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INTRODUCTION

In this paper we prove a theorem on the trace on dQ x (0,7') for functions in the
Sobolev space Wi (Qr) = {F105f,0.f (distr. sense) € Ly(0,T, Ly(Q))V]|a| < 2}
with I < p < ¢ < oo; here Qp = Q x (0,7) and @ C R™ with compact suffi-
ciently smooth boundary. Our results, which seem to be sharp, are applicable to
the Dirichlet- and Neumann problem for the heat equation and Navier-Stokes equa-
tions with inhiomogencous boundary conditions. The corresponding problems with
homogencous boundary conditions have been studied in L, (0, T, L,(R))-spaces with
q different from p by various authors: compare v. Wahl [7] for parabolic equations
and Twashita [4], v. Wahl [8] for the Navier-Stokes system. Our results, stated in
Theorem 1, generalize the classical trace theory developed for ¢ = p only (see La-
dyshenskaya [6], chapter 11, Lenima 3.4.; I'in and Solonnikov 3]); an elaboration of

part of their work can also be found in Weidemaier [9].

We use the method of integral representation introduced by the Russian school
(cf. Appendix A) and some weighted incqualities of Hardy-type (cf. Appendix B).

Let us fix our notation: T' is the boundary of  and I'r := T' x (0,7"). More-
n+1

over Q"TY(0,T%) := [](0,7%) for & := (K1, -+, kny1), Q" Ha) = (—a,a)* !,
i=1

Q' (o, B) = Q" () x (0,8) for o, > 0. The typical point in Q%L (a,B) x (0,T)

is denoted (x,t). The prime characterizes (n — 1)-dimensional quantities: thus we

write z € R" as © = (2/,2,), 2’ € R*~!. The t-coordinate is sometimes also referred

to as the (n + 1)-th coordinate. The superscript ~ always indicates the deletion of
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a coordinate, for example

N n,nv+l n+1

U= (Y1, Y1, Yit1, - Unp1) and Q@ "0, 7E):= ] (0,T%).
=1
ig{n,n41}

The natural norm in Ly(0,T, L,(£2)) is denoted by || - ||p,¢,.0-- We use the notation
¢* to emphazise the non-dependence of the constant ¢ on the quantity T.

MAIN RESULT

For the convenience of the reader we shortly introduce our notation used in the
description of the boundary of 2 and some function spaces on it.

For Q C R™ with compact boundary “Q € CU!” is defined as in the book by
Kufner [5], 6.2.2; this in particular implies that there exist finitely many open subsets
U; CR" (i=1,...,M) and invertible mappings ¥; € C! (Q1(a,ﬂ), R") such that

M
rnu; = ¥:(Q" !(a) x {0}), UrmU,»):r

QNU; = ¥:(Q* (a) x (0,8));

let us remark that ¥; equals A7'o@Q; in the notation of [5], 6.2.9, where Q;(z’, z,,) :=
(z',a(z’) + z,) with a certain a(-) € C''(Q"~!(a)) and A; is linear and invertible.
From the explicit form of @; it is easy to see that Ql_l is also C!'!. Moreover there

exists an open subset Uy C R" such that

M
TocQ, [J@nu)=2.
i=0
V7 defined by ¥7g(z,t) := g(¥;(z),t) is the pullback induced by ¥; in the spatial
variables. We denote by (<p,~),- a partition of unity on @ with ¢; € C=(R") and
suppp; C U; for 1 = 0,.
The spaces L,(I") (1 p < o0) are defined as in [5], 6.3.2: a function u defined
a.e. on I belongs to L,(T) iff wo ¥;(-,0) € L,(Q"*(a)) foreach i = 1,...,M; in

this case

lu”pl" = Z”uo\lj ”p Qr=1(a)’

The spaces Wp’(l"), s > 0, are defined similarly (see [5], 6.7.2 and 6.8.6). Finally we
define

Xpf (r) o= Lg (0,7, WD) N {g | 9] o5,y < 00} fora >0, f€(0,1)



with
Il “X,?,‘,,”mr) = ||Lq(0.T.W;'(F)) +1 |cg-”(r7)v
. 7‘
g — -1+
|.‘l|,l-2.n([-” = /0 h=t qﬁ)”An-H,hg“(;,q(o,’l‘—h,L,.(r))dh

With A1 9(6,0) = g(&, L+ h) — g(&,0) for € € T
Now we are ready to formulate our main result.

Theorem 1. Assume that Q@ C R" has compact boundary and belongs to the
class VY let 1 < p < g < oo and s(m) =2 —m —1/p.

(1) Hmn for cach k = I,...,n and i = C, 1 there is a unique linear continuous
mMap Yen: H"l?.'ql(QT) R ‘\,].:‘(‘;HJ.S("A)/2([~,].) such that yg [ = (')L”f‘l.T for f€ I} :=
lV,',""q'(SZI-) N{FLFC ) e CH) VEE (0,7)].

(i) Morcover the norm ol cach gy, 1s independent of T

Remark 2. The space ,\';:Z/Q(I’fr) coincides for ¢ = p with I’V’;'s/z(l‘qv) in La-
dyshenskaya [6].

Proof of Theoremm 1. The estimate for the spatial regularity follows from
the well-known trace theorem WI',”"’"(Q) S u ”Ir € W,?_m_l/"(l’) (cf. Kufner
[5], 6.10.3) together with an casy scaling argument in t. In the sequel we shall
concentrate on the proof for the time-regularity of the trace: since D defined above
is dense in H - ‘(SZ, ) and X ‘(m) “’””"(rf,-) is a complete space (two facts for which
the (routine) ])l()()f.\ will be bl\«(‘ll later in Lemima 3 and Lemma 4), 1t is suflicient
to consider f € D. Moreover, since f = Zl o f - @i (the ¢; are the functions of
the partition of unity introduced above) and since I'Nsupp pg = 0, it is suflicient to
consider f; := f-¢; (i =1,..., M). Furthermore we are going to reduce the proof
to a situation in half-space by flattening the boundary: for w with support contained
in U; we have (see [5], 6.3.9 Lenuna)

lullp,r < e - ”“(‘I’r‘('»0))”,),(2"-*(0);

applying the last inequality with u(-) = Apy1 40 fi(+,t) we see that it is sufficient
to prove
(1) I(q/;(ai'”fi))I.r,,:()'[3"("')/2(()"‘1(:1))((‘0,7‘)) IIf’”lVQ’(QT)y

(where || 0. 0.3(Qr=1(a)x(0,T)) is defined, of course, in the same way as |- | .o, 08Py ) but
with I ropld( ed with Q" () everywlhere). We further claim that the ldst incquality
follows from

(2) |(():-,:(\I’:fl)) |1‘n=0|L:2’5('")/2(Qn—i(('Jx|:{/"‘l‘)l. < ”\I’;fi“VVi‘;(Q_';_(cv,/})x(O,T))



(7 = 1,...,n). For the proof of this claim we note that by the chain rule for
weak derivatives (cf. [5], proof of 5.7.3) and the C'!'!-regularity of \Il,-_l the function
U*(0k fi) is a linear combination of spatial derivatives of ¥} f; with Lq,-coeflicients
(which do not depend on t). In order to pass from the r.h. side of (2) to the r.h. side of
(1), we remark that ¥} induces an isomorphism W2 (UinQ)7) — W21 (Q (e, B)T)
(use again the chain rule, the C'"'!-regularity of ¥; and \Il,-_', the trdusfornmtwu rule
for integrals and the fact that the Jacobians of ¥; and \lli_1 are in Lo,).

A last technical remark: for later use of the integral representation in Appendix A
it is useful to consider ¥} f; in (2) as being defined on R} x (0, 2T). This is possible,
since extending W7 f; by zero in its spatial variables and reflecting it (cf. Adawms [1],
p-83) in its t-variable yiceld a linear extension operator E7, which is continuous with
respect to the lfVPE,';—norn'xs and whose operator norm is bounded uniformly in 7.
Thus, denoting E7(¥} f;) by f again, it is enough to prove

(3) I(()}" |.¢- —0|£n s(m)/2(Qn-1(a)x(0, T)) < c* ||f”u’2;(ll1x(0,2T))'

In the sequel we shall prove (3). By density it is clearly no restriction to assume
that f € C? (_RT [0, ‘2T]) additionally. We start from representation (A.1) for 0" f:
splitting fo )de = fo Jdv + j, J)dv in the sum in the second line in (A.1)
we get
n+l
I IC) = H()+ > Bi{HP () + 1§ ()} form =0, 1,

where
A
™) )= [ [ 16+,
Qu+1(0,T%)
X h
Hél)(-) = / v~ (147) // t):’f(-+ y) - Ni(y,v)dydv,
0 Q‘n+](0,u_~_)
, T
H{() = / v / / O f(- +y) - Ki(y, v)dydv.
" Qr+1(0,v%)

We choose [ := (2,...,2,1) € N**! and & := (%, % 1) € R*T1. Abbreviating
(vH ) (2! t) := Hy(2',0,t), we find

(5) A +1,0G g @10y x(0,7=1) < - 10:(YH D) g, @n=1(a)x(0,T)
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(use |Ay+1.09(7)] < foh |g'(7+s)|ds and Minkowski’s integral inequality, cf. Wheeden
and Zygmuund [10], p. 143); now
A :
0D D1 < A0 Tl guangorey - 1Q7+(0, TP
' ”atf(("‘ll 0) t) + ) "p,Q"'H(O,Ti)

by (4) and Holder’s inequality; hence

o Tl =Pk, [|0ef((x",0,8)+ ) “,,,Qn+1(o,7'5.)

by kernel-estimate (A.2). Thus

1

n.é& n+l(0 T") 1/p

N0V 1) )l @r-1(a) < € .T-lsl(=1/p")=mek;

Trut1  T*n 1/p
(L [ 10+ v s Q)
0 0

n,n41
and conscquently, since | @ "1(0,T%)| = TI&-3/2 and Ky = 1,

T 1
(] 10Ol s )

T T [T*» X alp \11
X (/ (/ / Hatf(, Yns b+ Ynta )”;;‘nn—ldyndyn+l) dt) -
0 0 0

By Minkowski’s integral inequality the last integral does not exceed

/e < c* - T—n1~nj—3/2p

! T a/p \P/1 1/p
(_/0 (/0 (/0 ”atf('aynyt+yn+l)”;:lnn_l(lyn) dt) dyn+l> ,

which is majorized by

oT Trn a/p e
m(/ (/ 100/ (s 3 DI s i) “’)
0 0

after integrating out the y,4;-variable. These estimates imply
N —(meki+L
r.h. side in (5) < ¢* -h - T~ (mFitap) . 10 fllp,q, -1 x(0,7%n)x(0,27);

thus, abbreviating ¢ := -1—(‘2 —m— ;;), we see that
T 1/q
Y H 1l zge(@umr(ayx(0,m) = (/0 h (l+”)llA"+1Jt(7H1)HZ,.,,Qn—l(a)x(o,T—h)dh)
*  —(mekjt i T —1+e(1=0) g1\ ¢
s c - T 1T 2p/ . ( A h q e dh) ”6tf”p,q,n1x(0'27-);
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now 1—g = 3(m+ }) and the T factors in 11." last inequality cancel (since x; = ),

=2
as desired.
Let us turn our attention to H.g'): trivially, for h < T,

(6) [1Ant1 ,h(7”'.(zl))“P.q.Q""'(a)x(O,T—h) £2- ”'YH'.(!‘)"r.q.Q""(a)x(O,T)§

furthermore, using kernel estimate (A.3) (with s = 0), we get
(M

. h .
|7H;(;)("L"rt)| <c / p—(HEl+er )+ E(2-m) // [ Ii".{'f((r’,O,t)+y)|d.'l“"i
° Qr+i(0,v%)

we now represent the integrand as

{v—;lr(l+|£l)+%(e-€'l€n)} . {v-}(l+lsj—§)+’§(g—u,.) Y la‘g.f((xlo'l)_l_y)'}

(note that 1(2 — m) = g+ 1/2p); we choose € € (0, g/k,); Slder’s inequality (with
p’, p) in y-v space then yields

h ' iy
(8) r.h.side in (7) € ¢* - (/ v’1+’?(9'5'“")(1u) M
0
with
h
I:= / / pmHEl=DHEememn) yeroh £((2,0,1) + ) ["dydr,
Qrti(o,vx)

where in the first integral we took into account that |Q"*1(0, v&)| = vl&l; the first
integral clearly is proportional to h3(¢=¢"5=)_ Thus, by (7) and (8),

(9) I HS (Ol gnet(ay S € - hiEtemema) i

with

h ol
1::/ v—(l+|£‘%)+§(e—£~un)| (2 n-H(O‘ U’N‘)IX
0

v"n+1 y*n
X / /0 yf{p . ”d;l'f(s Un,t+ Yn+1 )“::,Rn—ld'.'/n(l.'/u+l(h’;
0

abbreviating Fj(yn,7) := y5? - 10! (-, Yn, T)”::'n"_“ (9) implies
! (# 1/q , ]
(10) ([ IS 01 guesat) ™ < -tbtememer
0

T b putett usn 4/p 4
X (/ (/ / 1;‘2*'5(‘3"""")/ Fi(yn, t + y,,+|)dy,,dy,,+ulv) d[) .
0 o Jo 0
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By Minkowski’s integral inequality the last integral does not exceed

yXn

) 1/p
! v T 2 ) K v 4)/]' p/q
(/ / (/ (‘l)"‘-+§(£—€ Kn) Fi(yn,t + yn+l)dyn) dt) dypprdv ,
0 0 0 0

which is majorized by

([

and thus also by

Kn

1/p
q/p rlyq
Fi(yn, T)dyn) (lT) (‘IU)

h*n 1/q

. T+h _ ) g/p
. hale—ewn) (/ (/ T ”“)z!'f(')'!/m 1-)||2‘n,._ldy,,) (lr) ;
0 0

liere we integrated out the y, 4y and v variables successively (recall that x,, 4, = 1).
By (6), (10) and the last estimates

(1)

T
ETLLAIT] _ —(14qe))| 1 [ONIT
|’112 'L’f:“'(Q"—‘(r\)x(ﬂ,T')) - /0 h e “A”+],I‘(7112 )“P:‘I.Q"_l(G)X(O,T—h)dh

T e T+h - . o/p
<c - h gekan ( Yot '||Oi'f(‘,ymT)”p,nn-ldyn) drdh
0 0 0
27 T ‘ h=n y alp
< / h—(l+ll£‘hn)(/ vt 10 S y",T)HZ,."_,dy") dhdr,
o Jo 0

the last step by Fubini’s theorem and since i < 7T'. By the Hardy-type inequality in
Appendix B, Lemma B.1(i) (applied with »r = q/p 2 1 = s, ¥ = &, and ¢ replaced
with € - p; note that then indeed ¢ -p -5 -r = ¢-€ - r,) we get for the inner integral
in the last line

r . hen . q/p
h_(1+qer~n)(/ yf."’ . ”('):'f(',yn:T)”;: ll""dy") dh
0 0 ’
q/p_

<o ([ IS gecrn)

using this estimate in the last line in (11) we get the desired result for Hg”.
Finally, let us turn to 11;‘,'); we again use (3) and observe that the correct expression
for dy(y11%") is obtained just by replacing k; (in the definition of II:(,')) by 9y, K;
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(integrate by parts); after estimating 0y, ,, K according to (A.3) we arrive at
(1) au(rHg )& 0|

T
<c* / o (MHlEltes) -3 // u5 - 08 £ (27,0, 1) + y) [dyde
h

Qr+1(0,0%)

(see (7); here the v-exponent is smaller by one, since dy,,, K; entails (in (A.3)) the

additional factor v~1); in the last integral we write the integrand in the form (unote
that —m/2 = ip+o—1)

{v—-,.lr(1+lil)—(1-e-6)}.{U—%(HI& 3)—(ernt6) 0% £,

where we introduced § € (0,1—9)N(0,1/q). Now we apply Holder's inequality (with
7', p) in y-v space and get

T . 1/
r.h. side in (12) < " - (/ v 1P '“_"_")du) SJMP
h
with

T .
J ::/ = (LHEI=3)—p(e-k0t6) // yer - |3:'f((1',0=")+y) |p(lydv;
’ G (0,0%)

from this we get (see (10))

T ) T Ve _ o (1=0-9)
(13) (/ ||6,(7H3')(-,t)||plq,,_,(a)dt) Lt hmmed)y
0

T T po"ntl R y"n a/p 1/q
X (/ (/ / ’U_"_P-(E-N"-Hs) / Fi(ynat + yn+l)dyndyn+ldv) (“) -
0 h 0 0

After applying Minkowski’s integral inequality and integrating out the y,,4; variable
(as after (10)) we see that the last integral does not excced

T T+v v n / r/q t/r
(/ U—l_p.(5'~"+6)(/ (/ Fi(yrnr)dyn)q p(lT) dv)
h 0 0
T l/
=: (/ g(v)dv) P;
h

from (5), (13) and the last estimate we get

|7H(1)|L°¢(Qn 1(a)x(0,TY) / WO Ay (1157 W7 0.@n=1(ayx(o,7—-n

T /p
L<c* / o198 (/ y(v)dv)q ’(lv;
0 13
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now we apply Lennma Bo(i) with » = s .= ¢/pand @ - r := 1 —¢6 < 1 and
get (since the total exponent of the weight on the r.h. side in this Lemma cquals

s (—a+ 1/s"+ 1/7), which equals ¢6 — 1 4+ ¢/p in our case)

T
<o / pT RO R) g ()alP gy
0

L%

) T (l4gena) T+v v . al. » q/p
=c - v o ( Yn ”()i f('wyrlxr)lll,‘mv.—\d'ln) drdo,
0 0 0

where we inserted the definitions of g and [I5. The last line 1s identical with the

second line in (11), so that the desired result for Iléi) follows.

Thus (3) and with it the Theorem are proved. a

We still have to prove two auxiliary results:

Lemma 3. Let the assumptions of Theoremn | be fulfilled. Then D is dense in
Vo) (2.

Proof. Take f € l“/}?"q'(er); clearly f(-,t) € II‘V,?(Q) for a.e. t € (0,7), say
on (0, 7)Y\ E, |F] = 0. Redefining f by f(-,4) = 0 for t € E, we may assume

JG 1) € W) for all t € (0, 7).

The approximation problem can be localized by considering fo;, ¢; from the

partition of unity. Next we will flatten the boundary: fix i € {1,..., M} and denote

= VU (fpi). Then v € P, which means the following: a function ¢ defined on
Q' (o, 3) x (0,7) is called spatially properly supported and we write g € P, if there
exists € > 0 such that supp (-, ) C Q" a —<) x[0,8—¢] fora.e. t € (0,T). Since
W induces an isomorphism WA ((U:NQ)7) — W2 Q% (o, B)r) and since for a & €
”,',‘ . (Q(a, B)r) NP we may regard (¥7)~'® as an element. of l'VQ’l(SZT) (by zero
centinuation), it is sufficient to solve the approximation problem in W" 1(Q (e, A1)
and in such a way that the approximating functions belong to P .1l>o. Since ug with
us(a! ey, t) = w(2', r, +6,1) tends to w in III;’(”( H(o, B)r) for & | 0 and s has
the same properties as u (for 6 small), it is suflicient to approximate us. To achieve

this, set
Up 1= 01k * ((u,,s)ﬂ()),

where py/p is the usual smooth mollifier with [loy/li g« = 1 and supp 17k C

B1/:(0), 0 = 0(x) is a smooth function with ¢ = 1 on m and supp0 C R*~! x

—0/2,~) and “+7 denotes convolution in x and " denotes extension by zero (in r)
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to the whole space. By standard arguments we then have for all ¢

uk(-,t)

— ((us)?6)(-,1) in WR") (k — c0),
e, Ollwzmn) < €
<

.. " ((115)00)(‘: t)"wg(l")

¢® - [I(u)°C, D)l wzemn-1x(=8/2,000) < € - U, Ollwz@u (w00
for 6 small; this implies by Lebesgue’s theorem
. 2 -
el gy gy — U0 i1 Ly (0.7, W2(Q3 (0, 8)).

Wlhat remains to be shown is

Auttk] gy o 3y — Detts in Lg (o,T, L,,(Q{;_(n-,;})));
this follows as above, if we show that

Iy - 0 H {mpn+! ny.

Dot = o1k + (((a,u),,) 0) in D' (R"*+! x (0,7));
the last line follows easily, if we show that
(14) 9 ((us)°0) = ((9e1)5)"0 in D' (R™! x (0,T));

to prove (14) take ¢ € C (R**! x (0,T)); then we have

AT/.../(1,6)003,¢

Rn+1
T B0
:/ / /.../(u,ﬂ)(‘)&)(t’,.-c,,,t)d.::'d.'xr,,(ll
0o J-s2
Qn—\(")
T B
:/ / /.../1[(1:’,1,,,()0(1",;::,, — 8)dp( xp — 6, 8)dz'dey,dt
o Qn=(a)
T .8
= / / / . / —..de'de,dt  (since 6 cuts off in »y,)
0 0 Qr-lia)
T B .
:/ / / gl (e 2, )02 2y — 8)dp2(2, 2y — 8, 8)dr drydt,
o))

16



whiere 7 is a smooth cut-off function with = 1on |J suppu(-,t) and 1 € P; the
1€(0,T)
last line can be rephrased as

/ / / /u(z Zn, N (2 2y, H)d2' da, dE,

Qn-1(a)

where G2, zp, t) := (2, z,)0(L, 2, — 8)p(2' s, — 6,t) belongs to (.'6"( o, B) x

(0,7). Now we may shift the d; from @ to u and reverse the above chain of reasoning

[

R+

to end up with

Lemma 4. Let the assumptions of Theorem 1 be fulfilled. Let o« € (0,2) and
3 € (0,1). Then ,\';,"’qf’(l“r) is complete.

Proof. Let (¢x) be a Cauchy sequence in .\'1‘,"'(1‘?(1%); then (g1 ) is also a Cauchy
sequence in L, (0,7, H'“(l')) and by the completeness of this latter space we find a g €
Ly (0,7, 050(1)) such that g — ¢ in Ly (0,7, 18,5(T)). This implies [|A, 41 n(gx —
Iille o r=nr 00 = lAng 1,0l = 9L 0, 7=h,L,(ry) for & — oc, so that by Fatou's
Lemma we may counclude |g — .([le-l;.ﬂ(rT) — 0 for j — oo. The proof is complete.

a

APPENDIX A

lHere we give the details about the integral representation used carlier: for a smooth
f we have (cf. II'in and Solonnikov [3], p. 70, (6) with m; =0, k; = 1)

0%f(a,t) = ’[' / / ((x, 1) + y) H(y, T)dy
Qn+l(0’[‘
n+1

+ZB/ p(147) // f((.L',l)+y)ﬂ,-(i7,v)0£'1b,'(y,~,u)dydv

=t Qr+1(0,v5)
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for v; <l — 1, where (cf. [3], pp.69-70)

n+1

. \ R \
Ny, T) = [ o7\ 1),
j=1

T3
\](I/]‘r]1) = ;,/;J_V)——l/ (’]"KJ _ S)IIJS/\J(IS’

Y,
' ntl
Wi(g.0) = [ a7\ 0).
Ve
il v) =y T (0 = )
with certain parameters {j, g5, A; € N and certain 4, B; € R; here k = (k... .,

fnp1) ER"Fand r = |5|+£'(A+ﬁ), where A := (Ar, ..., Ay41) ete. We choose the
parameters ji;, A; so large that (")z-k i(yi,v) vanishes for b = 1,...  at y; = 0 and
yi = v Hence, integrating by parts and introducing N;(y,v) := Ili(jlj, v)i (i, ),

0 < yi <0, we have show that

(A1) O%f(x, I)_ / / S, )+ )y, T)dy
QrH1(0,T5)
ntl
+Zl}i/ p= () / /d( (2, 0) 4+ y) Ni(y, v)dydo.
i=1 QrHi(0as

(‘The kernels 1) K in this represeutation clearly depend on v, 1, A, j¢, L but this de-

pendence is suppressed in our notation.) They satisfy (uniformly in y € Q"+1(0, v&))

(A.2) 0% (y, )] € e ermlElmE )yl gy
(A3) 05,4, Wil )] S e gy vl
(O<s<L I<i<n+1, ce(0,2)).
FFor the proofl of these inequalities, we first note that (‘)’-J+('Jx]-(_1/j,1f) is a linecar
combination of terms of the form (v — yj)U’y]L-) with o1 + 02 = j5 + Aj —vj — o,

02 > 0 (for A; large) and consequently
[(} J+“J\ 7/] ')I ,/]5_ . “""1(5'*'(‘7) . 1,"'1(!‘14”\1_”)) (U < yj g U"'))
for £ € (0, 02); this implies (for k =1,...,n—1)

KS— Ky -8k
)

| n+|“ (l)' U)‘ <e- ’/,El Ly TRRET RSy,

[ 41 H,,([/7 V) <e-uTRE pE A=K dn

€ —KNy € KS—Kyug10ng1
CUE = ,

nfl
|“"+|( U !l')l g - ynv v



where & := je+ A — . The definition of 3, eastly implies

Kk Uk +6x)

[V (e, )| < v ;
Ky € (Ut
|‘/'n Yn, 1' <y .‘ n vt (bt ))
—S Ky g1 (g1 465 .
‘ n+1'/n+|('/n+lx |<C L '“h + + +l)a

since N;(y, v) = ”,‘(_;7, )i (i, v), these formulas yield (A.3). For (A.2) compare I'in
and Solonnikov [3], p. 72.

APPENDIX B
\We state some basic inequalities.

Lemma B.1. Suppose that | < s < r < oo, f € L0, T7), 0 < g, v < =,
0< T <. Then

lll_l/'"n-f Jc~1/ (y) (II/HI Ol‘l”\(‘(. HI‘HL;(U T,

(ll ”J'—l/r+sw _fﬂ y—c——l/s f Y ‘IU“L (0T dr) < C(~~~)||f”Ls(0,T*):
where c(...) = c(e,y,1,8) =4~ 1/'(5) p=1=-141

Proof. Compare Besov [2], 2.15, p. 28. a

Putting s = » = [ in (1) and reformulating (i) (for ¥ = 1) in an cquivalent way,
we get a version which is sometimes handier for our purposes:

Lemma B.1'. Let the assumptions of the preceding Lemma hold. Then

i) jUI T [y f(y)dyde < e fg f(y)dy for all f € L(0,T), f>0;
() Ifa-r<1, Lh(n

/ Ity ‘IJ”1 (0.7,d0) S L7, ) ly atl/sf T WlL.co,7,a9),

for all [ with r.h. side linite.
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