker A = {v € Ey; Av = 0} is finite. The range space R(A) of
the operator A is a closed subspace of E4 and the mapping A: F\/ Ker A — R(A)

Is an isomorphism.

i) If (7 is a Banach space and M € Z(E,; GG) satisfies
Yu € Ker A\ {0}, Mu#0,
then,

(2.8) Yue Fy, ulle, = ||Au|le, + ||Mulla.

And the second result we shall use 1s an important equivalence of norms due to
Necas [27].

Theorem 2.3. (Necas) Let Q be a bounded Lipschitz-continuous domain of R¢,
m an arbitrary integer and r any real number with | < r < oo. There exists a

constant (! > 0, depending only on Q, mn and r, such that:

(2.9) Ve W™ (Q), Ifllwmrg) < CUIVSwm=rr ) + 1 fllwm-1r())-

Remark 2.4, Necas’ Theorem is diflicult to establish because the boundary of
2 is only Lipschitz-continuous. When the boundary of © is smoother, Tartar gives
in [35] a far simpler proof in the case where » = 2 and m = 0.

As a first application of these two theorems, the following corollary derives sone
properties of the gradient operator.

Corollary 2.5. Let Q be a bounded Lipschitz-continuous domain of R, m an
arbitrary integer and r any real number with | < r < co. We have:

113



1) The range space of the operator grad € L(W™"(Q); W™~1L7(Q)) is a closed
subspace of Wm=1L7(Q).

1t) If in addition Q is connected, there exists a constant C' > 0, depending only on
Q, m and r such that:

(2.10) vpe W™T(Q)/R  (Ipllwmra)yr < ClIVpllwm-1.-(q).-

i) For any open subset w of §, with positive measure, there exists a constant

Cw > 0, depending only on w, 2, m and r, such that:

(2.11) Vp e W™H(Q),  Ipllwnr) < Culllpllwmrw) + [IVPllwm-1.rq))-

Proof. The proof consists in applying Theorem 2.2 with the following corre-
spondence: £y = W™ (Q), E; = Wm17(Q), E3 = Wm~1Lr(Q), A = grad, B = i,
the identity operator. As the domain is bounded, the canonical imbedding i of E}
into E3 is compact. Besides, it i1s easy to show that

(2.12) Vpe W™ (Q), |lpllwm-1.rq) + IVPllwm-1.r0) < Clipllwm.r(a)-

Then, with the above correspondence, (2.9) and (2.12) yield the equivalence of norms
(2.7) and part 1) follows from part i) of Theorem 2.2.

Next, Ker(grad) = R when € is connected. Thus part i) of Theorem 2.2 also states
that the operator grad is an isomorphism from W7 (2)/R onto R(grad) and hence
there exists a constant C' > 0 such that:

Vp € W (@)/R, (Il ay/m = inf [lplw ) < CIVpllwn-voca)

Finally, let ¢ = W™ (w) and let M: W™ (Q) — W™ (w) be the identity map-
ping; as w has positive measure, then [|MAl|wm.rw) = [|A||wm.rw) > 0 for all A € R*
and (2.11) follows directly from the equivalence of norms (2.8). a

Part ii) of Corollary 2.5 has an interesting consequence concerning the space:
X = {F EWLT(Q); VSEW™T(Q)} .
Let us fix an arbitrary subset w of Q with positive measure, and define:

Pl = (pllw mr ) + 1 VPllwm=1r)-

Because w has positive measure, ||-|| is a norm on X, .. Moreover, owing to (2.11), ||-||
and || -||w m.r(n) are equivalent norms on W™ () so that W™ (2) is a Banach space
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for || - ||. The following corollary states that X, , coincides in fact with W™"(Q).
Its proof consists in showing that W™ () is dense in X,, . for the norm | - [|; we
skip the proof because it is entirely similar to that of Corollary 2.2, Chapter I of [20],
established in the case where m = 0 and r = 2.

Corollary 2.6. Let Q be a bounded Lipschitz-continuous domain of R4, m an
arbitrary integer and r any real number with 1 < r < oco. The following topological
and algebraic identity holds:

Xomr = W™ (Q).

In addition to the spaces defined by (2.1)-(2.4), we shall also use the polar spaces
Up

m,r

and Vp;, | defined by:

(2.13) Upyp = {y EW ™™ (Q); (y,0) =0, Vv e Um,r},
with a similar definition for V7 .

The next lemma establishes a first simplification of De Rham’s Theorem.

Lemma 2.7. Let Q be a bounded Lipschitz-continuous domain of R*, m a nonneg-
ative integer, r any real number with 1 < r < oo and 7' its conjugate: 1/r+1/r' = 1.
A distribution f € W=7 () satisfies:

(2.14) Vo € Uny, (fr@) =0,

if and only if there exists p € W=m*t17(Q) such that f = Vp. If in addition the
set § is connected, then p is defined uniquely, up to an additive constant, by f and
there exists a positive constant C, independent of f, such that

(2.15) IPllw -mt1.r ) < Cllfllw=m.r ().

Proof. Consider first the case where m > 1. Observe that the operator
—grad that belongs to L(W~"+1L7(Q); W~™7(Q)) is the dual operator of div
in _?’(Wg"r'(Q); W(;""I"I(Q)). But according to Corollary 2.5, the range space,
R(grad) is a closed subspace of W~™7(Q). Then the Closed Range Theorem of
Banach (cf. Yosida [39]) implies that:

R(grad) = (Ker(div))® = U,

m,r’-
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This is precisely the statement of the necessary condition of the lemma. Then the
upper bound (2.15) is an immediate application of (2.10). The sufficient condition
is obvious.

When m = 0, afunction f that satisfies (2.14) also satisfies it for m = 1. Therefore,
the above proof with m = 1 shows that f = Vp for some p in L"(Q2). Thus,
p € WHT(Q) and Corollary 2.5 yields the bound (2.15) when € is connected. O

With Corollary 2.6, this lemuma can be refined and gives a second simplified version
of De Rham’s Theorem.

Theorem 2.8. Let Q be a bounded Lipschitz-continuous domain of R, mn a
nonnegative integer, r any real number with | < r < co and »' its conjugate: 1/r +
1/r" = 1. Let f € W=™7(Q) satisfy:

Vee v, (f,e)=0.

Then the conclusion of Lemma 2.7 holds, i.e. there exists p € W=mtL7(Q) such that
f = Vp. If in addition the set Q is connected, then p is defined uniquely, up to an
additive constant, by f and there exists a positive constant C', independent of f,
such that (2.15) holds.

Proof. Let us assume that € is connected (otherwise, we can apply the argu-
E] [l .« o

ment below to cach counected component of 2). In view of Corollary 2.6, it suflices
r=—m+l,r
loc o
sequence (2 )y of Lipschitz-continuous, connected open sets such that € C Q

to show that f = Vp, for some p € 1} (2). To this end, consider an increasing

and U, = Q. Take any divergence-free function v in WE,"‘rI(Qk) ifm>1orvin
L"(QL.) with v -n = 0 on the boundary of € if n = 0 and let us extend it by zero
outside ;. Then the extended function, still denoted by v, belongs to U/, .. For
any € > 0, let (o:) be a sequence of mollifiers, i.e. . € Z(R?) and

oe(z) =0, -/R" 0. dz = 1, supp 0. C B(0,¢), Eli_l_l(l)ge =6 in ¢'(RY).
Then, for all sufliciently small £ > 0, we have:
0 *v € PYQ), div(ge ¥ v) = p. xdivv = 0.
As o, x v € ¥, the assuinption on f yields:
(f,0) = lim (£, 02 + ) = 0.

Then Lemma 2.7 applied in Q2 to fiq, implies that there exists pr € Jy-m+Lr(Q,)
such that fiq, = Vpi; and since pryy — pi is constant in Q, this constant can be
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chosen so that pry; = pr in 4, and hence f = Vp with p € W—™+1L7(w) for any
proper subset w of Q, 1.e. p € |;Cm+1‘r(Q). Therefore, by virtue of Corollary 2.6, p

belongs to W~="+1L.7(Q) and (2.15) follows again.from (2.10). O

Now we are in a position to prove that the spaces U,, , and V,, , are the same.

Theorem 2.9. Let Q be a bounded Lipschitz-continuous domain of R%, m a
nonnegative integer and r any real number with 1 < r < co. The space Vy,, , defined
by (2.2) coincides with the space Up, » defined by (2.3) or (2.4).

Proof. It suffices to prove that ¥ is dense in Up, . Let I be an element of
(Umn,r)" that vanishes on 7 and let us prove that [ = 0. As Up, , is a closed subspace
of Wi (), I has a (non unique) extension [ € W= ™ (Q). Thus (I, v) (1 v) for
all v € U,,,» and in particular, (1, <p> = 0 for all ¢ € ¥. Then, according to Theorern
2.8, there exists p € W=+17(Q) such that [ = Vp. Hence, (i,v) = (Vp,v) =0 for
any v € Uy, » and therefore (I,v) = <1-,v> =0forallve Uy,. O

We finish this paragraph with an important application of Theorem 2.8 showing
that distributions are determined by their gradient.

Proposition 2.10. Let Q be a bounded Lipschitz-continuous domain of R, m
any integer and r any real number with 1 < r < oco.

i) If p € 2'(Q) has its gradient in W™= (Q), then p belongs to W™ (Q). If
in addition Q is connected, then p satisfies (2.10). If Q is arbitrary (not necessarily
bounded nor Lipschitz-continuous), then p belongs to W™ (Q2).

1) When m > 0 and Q is connected, there exists a constant C' > 0 such that all
distributions p in 2'() with Vp in W™=17(Q) and [, pdz = 0 satisfy the bound

|IP|IW"‘ () X C”VP”Wm Lr(Q)-

Proof. The proof of part i) depends upon the value of m.

a) Let m < 0. Observe that
Yve ¥, (Vp,v) =—(p,divv) =0.

Therefore, according to Theorem 2.8, there exists a function ¢ € W™ () such that
Vp = Vq. Hence, the difference p — q is constant in cach connected component of Q
and as Q is bounded this implies that p belongs to W™ 7(Q). When § is connected,
Corollary 2.5 shows that p satisfies (2.10).
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b) Let m > 0. The argument of part i) shows that p belongs at least to L"(£2) and
therefore p is in W™7(Q) and (2.10) follows again from Corollary 2.5.

i1) We already know that that p belongs at least to L"(f2) and (2.10) holds. It
suffices to prove that there exists a constant C; > 0 such that for all p in L™(Q2)/R,
the representative p with mean-value zero satisfies:

Ipllz-q) < CillpllL-()/m-

On one hand, p has exactly one representative p with mean value zero. On the other
hand, p has a representative p such that

1Pl ) = lIPllL-(0)/m-

Then p=p — Fn-eﬁﬁj Jo Pdz and it satisfies

18- < (1 + meas(Q) ™)l r()/m-

a

Remark 2.11. This proposition is an extension of Theorem 2.3. It was proved
by Magenes & Stampacchia [26] in a domain of class ¥'!. Moreover, part ii) is
a generalized Poincaré-type inequality for functions with mean-value zero (cf. for
instance Dautray & Lions [14, vol. 3]).

Theorems 2.9 and Proposition 2.10 have been proved by Borchers & Sohr in [11].
Their proofs are based on the results of Bogovskii [9] and [10].

3. PROPERTIES OF THE DIVERGENCE OPERATOR

Recall the following result, valid for two reflexive Banach spaces M and .\’ (cf. Tay-
lor [36]): let Y be a closed subspace of X and B a linear operator from .X/Y into
M’ then its adjoint operator B’ is an isomorphism from M onto the polar space Y°
if and only if B is an isomorphism from X/Y onto M’.

The next corollary is a direct consequence of Lemma 2.7 and this result.

Corollary 3.1. Let Q be a bounded, connected, Lipschitz-continuous domain of
R?, m a nonnegative integer, r any real number with 1 < r < oo, and ' its conjugate.

1) The gradient operator is an isomorphism from W"’""I(Q)/R onto Vo 4y 5

ii) The divergence operator is an isomorphism from Wyth7(Q)/Vin41,r onto
Wt () N Lg(Q), where Ly () denotes the space of functions of LT () with mean-
value zero.
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As mentioned in the introduction, the second part of this corollary has been es-
tablished by Bogovskii in [9] and [10], who constructed explicitly this isomorphism
by means of integral representations.

The theorem of Babuska & Brezzi (cf. Babuska [8], Brezzi [12] or [20]) implies that
the statement of Corollary 3.1 with m = 0 is equivalent to an “inf-sup” condition
i the spaces Wé”' X LSI. This condition is used for instance in solving nonlinear
problems with divergence constraint.

Corollary 3.2. (“Inf-sup” condition.) Let Q be a bounded, connected, Lipschitz-
continuous domain of R* and let » be any real number with 1 < r < oo, and ' its
conjugate. There exists a constant 3 > 0 such that:

Jqrdiveds

inf sup
HELF' () veW) () ||v||w;"(n)||ll|

=z
L'(Q)

Lemma 3.3. Let Q be a bounded, Lipschitz-continuous, connected domain of R?
and r any real number with 1 < r < co. Let g € Wl“l/"’r([‘) and ¢ € L"(2) satisfy
the compatibility condition:

(3.1) /g-nda:/cpd;n.
r Q

Then there exists u € W7 (Q), unique up to an additive function of V; ., such that
(3.2) divu=¢inQ, u=gonTl.
Furthermore, there exists a constant C' > 0, independent of u,p and g, with

(3.3)

lu + vllwrr o) < CUlellLr) + llllwi-1/nr(ry)-

inf
veEV) »

Proof. Let wbe afunction in WHr(Q) such that w = g on I'. Green’s formula

and the compatibility condition (3.1) yield:

/(liV'w(la::/g~nda:/cp(lx,
Q r Q

so that divw — ¢ € L§(Q). Then Corollary 3.1 with m = 0 implies that there exists
a function ug € W(l]’r(Q), unique up to additive functions of V ., such that

divug = divw — ¢,
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and satisfying
mf ||u0 + ’Ule @) < C]” divw — (p”Lr(n)

The function u = w — uy satisfies both conditions (3.2) and for any v in V, ,, we have
w4+ vllwrr(a) < llwllwrr@) + w0 = vilwrra).

By taking the infimum of both sides of this relation, we derive
panf e+ vllwe ) < Collielie-@ + llgllwi-ireery),

where C3 > 0 is a constant that depends only on © and r. O

This lemma generalizes the standard result with ¢ = 0 and r = 2 (cf. for instance
[20] Lemma 2.2, p. 24). In addition, it covers Simon’s Lemma [32] stated for r = 2
and constant ¢. More precisely, we have:

Corollary 3.4. Let Q be a bounded, connected, Lipschitz-continuous domain of
R? and r any real number with 1 < r < co. For any ¢ € Wl_l/”(F), there exists
u € WLT(Q), unique up to an additive function of V; ,, such that

divu = #S(Q)/rgmda n§Q, u=gonrl.

Furthermore, there exists a constant C > 0, independent of u and g, such that

mf ||u+va1 () S C“g“wl V/rr (1)

Lemma 3.3 extends to higher order traces by applying the fundamental result
below, proved by Héron [22] (Lemme 3.3, p. 1316) in the case of H™ spaces.

Lemma 3.5. (Héron) Let Q be a bounded, connected domain of R of class 611

i) Every function u € H*(Q) satisfies:
(3.4) Yo(div u) = divp(yo(w):) + 71 (u) - n — 2Ky0(u) - n

where K denotes the mean curvature of T, divp is the surface divergence, v, =

v— (v-n)n is the tangential component of v and v; = 8 are the normal derivatives
of order 1.
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ii) Let m € N* and Q be of class €™*V!; every function v € H™+2(Q) satisfies:

m—1
Ym(divu) = divp Sy, + Z <J ) - grad By, _;

i=0
Q0
('5")) m—1 m
+ Ym+1u-n + Z < .)Bm-H-—j (7j - n),
j=0 J
where

Vi=0,...,m, S;= 1!2}(7]11) (— g—Ig)i_j,

and the functions B; are expressed in terms of the curvature tensor of I'.

Remark 3.6, [éron derives (3.4) (respectively (3.5)), by assuming that the
domain € is of class 63 (respectively ™*3). In fact, it can be checked that (3.4)
(respectively (3.5)) is satisfied in the sense of H'/(T) (respectively [™+/2(T))
whenever Q is of class 61! (respectively €™+ 1), The equation (3.4) is also proved
by Grisvard [21] when © is €1, In addition, the proof of Héron is easily transposecd
to the spaces W™m+27(Q) with m > 0 and r > 1.

Corollary 3.7. Let m > 0 be an integer, r any real number with | < r < oo
and let Q be a bounded, connected domain of R? of class €™+, For every g €
WmH2=1/mr (D) and ¢; € WmH2=i=1nr(1) i = 1,...,m+1, there exists a function
u € W2 (Q) such that

Yici(divu) =, i=1,...,m+1, u=yg¢ onl,

and a constant (' > 0 that depends only on 2, m and » such that

m+1
H”“W’"“x'(ﬂ) <C <||.‘I||Wm+2—1/r-r(r) + Z ||'/’i||Wm+2—-—1/m(r))-

i=1

Proof. Tosimplify the discussion, we shall only write the proof for mn = I; the
proof is simpler when m = 0 and pretty similar when m > 2. Set 1, = ¢ et 1pa = 0.
In view of the regularity of 2, there exists u € W37() hUCh that

u=g onl,
T1(w) = 2Kg —ndivr(ge) + ¥n on I,
y2(u) = On — (divp Sy + So grad By)n — Bog on I
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Owing to the assumptions, the right-hand sides above have enough regularity to
guarantee that u belongs indeed to W7(Q) and u can be chosen so that it depends
continuously upon the data g, 1 and 0. The functions S; and B; have the expression:

on

¢

By (§) = —2K(€), By(€) = 2 det (‘;—';) —AK2().

So =gt, 51 = gt + 2N gy,
In view of (3.4) and (3.5), it can be easily checked that u satisfies

Yo(divu) = 9, yi(dive) =0, w=g onT.

As a consequence, we can extend the statement of Lemma 3.3 to W""(Q).

Corollary 3.8. Let m helong toNU {=1}, r be any real number with 1 <r < ~
and let Q be a bounded, connected domain of R of class €™*41 (i.e. Lipschitz-
continuous if m = —1). For any g € W"t2=Un (1) and o € WML (Q) satisfving

the compatibility condition:

(3.6) /y-rl da:/cpd.n,
r Q

there exists u € W’””"(Q), unique up to additive functions of V49, such that
(3.7 divu=¢pinQ, u=gonTl.
Moreover, there exists a constant C' > 0 independent. of w, ¢ and g with

(3.8) inf  [Ju+ vllwmser ) < CUlellwmerr ) + lgllwmsz=1/eer))-
Ue‘/m+2,r

Proof. When m = —1, this is the statement of Lemma 3.3; so we can assume
that m > 0. Applying Corollary 3.7, we can find a function w € W™+27(Q) such
that

yi(divw) = 5i(¢), i=0,...,m, w=yg onl.

Gireen’s formula and the compatibility condition (3.6) yield:

/divwdz::/y-nda: / S du,
9} r Jq
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so that div w — ¢ € LjH(2) N W{,”“’(Q). Then, according to Corollary 3.1, there

exists a function ug € WSH'?'r(Q) (unique up to additive functions of Vp, 45, ) such
that
divug = divw — ¢,
and
illf ”'llo + v”Wm+2.r(Q) g C'” (liV w — (P”Wm—{-l‘r(fl).
VEV g2, r
The function © = w — ug satisfies (3.7) and we readily derive (3.8). a

4. STOKES PROBLEM

As mentioned in the introduction, we propose to solve the Stokes problem by
relating it to a Helmholtz decomiposition. This approach has the advantage of being
straightforward, it is valid in arbitrary dimensions, and in nearly every case it applies
to domains with miniinum regularity.

Recall that Stokes problem: consists in finding a pair of functions (u, p) solution
of:

(4.1) —Au+Vp=finQ,
(4.2) divu = ¢ in Q,
(4.3) u=gonTl,

for given functions f, ¢, g satisfying the compatibility condition (3.6). The homo-
geneous case corresponds to ¢ = 0 and ¢ = 0. In two dimensions, this problemn can
be easily solved by reducing it to a biharmonic problem. In three dimensions, the
salient result is Cattabriga’s [13] famous theorem:

Theorem 4.1. (Cattabriga) Let m be a strictly positive integer, r any real num-
ber with | < r < oo and let  be a hounded and connected domain of R, of class
6™ if m > 2 or of class € if m = 1. Assune that the data have the regularity:

f c Wm—'.?,r(Q), © c Hrm—l,r(Q), g€ W""‘/’V’(F),

and that the compatibility condition (3.6) between g and ¢ holds. Then the non-
homogeneous Stokes problem (4.1)-(4.3) has a unique solution u € W™ () and
p € WML (Q)/R and they satisfy the bound,

lullwm.r) + [IPllwm-1r@ym < CUIflwm-2r0) + llellwm=1r ) + Ngllwm=17rr)),
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with a constant ' > 0 that depends only on m, r and Q.

To illustrate the close relationship that exists between the solution of the Stokes
problem and the Helmholtz decomposition, let us start with the following classical

result that we prove by a new argument instead of the standard proof.

Proposition 4.2. Let Q be a bounded and connected domain of RY. For cvery
f € H(Q), the homogeneous Stokes problem has a unique solution v € H)(Q) and
p € L*(2)/R and there exists a constant C' > 0 that depends only on 2 such that:

(4.4) ([l + P2y < Cliflla-1q)-

Proof. To begin with, recall the decomposition (cf. for instance [20])
(4.5) H)(Q) =V Vi
where for the sake of simplicity, V stands for V} » and the characterisation of V'+:
(4.6) VE = {(-A)""'grad q, g € L)} .
Now, let us first solve the Laplace systemn of equations:
—Aw=f inQ,
w=0 onT.

It has a unique solution w € H}(2) and there exists a constant ¢/ > 0 that depends
only on  such that:

ol ) < CillfAla-r o)
In addition, since
/ divwdr = / w-nde =0,
Jo r
it follows from Corollary 3.1 with m = 0 and » = 2, that there exists a nnigue

function v € V4 such that div v = div w (note that in the Hilbert case, H}(€2)/1

can be identified with V+), and

[Tollar () < Coll divwllrza) < Call flla-1 (o)

Then, the characterization (4.6) of V4 shows that there exists a unique p € L2(S2)

such that —Av = Vp and

IPllLzay < CallVplla-1a) < Csllvllr ) < Collflla-1a)-

Thus, the pair (v = w — v, p) is a solution of the homogencous Stokes problem and
it satisfies (4.4). Since obviously the Stokes problem has at most one solution, it is

the only solution. O
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The above proof shows that the Stokes problem reduces to a standard Laplace’s
cquation, provided a decomposition of the form (4.5)-(4.6) exists. When m > 2,

there 1s a direct proof of this decomposition and therefore we divide the remainder

of this paragraph into three sections according to the value of m.

4.1. THE CASE m > 2

In order to prove for W (§2) a decomposition analogous to (4.5)-(4.6), we require
the following result.

Proposition 4.3. Let m > 2 be an integer, » any real number with | < r < oc
and let  be a bounded and connected domain of RY, of class €™~ 1. Suppose that
u € W2 (Q) and p € WHT(Q) is a solution of the homogenecous Stokes prohlen with
right-hand side f € W™=27(Q). Then v € W™ (Q), p € W™=L7(Q) and there
exists a constant C' > 0 that depends only on in,r and § such that

(47) HU”Wm,r(Q) + H])“Wm—x,r(n)/m S (/’”filwm—z,r(n).

Proof. The proofissimilarto that of Proposition 2.2 of Temam (cf. [37] p. 33).
It can be easily checked that the homogencous Stokes system can be expressed as
an clliptic system in the sense of Agmon, Douglis & Nirenberg [3] (pp. 38 -39 and
42-43). Indeed, take p = uqq4) and faqy1 = 0. The system (4.1)-(4.2), with ¢ = 0,

reads

d+1
(1.8) D LDy = fi, 1 <i<d+1,

J=1
where the matrix (1;(€)), for € = (&1,...,&) € R is defined by:

Ly = €176 i1 <, j <d,
liagr = lapri = =& M1 <i<d,
Lig1,ae1 =0,
el = &3 + ...+ €.
Take s; = 0,¢; =2 for I <4,j < dand sq41 = =1, gy = 1; the degree of the
polynomial {;; () is less than or equal to s; +1;. With the same notations, it is clear

that the determinant L(¢) = |€]>? vanishes if and only if € = 0, in other words, if

and only if the ellipticity condition (1.5) p. 39 of reference [3] holds as well as the
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uniform ellipticity condition (1.7) with m = d. The additional condition on L also
holds: indeed, it is obvious that the polynomial 7 — L(£ + 7&’) has exactly d roots,
with positive imaginary part, all equal to

TH(EE) = (=€ & +i(IEPIE” - 1€ - 1)) /e

As far as the boundary conditions are concerned, the matrix (Bp;) = (By;) is
given by
B),jzéhj, I<h<d 1<j<d+ 1.

Take r, = —2; the degree of the polynomial B; is not larger than rp+t; (considering

that B,; = 0 if , +¢; < 0). It remains to show that the complementary boundary

condition (2.3) of reference [3] holds. Let £ be a tangent vector and n a normal

vector at a point of I'. Denote by 77 (€, 1) the d roots of L(& + mn); then AIt (&, 1) =

(r—nt(&,n))? and 7Y (€, n) = i|¢]/|n]. Let (L7*) be the adjoint natrix of (I!;) = (Li;);
d+1 '

we readily check that the matrix )~ B} (£ + ) L% (& + tn) is, modulo Mt (&, 7), a
j=1

matrix of order d, and this shows that condition (2.3) holds.

Now, we are in a position to apply Theorem 10.5 of reference [3] p. 78; if the
domain 2 is of class €™, we obtain a weaker estimate than (4.7), namely:

““”W"’r'(ﬂ) + ||P”Wm—l-'(n)/n < Cl(”f”w"x—z,r(n) + dr | L'(ﬂ))»

where the constant €'y > 0 depends only on m,» and  and where d, = 0 if r > 2,
d, = 1if 1 < » < 2. In addition, by applying the material of Grisvard [21], we
verify that the estimate of Theorem 10.5 of reference [3] is valid for domains of class
%m—l,l.

Finally, since the domain is bounded, we can take d, = 0 when the solution
is unique (cf. Remark 2 pp. 668-669 of reference [2]). The uniqueness is obvious
from the above inequality when the domain is €. When the domain is at least
%!, uniqueness can be proved by induction, using an idea of Kozono & Sohr [23].
First, the solution u is unique for all » > rq = %, because in this case, 127 (Q)
is imbedded in H'(2). If #o < 1, the solution is unique for all 7; otherwise, the
conclusions of the remainder of this section are valid for all real numbers 7 in the
interval [rg,7(] and in particular, the statement of Proposition 4.11 shows that the
solution u is unique if it belongs to L™(€2) for some 7 in this interval. Hence, repeating
the above argument, we obtain uniqueness for all ro > r; = %, because in this
case, W2(Q) is imbedded in L™(Q). In this fashion, we gencrate a sequence of real
numbers r, = E% and the solution is unique for all » whenever d < 2+ 4k; in a

finite number of steps, this proves uniqueness for any dimension d. a
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Remark 4.4. The above proposition is not an existence result: it does not prove
that a solution satisfying the estimate (4.7) exists. It merely says that whenever a
solution exists in the adequate spaces, then this solution has necessarily the regularity

(4.7).

With Proposition 4.3, we can establish the analogue of the decomposition (4.5)-

(4.6).

Proposition 4.5. Let m > 2 be an integer, r any real number with 1| < r < oo
and let Q be a bounded and connected domain of R, of class €™~"'. The following

decomposition holds:
(4.9) W™ Q)N W(l,’r(Q) =(W™( )NV, ) (W™ (Q)NGy ),

where

Grp = {v e WIT(@): - Av= Vg€ L)

Proof. Denote by E (respectively, F') the left-hand side (respectively, right-
hand side) of (4.9). Clearly, F C E. The proof of the equality proceeds in two
steps.

1) irst, let us show that [ is dense in E. Observe that W™ (Q)N V; , is dense
in V) , for the topology of Wé’r(Q) (by virtue of the density of ¥ in V} ;). Similarly,
W™ (Q)N Gy is dense in (7, for the topology of Wé’r(Q). Indeed, let v € Gy ;
there exists ¢ € L"(Q) such that —Av = Vq. As 2(Q) is dense in L"(), there
exists ¢, € 2(Q) such that ¢, — q in L7(Q). This implies the existence of v, €
W™ (Q)yn WC','T(Q) solution of —Awv, = Vg, and such that v, converges to v in
W, (9).

Next, let L be a continuous linear functional on E such that
(L,v) =0 Vv € F,

and let us prove that L = 0. As F is dense in W(I,’T(Q), L has a unique extension
L € W1 (Q). Therefore

(L,v) =0 Yve Vi, &Gy,

In particular, <L,v> = 0 for all v € Vi, so that according to Lemma 2.7 and
Theoremn 2.9, there exists q € L"I(Q) such that L = Vq. Let z € W(l)’rl(Q) be the
solution of the problem —Az =Vqin Q, z = 0on I'. Then, for all w € (¢, we have,

0= (Vq,w) = (-Az,w) = (z, —Aw),
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which means that (z, Vp) = 0 for all p € L"(Q). In other words, div z = 0, and
hence z =0 and L = 0.

i1) Now, to establish (4.9), 1t suffices to prove that [7is closed in . To this end, let
U, = vy 4wy, be asequence such that v, € W™ (Q)NV] ., w, € W (Q)NG . and
Uy — u in W (Q) AW (), and let us show that u belongs to 7. The sequence
wy, satisfies —Aw, = Vq,, where q, € Wm=L7(Q). Set —Av, + V¢, = —Au, = [y
The pair (vn, ¢n) is a solution of Stokes problem (since div v, = 0in Q and v, = 0 on
I') with v, in W™ (Q) and ¢, in IW™=L7(Q) and right-hand side f,, in W™ =27(Q).

Then Proposition 4.3 implies that

onllwm.r ) + lgnllwm-1.r@yr < Cllfallwm-2-(q)-

Since [, is bounded in W™=27(Q), the sequences v, and ¢, are bounded respectively
n W”""'(Q)ﬂWé"‘(Q) and Wm=17(Q)/R. As a consequence, wy is also bounded in
W’”'r(Q)ﬁW(l,".(Q) (because the Laplace operator is an isomorphism of 11" (Q)N
W,"(R2) onto W™=27(Q)). Hence,

vy — v, w, — win W™(Q)N W(I)‘T(Q) weakly,

and

dn — q in WTLT(Q)/R weakly.

Moreover, it is easy to check that v € W™ (Q) N V)|, and
—Aw = Vyq,
which means that w € W™ (Q) N (. Therefore v = v + w belongs to F. a

This decomposition permits to solve the homogencous Stokes problem.

Theorem 4.6. Under the hypotheses of Proposition 4.5, for any f € W™ =27 ().
the homogeneous Stokes problem has a unique solution v € W""(Q) and p €
Wm=Lr(Q)/R. Moreover, there exists a constant ¢! > 0 depending only on m, r and
Q, such that

(4.10) el ey + [Pl m-1r e < CllSlwm-20(0)-

Proof. In view of Proposition 4.3, it suffices to establish the existence of
w € W2T(Q) and p € WHT(), but in fact, it will be just as easy to prove the
existence of u € W™ () and p € Wm=1r(Q).
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The idea of the proof is very similar to that of Proposition 4.2. We first solve the
Laplace’s system of equations: —Av = fin Q, v = 0 on I'; owing to the regularity
assumption on f, this system has a unique solution v € W™ (Q) OW(],‘"(SZ). Then,
applving the decomposition (4.9), v can be split uniquely into a sum v = w + w,
with v € W Q)N Vi, and w € W™ (Q) NGy ,r. Since —Aw = Yp, with
p € Wm=Lr(Q), we infer that v and p satisfy —Au+Vp = f, whence the result. O

Remark 4.7. It can be readily checked by interpolation that if s = m + a
where 0 < o < I and if the domain Q is of class €™ then u € W*(§) and
p € Wb (Q)/R whenever f € W*=27(Q). However, this result is probably not
optimal in the sense that the above assumption on € is a little too strong. It is
probably suflicient to suppose that Q is of class €.

Now, we turn to the nonhomogeneous problen.

Theorem 4.8. Let m > 2 be an integer, r any real number with | < » < oo and
let Q be a bounded and connected domain of R, of class €™ 1!, Let

fEW™2T(Q), o € WmL(Q) and g € wnEnr () < e < oo,

be given with g and ¢ satisfying the compatibility condition (3.6). Then the
nonhomogeneous Stokes problem has a unique solution v € W"™™(Q) and p €
Wm=1Lr(Q)/R. In addition, there exists a constant C' > 0 depending only on mn, r
and Q, such that

(A1) llwom ey + plw -1 )/
< CUfllwm=2r(a) + llellwm=-1.r ) + Ngllwm-1700(1))-

Proof. Corollary 3.8 reduces the nonhomogencous to the homogencous case.
Indeed, by fixing an adequate representative, we can find ug € W™ (Q), such that
divug =9 in 2, ug=gonl,

and
(1.12) lleolwm.r ) < Clllllwm=-1r) + llgllwn=1rmrr)),

where €' > 0 is a constant independent of u,¢ and g. Thus the nonhomogeneous
problem amounts to find u — ug € W™ (Q) and p € W= 17(Q)/R such that:

—A(u—up)+Vp=f+Aug in Q,
div(u —up) =0 in Q,

u—ug=0 onl.
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Theoremn 4.6 guarantees that this problem has a unique solution (u—ug, p) and (4.12)
and (4.10) yield (4.11). a

Remark 4.9. The same argument as in Remark 4.7 shows that the statement
of Theorem 4.8 extends to WW*" spaces for real s.

4.2. THE AUXILIARY CASE m =0

Unfortunately, the proof of Proposition 4.3 is not valid for m = 1 and, in this
case, we do not know how to apply directly the preceding approach. To turn this
difficulty, we shall first solve an auxiliary Stokes problem with m = 0, by formulating
it as the dual of a Stokes problem that corresponds to m = 2 and to which Theorem
4.8 applies. This idea lhas been introduced by Lions & Magenes in [25] to solve a
Laplace’s equation with singular data and it has been applied by Giga in [19] to
solve a Stokes problem with singular data on the boundary. Once an adequate result
is obtained for m = 0, we shall derive a similar result for m = 1 by interpolating
between m = 0 and m = 2. The reader can refer to Galdi & Simader [16] for a
different proof. They handle the case m = | in a domain of class € by considering
fundamental solutions in RY.

Before describing this technique, we must give a meaning to singular data for a
Stokes problem and we require some preliminary spaces. More precisely, we want to
show that, for the solution of the Stokes probleimn, a boundary condition of the formn

ur € W =1/"7(T) makes sense. To this end, we introduce the space
v(9) = {ue W'(Q); u=0,divu=0o0n r},

where, as before, 1 < r < oo and l— + 14 = 1. Equation (3.4) of Lemina 3.5 shows

!

that this space is also equal to:

Y(Q) = {u € Wz"I(Q); u= 0,%11 -n=20on F},

n
and the range space of the normal derivative v, : Y (Q) — Wl/""'l(l‘) is
Z(l) = {w € Wl/r"'(l"); w-n = O}.
Now, we define the space
X (Q) = {u e W, (); dive e WO""(Q)} ,
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which is a reflexive Banach space for the norm

lollx, (o) = ||v”w;"(n) + [ div U||w0‘-'(n)~

We skip the proof of the next lemma because it uses standard tools (cf. Temnan
(37] or Girault & Raviart [20]).
Lemma 4.10. The space 2(Q) is dense in X, ().

In the sequel, we shall also make use of the spaces
T.() = {veL"(Q); Ave (N(Q)'}, Tro(R) = {veT(Q); divv =0},
that are reflexive Banach spaces for the norm

lollz, ) = llvllLr() + [[Av]].,

where || - ||« denotes the dual norm of the space (X,/(R2))’. A technique of proof
stiilar, although more intricate, than that of Lemme 4.10, allows to prove that

Q) is dense in 7,(Q) and {ve 2Q); dive= 0} is dense in T} o(€).

Now, on one hand, the functions v of T, ¢(§2) are such that their normal trace v-n on
[ belongs to W=1/77(T). On the other hand, for all v in 2(), we have the following
Green’s formula
0
Yo ey(@, (Ang=(nag) - (n5E).

But recall that %‘f sweeps Z(I') when ¢ sweeps Y () and observe that the dual
space Z'(T') of Z(T) can be identified with the space {g € W~Y/""(T); g-n = 0}.
Therefore, by means of the density of 2(Q) in T,(Q) , we can show that if T is of class

€', then the tangential trace of functions of T} ¢(Q) also belongs to W=/""(T)
(i.c. the complete trace of v belongs to W=/""(T)) and

(4.13) Vo € Y(R), Vv € T,0(Q), (Av,¢) = (v,Ap) — <v* %> '

The following proposition is partly due to Giga [19] (who considered the case of a
domain Q of class €°°). We shall prove it in detail.
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Proposition 4.11. Let » he any real numiber with | < v < oc and let Q be a

hounded and connected domain of RY, of class €' Let the boundary data g satisfv
g€ W—l/r,r(l\)’ g-n= 0.

Then, the Stokes problem

(4.14) —Av+Vqg=01nQ,
(4.15) dive=01nQ,
(4.16) v=ygonl,

has exactly one solution v € L™(R2) and q € W='7(Q2)/R. Moreover, there exists a

constant (! > 0 depending only on r and Q such that

(1.17) ol

L)+l -1r-yr < Cllgllw=1/mrr)-

Proof. We shall first prove that if the pair (v,q), with v in L"(2) and ¢
in W=Lr(Q)/R, satisfies (4.14) and (4.15), then v belongs to T}.0(€2) aud thus the
boundary condition (4.16) makes sense.

For this, observe that, in view of the density stated by Lenuna 4.10, if a function
q belongs to IW=17(Q)/R then its gradient Vq belongs to (. (£2))" and

IValle < llglliv-1.r0)/-

Hence, if the pair (v,q), with v in L7(Q) and ¢ in IW=17(Q)/R. satisfies (1.1-1)
and (4.15), then Av € (\XN/(Q)); therefore v € T, () and its trace belongs to
W/,

Next, let us prove that problem (4.14)-(4.16) is equivalent to the variational for-
mulation (cf. [19]): find v € L"(R2) and ¢ € W~=17(Q)/R such that:
Ju

[v(=Au+Yp) — qdivu]de = - / e deo

Jrooun

(4.18) Yu € Y/(Q), Yp € W' (), /

Q0

where of course the integral signs denote adequate dualities. Indeed, let (v, ¢) he a
solution of (4.14)~(4.16); Green’s formula (41.13) yiclds for all v € Y/ (Q):

J .
—(Av,u) + (Vg u) = = (v, Au) + <!I, <)7> — {q,divu) = 0.

In addition, for all p € ‘V‘"'/(Q), we have

«;{1:\‘71»,\ == - (._\H\v'?',]i‘) + 0 ) =0,



(Here, we use the density of the functions of P(Q) with divergence zero in Ty o(2).)
This shows that the pair (v,q) is a solution of the variational formulation (4.18).
Conversely, we readily prove that if (v, ¢) satisfies the variational formmulation (4.18),
then (v, q) is a solution of problem (4.14)-(4.16).

Now, let us solve problem (4.18). According to Theorem 4.8 applied with mn = 2,
for each f € L™ () and p € H"Ol‘r (2)N L{;I(Q), there exists a unique u € Y (Q) and
p € WL'(Q)/R solution of:

—Au+Vp=finQ,
divu = ¢ in Q,
u=0onT.

[Furthermore, by virtue of the continuity of the mapping v, : IV':’"'I(Q) — I’l/'l/r"'l([‘)
and the estimate (4.11), for any pair (f, ) in L™ () x [Wy" () N Lj (Q)], we have:

/ du
g (I(r
r dn
du

[n other words, the mapping (f, @) — [ g5% do defines an element of the dual space
of L™ () x [lV(,l'rl(Q) O Ly ()], with norm bounded by Collgllw=17rr(1)-

Finally, obscrving that (L"I(Q))’ = L7(§2) and the dual of ”/01,7-'(9) N I,GI(Q) is
1 =b(Q)/R, we infer by Riesz’ representation theorem that there exists a unigue
v € L7(Q) and ¢ € W=7 (Q)/R satisfying (4.14)-(4.16) and the bound (4.17). a

< (7'1||U||w—l/r~r(r)||“||w2-r’(n)

<y

.’l||w—1/v~-r(1‘)(||f| L@yt ||<P”w1:r’(m)~

The next corollary relaxes the constraint on the data g.

Corvollary 4.12. We retain the assumptions of Proposition 4.11, but here we
suppose only that ¢ € W77 () satislies the compatibility condition (g -n, 1) = 0.
Then problem (4.14)~(4.16) has a unique solution v € L™ () and ¢ € W~=1"(Q)/R
and the bound (4.17) holds.

Proof. Let us solve the Newmmann problemn
Af=01inQ,
0

-— =g-nonl.
Jn

It has a nnique solution 0 € W17 (). Set w = V0; then w belongs to Ty () and

lwllr, o) = [lwllL- ) < Cllgllw =170 ry-

Let g = o — vo(w), g satisfics the hypotheses of Proposition 4.11, and therefore there
oxist vy nd go selution of problem (4.143-(4.16) with g replaced by ¢. Then the pair

of functinne v = vq 4w and ¢ Is tire requasd solution. ]
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Remark 4.13. The above arguments also allow to solve problem (4.14)-(4.16)
with a nonzero right-hand side f in (X,/(R2))’, a space just a little smaller than
W-L7(Q). Thus, for f given in (\X/(Q))" and ¢ given in W=/""(T) satisfying
(g -n, 1) =0, there exists a unique w in L"™(Q) and p in W=17(Q)/R such that

—Au+Vp=finQ, divu=0inQQ,

u=gonl.

This can be used to establish a Helmholtz decomposition analogous to (4.9) for
functions in 7, (Q).

Remark 4.14. There is another more familiar Helmholtz decomnposition that
can be derived directly for functions of L™(£2) (cf. Fujiwara & Moriinoto [15] and von
Wahl [38]). With the notation of Paragraph 2, we have

L'(Q) = Vo, & Vr,

where Y, = {Vq; q € lVlvr(Q)}. Indeed, let u € L™(R2) and let p € IWWH"(2)/R be
the unique solution of the nonhomogeneous Neumann problem:

Vg e WhT(Q), (Vp,Vq) = (1, Vq).

Then u — Vp € Vo ,; set v = u— Vp; therefore, v = v+ Vp with v € V5, and
p € WHT(Q). Moreover, assuming that the boundary is of class €11, there exists a

constant ' > 0 independent of u such that:

Ipllwrryr < CllullLr )

Clearly, this is a direct sum, because if v € Vp, 1s of the form v = ¥p with p €
WHr(€), then Ap =0 in Q and g% =0 on . Hence p is constant and v = 0.

4.3. THE cASE m =1

By interpolating between Theorem 4.8 with m = 2 and Corollary 4.12, we derive

our next result.

Corollary 4.15. Let » be any real number with 1 < r < oc, let 2 be a bounded
and connected domain of R? of class €' and let the data g satisfy

g€ Wl—l/r,r(F)
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and the compatibility condition frg -ndo = 0. Then, problem (4.14)-(4.16) has a
unique solution v € WH(Q) and ¢ € L™(Q)/R and there exists a constant C' > 0
depending only on r and Q such that

[[vllwrray + llallLr e < Cllgllwr-17er(ry-

Lemma 4.16. Let r be any real number with 1 < r < oo, let Q be a bounded
and connected domain of R? of class "' and let ¢ be given in L}y(Q2). Then, the
problem

(4.19) —Aw+V0=0inQ,
(4.20) divw = ¢ in Q,
(4.21) w=0onT,

has a unique solution w € W™ (Q) and 0 € L"(Q)/R and there exists a constant
(' > 0 depending only on r and Q such that

(4.22) [lwllwira) + [10llL-)yr < CllellLra)-

Proof. The uniqueness is obvious. To prove existence, we solve the homoge-
neous Neumann problemn

AY = ¢ in Q,
o
an =0onl.

It has a unique solution ¥ € W27 (Q2) and setting wy = V1), we have

llwollw.r) < CillellLr(a)-
Now, problem (4.19)-(4.21) is equivalent to finding w and 6 such that
—A(w — wg) + V(0 — AY) =0in Q,

div(w — wp) = 0 in Q,

w— wy = —wy on .

As wg -n =0 on I', the existence follows from Corollary 4.15; the continuity of the

trace yo: WHT(Q) — W!-1/"7(T) gives:

[lw — wollwr.ra) + 10 = Al Lrayr < Collwollwi-1/nr(ry < CallellLr(ay-

This proves (4.22). O



With this lemma, we can prove the decomposition of vector fields for m = 1.

Proposition 4.17. Let r be any real number with 1| < r < oo and let  he a
bounded and connected domain of R of class €'. The following decomposition
holds:

W (Q) = Vi, &Gy,

Proof. Letueg Wé”'(ﬂ). Then, div u € Lj(Q) and therefore, by virtue of
Lemma 4.16, the problem

—Aw+V0=01inQ,
divw = divu in Q,

w=0onT,

has a unique solution w € W} (Q) and 0 € L™(Q)/R and it satisfies

||ll)”w1.r(”) - ”()| LT(9)/R < ('“ div u||Lr(m.
Take v = u — wj; then v belongs to V; ,; and since v = v+ w, with w € (7 .. this is

the desired decomposition. a

This decomposition enables us to establish, with exactly the same proof, the ana-

logue of Theorem 4.6 with m = 1.

Theorem 4.18. Let r be any real number with 1 < » < oo and let Q he a
bounded and connected domain of R of class €', For cach right-hand side f €
-

W-17(Q), the homogencous Stokes problem has a unique solution w € W " (Q) and
p € L"(Q)/R. It satisfies the bound

[Jullwrry + IPllLryr < Clfllw-1rq),

with a constant C' > 0 depending only on r and 2.

Remark 4.19. Once the homogeneous Stokes problem is solved, the nonhomo-
geneous one can be solved as for m > 2.

Remark 4.20.  The regularity assumption on the domainis probably not optimal
when m = 1. This comes from the method of proof which makes use (because of the

interpolation) of the regularity required by the case where m = 2.
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Remark 4.21.  Let m belong to NU {=1}, » be any real number with 1 < r <
oo and let Q be a bounded, connected domain of R of class 4™+ It follows
from Clorollary 3.8 that the divergence operator maps W™+2r(Q) N W(l)"'(Q) onto
Wm+hrQ) N Ly(Q). Then, it follows from Proposition 4.5 if m > 0 or Proposition
417 iff m = —1 (assuming in this case that Q is of class €'1') that the divergence
operator is an isomorphism from W™+27(Q) N G, onto WL (Q) N Li(K).

5. THE PENALTY METHOD

This short paragraph is devoted to the penalty method introduced by Temam in
[37] to decouple the computation of the velocity from that of the pressure (cf. also
Dautray & Lions [14, vol. 7] or Girault & Raviart [20]).

Let (1w, p) be the solution of the homogencous Stokes problem with right-hand side

f. Recall that the penalty method replaces the Stokes system by:

(5.1) —Au, — éV divu, = f in Q,

(5.2) u: =0 on [,

where ¢ is a positive parameter that will tend to zero. The pressure is approximated
by setting p, = —Ldiv u, and obviously, u. is intended to approximate w. The next.
theorem, proved by Teman in [37] (cf. also [14] or [20]), establishes the convergence

of this method.

Theorem 5.1. Let Q he a bhounded, Lipschitz-continuous, connected domain of

R¢ and let f belong to H='(2). Then, as ¢ — 0,
u; — uw in HY(), pe — p in L*(Q),

where (u,p) is the solution of the homogencous Stokes problem with right-hand

side f.
The following theorem extends this convergence to W™ (§2).

Theorem 5.2, Let m > 1 be an integer, » any real number with 1 < » < oc and

let 2 he a bounded and connected domain of R, of class €™~ Y il > 2 or 41!
ifm = 1. For f given in W™=27(Q), let (u,p) he the solution of the homogeneous

Stokes problem. Then, as € — (), we have the convergence

. . 1. S melr
ue — uin W"(Q), p. = _:(hV”e — pin WMThT(Q),

<



Proof. System (5.1) is elliptic and has a unique solution u, in W™ (Q) that
satisfies the bound

[lue[lwm. ) < Cllfllwm-2-(q),

with a constant C' independent of €. Hence the sequence Vp, is bounded in
W™m=27(Q) and, since p. has mean-value zero (because u, vanishes on T), it follows
from Proposition 2.10, that the sequence p, is bounded in W™= (Q). Thercfore,
on one hand

divu. — 0 strongly in W™=17(Q).

On the other hand, u, tends weakly to u in W’”'"(Q)ﬂWé'r(Q) and p. tends weakly
to p in WMm=L7(Q) and it is easy to prove that the pair (u,p) is the solution of
the homogeneous Stokes problem with right-hand side f. By taking the difference
between this limit system and system (5.1) and applying Theorem 4.8 when m > 2

or Lemma 4.16 when m = I, we obtain:

lue = ullwm.r(a) + (Ipe = Pllwm-1rym < Clldivuclliym-1.r(q).

Therefore u, — uw and p. — p both tend to zero at the same rate as div u,, i.e. at

the same rate as €. O
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