Czechoslovak Mathematical Journal

Do Kong Tong
 The structure of a complete l-group

Czechoslovak Mathematical Journal, Vol. 44 (1994), No. 2, 265-279

Persistent URL:
http://dml.cz/dmlcz/128469

Terms of use:

© Institute of Mathematics AS CR, 1994

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

THE STRUCTURE OF A COMPLETE l-GROUP

DaO-Rong Ton,* Nanjing

(Received May 22, 1992)

1. Preliminaries

We will use the standard notation for l-groups, cf. $[1,4,7,8]$. Throughout the whole paper G is an l-group, R is the real group, Q is the rational group, Z is the integer group and N is the set of all natural numbers. Let $\left\{G_{\alpha} \mid \alpha \in A\right\}$ be a system of l-groups and $\prod_{\alpha \in A} G_{\alpha}$ their direct product. For an element $g \in \prod_{\alpha \in A} G_{\alpha}$, we denote by g_{α} the α component of g. An l-group G is said to be a subdirect sum of l-groups G_{α}, in symbols $G \subseteq^{\prime} \prod_{\alpha \in A} G_{\alpha}$, if G is an l-subgroup of $\prod_{\alpha \in A} G_{\alpha}$ such that for each $\alpha \in A$ and each $g^{\prime} \in G_{\alpha}$ there exists $g \in G$ with the property $g_{\alpha}=g^{\prime}$. An l-group G is said to be an ideal subdirect sum of l-groups G_{α}, in symbols $G \subseteq^{*} \prod_{\alpha \in A} G_{\alpha}$, if $G \subseteq^{\prime} \prod_{\alpha \in A} G_{\alpha}$ and G is an l-ideal of $\prod_{\alpha \in A} G_{\alpha}$. We denote the l-subgroup of $\prod_{\alpha \in A} G_{\alpha}$ consisting of the elements with only finitely many non-zero components by $\sum_{\alpha \in A}^{\alpha \in A} G_{\alpha}$. An l-group G is said to be a completely subdirect sum, if G is an l-subgroup of $\prod_{\alpha \in A} G_{\alpha}$ and $\sum_{\alpha \in A} G_{\alpha} \subseteq G$.

A subset $D \subseteq G$ with $0 \bar{\in} D$ is said to be disjoint, if $g_{1} \wedge g_{2}=0$ for any pair of distinct elements $g_{1}, g_{2} \in D$. For any $X \subset G$ we write $X^{\perp}=\{g \in G| | g|\wedge| x \mid=0$ for each $x \in X\}$. For $g \in G,[g]$ is the convex l-subgroup of G generated by $g,(g)$ is the polar subgroup of G generated by g. Clearly, $[g] \subset(g)$. We denote the least cardinal α such that $|A| \leqslant \alpha$ for each bounded disjoint subset A of G by $v G$, where $|A|$ denotes the cardinal of $A . G$ is said to be v-homogeneous if $v H=v G$ for any convex l-subgroup $H \neq\{0\}$ of the l-group G. A v-homogeneous l-group G is said to be v-homogeneous of α type if $v G=\alpha$. An l-group G is said to be $i c$-homogeneous of

[^0]β type if any nontrivial interval in G has the same cardinality β. Let α and β be two cardinal numbers. An l-group G is said to be of (α, β) type if G is v-homogeneous of α type and $i c$-homogeneous of β type. For example, R is an l-group of $\left(1,2^{\aleph_{0}}\right)$ type. The goal of this paper is to prove that any complete l-group G is l-isomorphic to an ideal subdirect sum of the integer groups Z and complete l-groups of (α, \aleph_{j}) type. Consequently, we can give a structure character for a complete l-group.

In [10] Jakubík proved that any complete l-group is a completely subdirect sum of v-homogeneous l-groups. Now we can strengthen this result.

Lemma 1.1. Any complete l-group is l-isomorphic to an ideal subdirect sum of complete v-homogeneous l-groups.

Proof. Let G be a complete l-group. Without loss of generality, by virtue of Theorem 3.7 in [10] we may assume that

$$
\begin{equation*}
\sum_{\delta \in \Delta} T_{\delta} \subseteq G \subseteq \subseteq^{\prime} \prod_{\delta \in \Delta} T_{\delta} \tag{1.1}
\end{equation*}
$$

where each $T_{\delta}(\delta \in \Delta)$ is a v-homogeneous l-group.
(1) First we prove that each $T_{\delta}(\delta \in \Delta)$ is complete. For each $\delta \in \Delta$ we put $\bar{T}_{\delta}=\left\{g \in G \mid \delta^{\prime} \neq \delta \Rightarrow g_{\delta^{\prime}}=0\right\}$. It is easy to verify that each \bar{T}_{δ} is a direct factor of G and it is a folklore that each direct factor of a complete l-group is again complete. Hence \bar{T}_{δ} is complete and thus T_{δ} is complete as well.
(2) We prove that G is an ideal subdirect sum of $T_{\delta}(\delta \in \Delta)$. Let $0<g \in \prod_{\delta \in \Delta} T_{\delta}$, then $g_{\delta_{0}}>0$ for some $\delta_{0} \in \Delta$. Let $\bar{g}_{\delta_{0}}$ be the element in $\prod_{\delta \in \Delta} T_{\delta}$ whose δ th component is $g_{\delta_{0}}$ and all other components are zero. Then it follows from (1.1) that $\bar{g}_{\delta_{0}} \in G$, and so $0<\bar{g}_{\delta_{0}} \leqslant g$, therefore $G \subseteq^{\prime} \prod_{\delta \in \Delta} T_{\delta}$ is a dense l-subgroup of $\prod_{\delta \in \Delta} T_{\delta}$. Let $\left\{x^{\alpha} \mid \alpha \in A\right\} \subset \prod_{\delta \in \Delta} T_{\delta}$ and $x \in \prod_{\delta \in \Delta} T_{\delta}$. Suppose that $x^{\alpha} \leqslant x$ for all $\alpha \in A$, then there exists $x_{\delta}^{\prime}=\bigvee_{\alpha \in A}{ }^{\left(T_{\delta}\right)} x_{\delta}^{\alpha}$ for any $\delta \in \Delta$. Put $x^{\prime}=\left(\ldots x_{\delta}^{\prime} \ldots\right)$, then $x^{\alpha} \leqslant x^{\prime}$ for all $\alpha \in A$. Assuming that y is any upper bound of $\left\{x^{\alpha} \mid \alpha \in A\right\}$, we have $x_{\delta}^{\alpha} \leqslant y_{\delta}$ $(\alpha \in A)$ for any $\delta \in \Delta$. Thus $x_{\delta}^{\prime} \leqslant y_{\delta}$ and $x^{\prime} \leqslant y$. Therefore $x^{\prime}=\bigvee_{\alpha \in A}\left(\prod_{\delta \in \Delta}^{\left.T_{\delta}\right)} x^{\alpha}\right.$. On the other hand, G is complete. So it follows from Lemma 2.3 in [3] that G is an l-ideal of $\prod_{\delta \in \Delta} T_{\delta}$, i.e.

$$
G \subseteq^{*} \prod_{\delta \in \Delta} T_{\delta}
$$

The following lemma is an immediate consequence of Theorem 1 of the fourth chapter in [7].

Lemma 1.2. Any non-zero complete totally ordered group is l-isomorphic to the real group or the integer group.

2. v-HOMOGENEOUS l-GROUP OF \aleph_{i} TYPE

R and Z are complete v-homogeneous l-groups of 1 type. In this section we will discuss the character of a non-totally ordered complete v-homogeneous l-group. First of all we have

Lemma 2.1. Let G be v-homogeneous and non-totally ordered. Then $v G \geqslant \aleph_{0}$.
Proof. Since G is not totally ordered, there exist incomparable elements $a, b \in$ G. Put $a_{1}=a-(a \wedge b), b_{1}=b-(a \wedge b)$ and $g=a_{1} \vee b_{1}$. Then the set $\left\{a_{1}, b_{1}\right\}$ is disjoint and the convex l-subgroup [g] is not totally ordered. Since G is v-homogeneous, [b_{1}] is not totally ordered, either. Thus [$0, b_{1}$] is not a chain by 4.3 in [10]. Hence there exists a disjoint subset $\left\{a_{2}, b_{2}\right\} \subseteq\left[0, b_{1}\right]$ and $\left\{a_{1}, a_{2}\right\}$ is clearly a disjoint set. Analogously we can construct disjoint sets $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}(n=1,2, \ldots)$. Then the set $\left\{a_{n}\right\}_{n=1}^{\infty}$ is disjoint as well, it is a subset of $[0, g]$. Hence $v G \geqslant \aleph_{0}$.

Thus, if G is a v-homogeneous and non-totally ordered l-group, then there exists an infinite cardinal \aleph_{i} such that G is a v-homogeneous l-group of \aleph_{i} type.

From Lemma 1.1, Lemma 1.2 and Lemma 2.1 we get
Proposition 2.2. Any complete l-group G is l-isomorphic to an ideal subdirect sum of real groups, integer groups and complete v-homogeneous l-groups of \aleph_{i} type.

Proposition 2.3. Let G be an Archimedian v-homogeneous l-group of \aleph_{i} type and $G \neq\{0\}$. Then G has the following properties:
(1) G has no basic element,
(2) G has no basic,
(3) the radical $R(G)=G$,
(4) G is not completely distributive,
(5) the distributive radical $D(G)=G$.

Moreover, every non-trivial convex l-subgroup of G enjoys the same five properties.
Proof. By Theorem 5.10 in [4] we need only to prove (1). For any $0<a \in G$, $v[a]=v G>1$. So $[a]$ is not totally ordered, and by 4.3 in $[10],[0, a]$ is not totally ordered, either.

An l-group G is said to be continuous, if for any $0<x \in G$ we have $x=x_{1}+x_{2}$ and $x_{1} \wedge x_{2}=0$, where $x_{1} \neq 0, x_{2} \neq 0$. An l-group G is said to be of countable type, if $v G \leqslant \aleph_{0}$.

Example. Let S be the set of all real, mesurable, almost everywhere finite functions $x(t)$ on a closed interval $[a, b] \subseteq R$. The algebraic operations are introduced in S in the usual way. The class of positive elements is selected in S with the aid of the following definition: we define $x>0(x \in S)$ if $x(t) \geqslant 0$ almost everywhere, but in this connection $x(t)>0$ on a set of positive measure. Mutually equivalent functions are identified, i.e., they are viewed as the same element of the set S. It is easy to see that S is a complete vector lattice of countable type [12], and it is also easy to see that S is continuous.

Lemma 2.4. A complete l-group G is continuous if and only if G has no basic element.

Proof. The necessity is clear. Suppose that G has no basic element and $0<$ $x \in G$. Then $[0, x]$ is not totally ordered. By a standard argument there exist $a_{1}, b_{1} \in[0, x]$ such that $a_{1} \wedge b_{1}=0$. Since G is complete, $[x]$ is also complete. From the Riesz decomposition theorem of a complete l-group we have

$$
\begin{equation*}
[x]=a_{1}^{\perp} \boxplus a_{1}^{\Perp} . \tag{2.1}
\end{equation*}
$$

Further, $a_{1} \in a_{1}^{\Perp}$ and $b_{1} \in a_{1}^{\perp}$, so $a_{1}^{\perp} \neq 0, a_{1}^{\Perp} \neq 0$. From (2.1) we have

$$
x=x_{1}+x_{2}, \quad 0<x_{1}<x, 0<x_{2}<x \text { and } x_{1} \wedge x_{2}=0
$$

Hence G is continuous.

Lemma 2.5. Let G be a projectable and non-totally ordered l-group. Then G is directly decomposable.

Proof. Since G is not totally ordered, there exist $a_{1}, b_{1} \in G$ such that $0<a_{1}$, $0<b_{1}$ and $a_{1} \wedge b_{1}=0 . G$ is projectable, so

$$
G=a_{1}^{\perp} \boxplus a_{1}^{\Perp},
$$

where $a_{1} \in a_{1}^{\Perp}, b_{1} \in a_{1}^{\perp}$.
An l-group is said to be ideal subdirect irreducible if G cannot be expressed as an ideal of an ideal subdirect sum of non-zero l-groups.

Lemma 2.6. A complete l-group G is directly indecomposable if and only if G is ideal subdirect irreducible.

Proof. Necessity. Suppose that $G \neq\{0\}$ is directly indecomposable. If $G \subseteq^{*}$ $\prod_{\delta \in \Delta} G_{\delta}$, then $\sum_{\delta \in \Delta} G_{\delta} \subseteq G$. Put $\bar{G}_{\delta}=\left\{g \in G \mid \delta^{\prime} \neq \delta \Rightarrow g_{\delta^{\prime}}=0\right\}$ for $\delta \in \Delta$. Then there exists $\delta \in \Delta$ with $\bar{G}_{\delta} \neq\{0\}$ and

$$
G=\bar{G}_{\delta} \boxplus \bar{G}_{\delta}^{\perp},
$$

where $\bar{G}_{\delta}^{\perp}=\left\{g \in G \mid g_{\delta}=0\right\}$.
The sufficiency is obvious.

Lemma 2.7. An Archimedean l-group G is subdirectly irreducible if and only if the Dedekind completion G^{\wedge} of G is ideal subdirect irreducible.

Proof. Necessity. Suppose that G is subdirectly irreducible. If $G^{\wedge} \subseteq^{*} \prod_{\delta \in \Delta} G_{\delta}$ then

$$
G \subseteq^{\prime} \prod_{\delta \in \Delta} G_{\delta}^{\prime}
$$

where $G_{\delta}^{\prime}=G \varrho_{\delta}$ and ϱ_{δ} is the projection from G^{\wedge} onto G_{δ} for $\delta \in \Delta$. So G^{\wedge} must be ideal subdirect irreducible.

Sufficiency. Suppose that G^{\wedge} is ideal subdirect irreducible. Since any non-zero complete l-group is l-isomorphic to an ideal subdirect sum of real groups, integer groups and complete v-homogeneous l-groups of \aleph_{i} type, by Lemma 2.5 any complete v-homogeneous l-group of \aleph_{i} type is directly decomposable. So $G^{\wedge}=R$ or Z and G is a subgroup of reals.

Now from Lemma 2.4, Lemma 2.5 and Lemma 2.6 we have

Proposition 2.8. Let G be a complete v-homogeneous l-group of \aleph_{i} type. Then (1) G is continuous,
(2) G is directly decomposable,
(3) G is not ideal subdirect irreducible,
(4) G has a closed l-ideal.

Moreover, each nontrivial convex l-subgroup of G enjoys the same four properties.
From Lemma 2.7 and Proposition 2.8 we obtain

Corollary 2.9. An Archimedean v-homogeneous l-group of \aleph_{i} type is not subdirectly irreducible.

Now let G be an Archimedean v-homogeneous l-group of \aleph_{i} type. Then the divisible hull G^{d} of G is a vector space over Q. If $\left\{x_{\alpha} \mid \alpha \in A\right\}$ is a disjoint subset in G^{d}, then $\left\{x_{\alpha} \mid \alpha \in A\right\}$ is linearly independent. In fact, suppose that there exists a finite subset $\left\{x_{\alpha_{1}}, \ldots, x_{\alpha_{n}}\right\}$ in $\left\{x_{\alpha} \mid \alpha \in A\right\}$ which is linearly dependent. That is, there exist $\lambda_{i} \in Q(i=1, \ldots, n)$ (not all 0$)$ such that

$$
\lambda_{1} x_{\alpha_{1}}+\ldots+\lambda_{n} x_{\alpha_{n}}=0 .
$$

Then we have

$$
x_{\alpha_{i}}=\sum_{k \neq i}\left(-\frac{\lambda_{k}}{\lambda_{i}}\right) x_{\alpha_{k}}
$$

for some $\lambda_{i} \neq 0$. But in this case $x_{\alpha_{i}} \wedge x_{\alpha_{k}} \neq 0$ for some $k \neq i$, a contradiction. Conversely, if $\left\{x_{\alpha} \mid \alpha \in A\right\}$ is linearly independent, then $\left\{x_{\alpha} \mid \alpha \in A\right\}$ need not be a disjoint subset. In particular, we have

Proposition 2.10. Let G be an Archimedean v-homogeneous l-group of \aleph_{i} type. If $\left\{x_{\alpha} \mid \alpha \in A\right\}$ is a maximal linearly independent subset in G^{d}, then $\left\{x_{\alpha} \mid \alpha \in A\right\}$ is not disjoint.

Proof. Assume that $\left\{x_{\alpha} \mid \alpha \in A\right\}$ is a maximal linearly independent subset in G^{d}. If $\left\{x_{\alpha} \mid \alpha \in A\right\}$ is disjoint, take some $x_{\alpha_{0}}\left(\alpha_{0} \in A\right)$. Then $x_{\alpha_{0}}=x_{\alpha_{0}}^{\prime} / n$ with $x_{\alpha_{0}}^{\prime} \in G$ and $n \in N$. Since G is v-homogeneous l-group of \aleph_{i} type, $v\left[x_{\alpha_{0}}^{\prime}\right]=v G>1$. So there exist $0<y_{\beta_{1}}, y_{\beta_{2}} \leqslant x_{\alpha_{0}}^{\prime}$ such that $y_{\beta_{1}} \wedge y_{\beta_{2}}=0$. Since $\left\{x_{\alpha} \mid \alpha \in A\right\}$ is maximal linearly independent, there exists a finite subset $\left\{x_{\alpha_{i}} \mid i=1, \ldots, n\right\}$ of $\left\{x_{\alpha} \mid \alpha \in A\right\}$ such that $\left\{y_{\beta_{1}}, x_{\alpha_{i}} \mid i=1, \ldots, n\right\}$ is linearly dependent. Hence $y_{\beta_{1}}=\sum_{i=0}^{n} \lambda_{i} x_{\alpha_{i}}$. It is easy to see that $y_{\beta_{1}}>0$ implies $\lambda_{i} \geqslant 0(i=0,1, \ldots, n)$ by the Bernau representation of an Archimedean l-group (see Theorem 3.3 in [5]). It is also easy to see that $x_{1} \wedge x_{2}=0$ if and only if $\lambda_{1} x_{1} \wedge \lambda_{2} x_{2}=0$ for $x_{1}, x_{2} \in G^{d}$ and $\lambda_{1}, \lambda_{2} \in Q$. Hence, if $\alpha_{i} \neq \alpha_{0}$, then

$$
\begin{aligned}
0=y_{\beta_{1}} \wedge x_{\alpha_{i}} & =\left(\sum_{j=0}^{n} \lambda_{j} x_{\alpha_{j}}\right) \wedge x_{\alpha_{i}}=\left(\bigvee_{j=0}^{n} \lambda_{j} x_{\alpha_{j}}\right) \wedge x_{\alpha_{i}} \\
& =\lambda_{i} x_{\alpha_{i}} \wedge x_{\alpha_{i}} .
\end{aligned}
$$

So $\lambda_{i}=0(i=1, \ldots, n)$ if $\alpha_{i} \neq \alpha_{0}$. Thus there exists $j \in\{1,2, \ldots, n\}$ such that $\alpha_{j}=\alpha_{0}$. Then

$$
y_{\beta_{1}}=y_{\beta_{1}} \wedge x_{\alpha_{j}}
$$

and by an analogous method as above we get

$$
y_{\beta_{1}} \wedge x_{\alpha_{j}}=\lambda_{j} x_{\alpha_{j}} \wedge x_{\alpha_{j}}=\left(\lambda_{j}+1\right) x_{\alpha_{j}}
$$

hence $\lambda_{j}+1>0$. Put $=\lambda_{j}-1=\lambda_{0}$. Thus $y_{\beta_{1}}=\lambda_{0} x_{\alpha_{0}}$. Similarly, $y_{\beta_{2}}=\mu_{0} x_{\alpha_{0}}$. But in this case

$$
y_{\beta_{1}} \wedge y_{\beta_{2}}=\lambda_{0} x_{\alpha_{0}} \wedge \mu_{0} x_{\alpha_{0}} \neq 0
$$

a contradiction.

3. COMPLETE $i c$-HOMOGENEOUS l-GROUP OF \aleph_{j} TYPE

In this section we will discuss properties of a complete $i c$-homogeneous l-group of \aleph_{j} type.

Proposition 3.1. Let G be a complete ic-homogeneous l-group of α type and $v G=\aleph_{i}$. Then $\alpha=\alpha^{\aleph_{j}}$ for any $\aleph_{j}<\aleph_{i}$ if i is a limit ordinal, and $\alpha=\alpha^{\aleph_{i}}$ if i is not a limit ordinal or $\aleph_{i}=\aleph_{0}$.

Proof. Suppose i is a limit ordinal and $\aleph_{j}<\aleph_{i}$. Then there exists a bounded disjoint subset $\left\{x_{\alpha} \mid \alpha \in A\right\}$ in G with $|A|=\aleph_{j}$. Put

$$
x=\bigvee_{\alpha \in A} x_{\alpha}
$$

Consider the mapping $\varphi: y \rightarrow\left\{y \wedge x_{\alpha}\right\}$ of the lattice $[0, x]$ onto $\prod_{\alpha \in A}\left[0, x_{\alpha}\right]$. By the infinite distributivity of $[0, x]$ it is easy to show that φ is an isomorphism. Hence $\alpha=\alpha^{\aleph_{j}}$. If i is not a limit ordinal or $\aleph_{i}=\aleph_{0}$, then there exists a bounded disjoint subset $\left\{x_{\alpha} \mid \alpha \in A\right\}$ in G such that $|A|=\aleph_{i}$. So we have $\alpha=\alpha^{\aleph_{i}}$ similarly as before.

Proposition 3.2. Let G be an ic-homogeneous l-group of \aleph_{j} type. Then the divisible hull G^{d} of G is also an ic-homogeneous l-group of \aleph_{j} type.

Proof. Suppose $0<g \in G$. Then $\operatorname{card}[0, g]^{G}=\aleph_{j}$. If $g^{\prime} \in[0, g]^{G^{d}}$, then $g^{\prime}=\bar{g} / m$ with $\bar{g} \in G$ and $\bar{g}=m g^{\prime} \in[0, m g]^{G}$. Hence

$$
\begin{aligned}
\aleph_{j}=\operatorname{card}[0, g]^{G} & \leqslant \operatorname{card}[0, g]^{G^{d}} \leqslant \operatorname{card}\left(\bigcup_{m=1}^{\infty}[0, m g]^{G}\right) \\
& \leqslant \aleph_{0} \cdot \aleph_{j}=\aleph_{j} .
\end{aligned}
$$

So

$$
\operatorname{card}[0, g]^{G^{d}}=\aleph_{j}
$$

Now assume $0<g \in G^{d}$. Then $g=g^{\prime} / n$ with $g^{\prime} \in G$, and so

$$
\operatorname{card}[0, g]^{G^{d}}=\operatorname{card}[0, n g]^{G^{d}}=\operatorname{card}\left[0, g^{\prime}\right]^{G^{d}}=\aleph_{j}
$$

Lemma 3.3. Let $\left\{G_{\delta} \mid \delta \in \Delta\right\}$ be a collection of ic-homogeneous l-groups of \aleph_{j} type. If $|\Delta|<\max \left\{v G_{\delta} \mid \delta \in \Delta\right\}$, then any subdirect sum $G \subseteq^{\prime} \prod_{\delta \in \Delta} G_{\delta}$ of $\left\{G_{\delta} \mid \delta \in \Delta\right\}$ is also ic-homogeneous of \aleph_{j} type.

Proof. For any $0<x \in G \subseteq^{\prime} \prod_{\delta \in \Delta} G_{\delta}$, let $x=\left(\ldots x_{\delta} \ldots\right)$. Consider some $\delta_{0} \in \Delta$. For any $y_{\delta_{0}} \in G_{\delta_{0}}$ with $0 \leqslant y_{\delta_{0}} \leqslant x_{\delta_{0}}$ there exists $z \in G$ such that $z_{\delta_{0}}=y_{\delta_{0}}$. Then

$$
(z \vee 0) \wedge x \in[0, x]^{G}
$$

So there exists a one-to-one mapping from $\left[0, x_{\delta_{0}}\right]^{G_{\delta_{0}}}$ into $[0, x]^{G}$. Hence

$$
\operatorname{card}\left[0, x_{\delta_{0}}\right]^{G_{\delta_{0}}} \leqslant \operatorname{card}[0, x]^{G} \leqslant \operatorname{card} \prod_{\delta \in \Delta}\left[0, x_{\delta}\right]^{G_{\delta}}
$$

By Proposition 3.1 we have

$$
\aleph_{j} \leqslant \operatorname{card}[0, x]^{G} \leqslant \aleph_{j}^{|\Delta|}=\aleph_{j} .
$$

That is,

$$
\operatorname{card}[0, x]^{G}=\aleph_{j} .
$$

For any nontrivial interval $[a, b]$ in G we have

$$
\operatorname{card}[a, b]^{G}=\operatorname{card}[0, b-a]^{G}=\aleph_{j} .
$$

4. The structure character of a complete l-Group

In this section we first give some properties of an l-group of $\left(\aleph_{i}, \aleph_{j}\right)$ type.

Lemma 4.1. Let G be a complete l-group of $\left(\aleph_{i}, \aleph_{j}\right)$ type. Then
(1) $\aleph_{j}^{\aleph_{l}}=\aleph_{j}$ for any $\aleph_{l}<\aleph_{i}$ if i is a limit ordinal and $\aleph_{j}^{\aleph_{i}}=\aleph_{j}$ if i is not a limit ordinal or $\aleph_{i}=\aleph_{0}$.
(2) $\aleph_{i} \leqslant \aleph_{j}$. If i is not a limit ordinal or $\aleph_{i}=\aleph_{0}$, then $2^{\aleph_{i}} \leqslant \aleph_{j}$.

Proof. (1) It follows from Proposition 3.1.
(2) Let G be a complete l-group of $\left(\aleph_{i}, \aleph_{j}\right)$ type and [$0, g$] a nontrivial interval in G. Assume that neither i is a limit ordinal nor $\aleph_{i}=\aleph_{0}$. Since $v[g]=v G=\aleph_{i}$, there exists a disjoint subset $\left\{x_{\alpha} \mid \alpha \in A\right\}$ in $[g]$ such that $|A|=\aleph_{i}$. Then $\left\{x_{\alpha} \wedge g \mid \alpha \in A\right\}$
is also a disjoint subset in $[0, g]$. For a subset A_{β} of A, put $z_{\beta}=\bigvee_{\alpha \in A_{\beta}}\left(x_{\alpha} \wedge g\right)$. Then $z_{\beta} \in[0, g]$. Using the Bernau representation of a complete l-group, it is easy to see that $A_{\beta} \neq A_{\beta^{\prime}}$ implies $z_{\beta} \neq z_{\beta^{\prime}}$. (In fact, $[g]$ is a complete l-group. There exists a maximal disjoint subset M in $[g]$ such that $M \supseteq\left\{x_{\alpha} \wedge g \mid \alpha \in A\right\}$. By Theorem 3.3 in [5], we can choose an l-isomorphism π such that $M \pi$ is a set of characteristic functions of a family of pairwise disjoint clopen subsets of the Stone space X whose union is dense in X.) Let B be the set of all subsets of A. Then

$$
\aleph_{j}=\operatorname{card}[0, g] \geqslant|B|=2^{\aleph_{i}}>\aleph_{i}
$$

If i is a limit ordinal, for any $\aleph_{l}<\aleph_{i}$ there exists a disjoint subset $\left\{x_{\alpha} \mid \alpha \in A\right\}$ in $[g]$ such that $|A|=\aleph_{l}$. Similarly we have $\aleph_{j} \geqslant 2^{\aleph_{l}}>\aleph_{l}$. So $\aleph_{j} \geqslant \aleph_{i}$.

Lemma 4.2. An ideal subdirect sum of finitely many complete l-groups of $\left(\aleph_{i}, \aleph_{j}\right)$ type is also a complete l-group of $\left(\aleph_{i}, \aleph_{j}\right)$ type.

Proof. Suppose

$$
G \subseteq^{*} \prod_{i=1}^{n} G_{i}
$$

where $G_{i}(i=1, \ldots, n)$ is a complete l-group of $\left(\aleph_{i}, \aleph_{j}\right)$ type. Then $G=\prod_{i=1}^{n} G_{i}$. Let G^{\prime} be a convex l-subgroup of G. Then

$$
\begin{equation*}
v G^{\prime} \leqslant v G=v\left(\prod_{i=1}^{n} G_{i}\right) \leqslant \aleph_{i}^{n}=\aleph_{i} \tag{4.1}
\end{equation*}
$$

On the other hand, let ϱ_{i} be the projection to G_{i}. Then $G^{\prime} \varrho_{i}$ is a convex l-subgroup in G_{i}. Put

$$
\bar{G}_{i}=\left\{g \in G \mid j \neq i \Rightarrow g_{j}=0, g_{i} \in G^{\prime} \varrho_{i}\right\}
$$

Then \bar{G}_{i} is a convex l-subgroup in G^{\prime} and so

$$
\begin{equation*}
v G^{\prime} \geqslant v \bar{G}_{i}=v G^{\prime} \varrho_{i}=\aleph_{i} . \tag{4.2}
\end{equation*}
$$

Combining (4.1) and (4.2) we get $v G^{\prime}=\aleph_{i}$ for any convex l-subgroup of G. Hence G is a v-homogeneous l-group of \aleph_{i} type. Now let $[a, b]$ be any nontrivial interval in G. Then

$$
\aleph_{j} \leqslant \operatorname{card}[a, b] \leqslant \aleph_{j}^{n}=\aleph_{j} .
$$

So card $[a, b]=\aleph_{j}$, and G is also an $i c$-homogeneous l-group of \aleph_{j} type.

Proceeding similarly as in the proof of Lemma 1.1, from Theorem 3.7 in [11] we obtain

Proposition 4.3. Any complete l-group G is l-isomorphic to an ideal subdirect sum of integer groups and complete ic-homogeneous l-groups.

Let G be a complete v-homogeneous l-group of \aleph_{i} type. Then no direct summand of G is Z or R. Further, every direct summand of a complete v-homogeneous l-group of \aleph_{i} type is also a complete v-homogeneous l-group of \aleph_{i} type. So Proposition 4.3 yields

Lemma 4.4. A complete v-homogeneous l-group G of \aleph_{i} type is l-isomorphic to an ideal subdirect sum of complete l-groups of $\left(\aleph_{i}, \aleph_{j}\right)$ type.

Theorem 4.5. Any complete l-group G is l-isomorphic to an ideal subdirect sum of integer groups and complete l-groups of (α, \aleph_{j}) type.

Proof. By Proposition 2.2, without loss of generality, we have

$$
\begin{equation*}
G \subseteq^{*} \prod_{\delta \in \Delta} G_{\delta} \tag{4.3}
\end{equation*}
$$

where each $G_{\delta}=Z$ or R or a complete v-homogeneous l-group of \aleph_{i} type for $\delta \in \Delta$. If G_{δ} is a complete v-homogeneous l-group of \aleph_{i} type, then, by Lemma 4.4, we have

$$
\begin{equation*}
G_{\delta} \subseteq^{*} \prod_{\lambda \in \Lambda_{\delta}} G_{\lambda \delta} \tag{4.4}
\end{equation*}
$$

where each $G_{\lambda \delta}$ is a complete l-group of $\left(\aleph_{i}, \aleph_{j}\right)$ type. Because an ideal subdirect sum of ideal subdirect sums of complete l-groups is still an ideal subdirect sum of complete l-groups, so substituting (4.4) into (4.3) we get

$$
\begin{equation*}
G \subseteq^{*} \prod_{\lambda \in \Lambda} G_{\lambda} \tag{4.5}
\end{equation*}
$$

where each G_{λ} is either Z or a complete l-group of (α, \aleph_{j}) type.

5. The essential closure of a complete l-Group

In this section we deal with the essential closure of a complete l-group. Let G be a complete l-group and $0<x \in G$. Put

$$
P(x)=\left\{x_{1} \in[x] \mid x=x_{1}+x_{1}^{\prime}, x_{1} \wedge x_{1}^{\prime}=0\right\}
$$

For example, if $G=R$ and $0<x \in G$, then $P(x)=\{0, x\}$. If G is a complete v homogeneous l-group of \aleph_{i} type and $0<x \in G$, then G is continuous by Proposition 2.8 and it is easy to verify that $P(x)$ is infinite.

Lemma 5.1. Let G be a complete l-group and $0<x \in G$. Then $P(x)$ is a complete Boolean algebra.

Proof. For any $x_{1} \in P(x)$ we have $x=x_{1}+x_{1}^{\prime}$ with $x_{1} \wedge x_{1}^{\prime}=0$. So $x=x_{1} \vee x_{1}^{\prime}$. Hence $P(x)$ is a Boolean algebra. Let $x_{\alpha} \in P(x)(\alpha \in A)$. Then

$$
x=x_{\alpha}+x_{\alpha}^{\prime}, x_{\alpha} \wedge x_{\alpha}^{\prime}=0
$$

for $\alpha \in A$. Since G is complete and $0 \leqslant x_{\alpha} \leqslant x(\alpha \in A)$, there exist $y=\bigvee_{\alpha \in A} x_{\alpha}$ and $z=\bigwedge_{\alpha \in A} x_{\alpha}$. By elementary calculations we obtain

$$
y \wedge z=0, y \vee z=x
$$

Hence $P(x)$ is a complete Boolean algebra.
Let G be an l-group, let $P(G)$ denote the Boolean algebra of all polars in G. Let $P_{p}(G)=\left\{g^{\Perp} \mid g \in G\right\}$ be the set of all principal polars of G, and let $\operatorname{Co} P_{p}(G)=$ $\left\{g^{\perp} \mid g \in G\right\}$. The map $a^{\Perp} \rightarrow a^{\perp}$ is a lattice anti-isomorphism between $P_{p}(G)$ and Co $P_{p}(G)$. From Theorem 5.2.9 in [8] we obtain

Lemma 5.2. Let G be an l-group. Then for any $0<x_{1}, x_{2} \in G$,

$$
x_{1}^{\perp} \wedge x_{2}^{\perp}=\left(x_{1} \vee x_{2}\right)^{\perp}, x_{1}^{\perp} W x_{2}^{\perp}=\left(x_{1} \wedge x_{2}\right)^{\perp}
$$

where W is the polar join.
From Lemma 5.2 we have

Lemma 5.3. Let G be an l-group and $0<x \in G$. Then for any $0<x_{1}, x_{2} \in P(x)$,

$$
x_{1[x]}^{\perp} \wedge x_{2[x]}^{\perp}=\left(x_{1} \vee x_{2}\right)_{[x]}^{\perp}, x_{1[x]}^{\perp} W x_{2[x]}^{\perp}=\left(x_{1} \wedge x_{2}\right)_{[x]}^{\perp}
$$

and

$$
x_{1 x \Perp}^{\perp} \wedge x_{2 x \Perp}^{\perp}=\left(x_{1} \vee x_{2}\right)_{x \Perp}^{\perp}, x_{1 x \Perp}^{\perp} W x_{2 x \Perp}^{\perp}=\left(x_{1} \wedge x_{2}\right)_{x \Perp}^{\perp},
$$

where $x_{1[x]}^{\perp}$ and $x_{1 x \Perp}^{\perp}$ denote the principal polars in $[x]$ and x^{\Perp} ，respectively，and similarly for x_{2} ．

Lemma 5．4．Let G be a complete l－group and $0<x \in G$ ．Then $P([x])\left(P\left(x^{\Perp}\right)\right)$ and $P(x)$ are anti－isomorphic，and $P([x])$ and $P\left(x^{\Perp}\right)$ are isomorphic as Boolean algebras．

Proof．First we show that there exist 1－1 correspondences between $P\left(x^{\Perp}\right)$ ， $P([x])$ and $P(x)$ ．Consider the Bernau representation of G

$$
\begin{gathered}
\pi: G \rightarrow \hat{G} \subseteq D\left(X_{G}\right) \\
x \rightarrow \hat{x} \in \hat{G}
\end{gathered}
$$

By Theorem 3.3 in［2］the l－isomorphism π can be chosen such that \hat{x} is the charac－ teristic function of a clopen subset S of the Stone space X_{G} ．Suppose $M_{1} \in P\left(\hat{x}^{\Perp}\right)$ ． Since G and \hat{G} are complete，\hat{x}^{\Perp} is also complete．So

$$
\hat{x}^{\Perp}=M_{1} \boxplus M_{2} .
$$

Then

$$
[\hat{x}]=M_{1}^{\prime} ⿴ 囗 十 M_{2}^{\prime} \text {, }
$$

where $M_{1}^{\prime}=[\hat{x}] \cap M_{1}, M_{2}^{\prime}=[\hat{x}] \cap M_{2}$ ．Hence

$$
\begin{equation*}
\hat{x}=x_{1}+x_{2}, x_{1} \wedge x_{2}=0 \tag{5.1}
\end{equation*}
$$

where $x_{1} \in M_{1}^{\prime}, x_{2} \in M_{2}^{\prime}, M_{1}^{\prime}=x_{2[\hat{x}]}^{\perp}$ and $M_{2}^{\prime}=x_{1[\hat{x}]}^{\perp}$ ．On the other hand，if we have （5．1）and put $S_{1}=\left\{\theta \in X_{G} \mid X_{1}(\theta) \neq 0\right\}, S_{2}=\left\{\theta \in X_{G} \mid X_{2}(\theta) \neq 0\right\}$ ，then the support of \hat{x} satisfies

$$
S(\hat{x})=S=S_{1} \cup S_{2} \text { and } S_{1} \cap S_{2}=\emptyset
$$

since

$$
\hat{x}^{\Perp}=\{g \in \hat{G} \mid S(g) \subseteq S(\hat{x})\}
$$

（see［2］，p．609）．Put

$$
\begin{aligned}
& M_{1}=\left\{g \in \hat{x}^{\Perp} \mid \theta \in S_{2} \Rightarrow g(\theta)=0\right\}, \\
& M_{2}=\left\{g \in \hat{x}^{\Perp} \mid \theta \in S_{1} \Rightarrow g(\theta)=0\right\} .
\end{aligned}
$$

Then

$$
\hat{x}^{\Perp}=M_{1} \boxplus M_{2},[\hat{x}]=M_{1}^{\prime} \boxplus M_{2}^{\prime},
$$

where $M=x_{2 \hat{x}^{\Perp}}^{\perp}, M_{2}=x_{2 \hat{x} \Perp}^{\Perp}=x_{1 \hat{x}^{\Perp}}^{\perp}$ and $M_{1}^{\prime}=[\hat{x}] \cap M_{1}, M_{2}^{\prime}=[\hat{x}] \cap M_{2}$. Hence the map $\varphi: M_{1} \rightarrow M_{1}^{\prime}$ is $1-1$ from $P\left(\hat{x}^{\Perp}\right)$ onto $P([\hat{x}])$ and the map $\varphi^{\prime}: M_{1}^{\prime} \rightarrow x_{1}$ is 1-1 from $P([\hat{x}])$ onto $P(x)$. By Lemma 5.3, $\varphi^{\prime}\left(\varphi^{\prime} \varphi\right)$ is an anti-isomorphism from $P([\hat{x}])\left(P\left(\hat{x}^{\Perp}\right)\right)$ onto $P(x)$, and φ is an isomorphism from $P\left(\hat{x}^{\Perp}\right)$ onto $P([\hat{x}])$.

Let P be a Boolean algebra and $0<x \in P$. Put

$$
P_{1}(x)=\{a \in P \mid 0 \leqslant a \leqslant x\} .
$$

Then $P_{1}(x)$ is a subalgebra of P. We call $P_{1}(x)$ a section in P.
Proposition 5.5. Let P and P^{\prime} be two complete Boolean algebras and $\left\{x_{\alpha} \mid\right.$ $\alpha \in A\},\left\{x_{\alpha}^{\prime} \mid \alpha \in A\right\}$ maximal disjoint subsets in P and P^{\prime}, respectively. If $P_{1}\left(x_{\alpha}\right) \simeq P_{1}\left(x_{\alpha}^{\prime}\right)$ as Boolean algebras for $\alpha \in A$, then P is isomorphic to P^{\prime}.

Proof. Since $\left\{x_{\alpha} \mid \alpha \in A\right\}$ is a maximal disjoint subset, we have $\bigvee_{\alpha \in A} x_{\alpha}=1$. Indeed, if $\bigvee_{\alpha \in A} x_{\alpha}<1$, then $\left\{x_{\alpha}, 1-\bigvee_{\alpha \in A} x_{\alpha} \mid \alpha \in A\right\}$ is also disjoint. For any $y \in P$ let

$$
y_{\alpha}=y \wedge x_{\alpha} \in P_{1}\left(x_{\alpha}\right)
$$

for $\alpha \in A$. Then

$$
\bigvee_{\alpha \in A} y_{\alpha}=\bigvee_{\alpha \in A}\left(y \wedge x_{\alpha}\right)=y \wedge\left(\bigvee_{\alpha \in A} x_{\alpha}\right)=y
$$

We denote y by $y=\left(y_{\alpha}\right)$ and call y_{α} the coordinate of y in the section $\left\{P_{1}\left(x_{\alpha}\right) \mid \alpha \in\right.$ $A\}$. Let φ_{α} be isomorphism between $P_{1}\left(x_{\alpha}\right)$ and $P_{1}\left(x_{\alpha}^{\prime}\right)$. Let $y_{\alpha}^{\prime}=\varphi_{\alpha}\left(y_{\alpha}\right) \in P_{1}\left(x_{\alpha}^{\prime}\right)$. Then

$$
\bigvee_{\alpha \in A}=y^{\prime} \in P^{\prime}
$$

So we get a map $\varphi: y \rightarrow y^{\prime}$ from P to P^{\prime}. We proceed in the following three steps.
(1) φ is 1-1. If $y, z \in P$ and $y \neq z$, then $y=\bigvee_{\alpha \in A} y_{\alpha}, z=\bigvee_{\alpha \in A} z_{\alpha}$ and there exists the least $\alpha_{0} \in A$ such that $y_{\alpha_{0}} \neq z_{\alpha_{0}}$. Consequently, $y_{\alpha_{0}}^{\prime} \neq z_{\alpha_{0}}^{\prime}$ in $P_{1}\left(x_{\alpha_{0}}^{\prime}\right)$. Hence

$$
y^{\prime}=\bigvee_{\alpha \in A} y_{\alpha}^{\prime} \neq \bigvee_{\alpha \in A} z_{\alpha}^{\prime}=z^{\prime}
$$

Otherwise, $y^{\prime}=z^{\prime}$ implies $y_{\alpha}^{\prime}=y^{\prime} \wedge x_{\alpha}^{\prime}=z^{\prime} \wedge x_{\alpha}^{\prime}=z_{\alpha}^{\prime}$ for all $\alpha \in A$.
(2) φ is from P onto P^{\prime}. For any $y^{\prime} \in P^{\prime}$, we have $y^{\prime}=\bigvee_{\alpha \in A} y_{\alpha}^{\prime}$ with $y_{\alpha}^{\prime}=y^{\prime} \wedge x_{\alpha}^{\prime} \in$ $P_{1}\left(x_{\alpha}^{\prime}\right)$. Now each y_{α}^{\prime} corresponds to $y_{\alpha}=\varphi_{\alpha}^{-1}\left(y_{\alpha}^{\prime}\right) \in P_{1}\left(x_{\alpha}\right)$. So y^{\prime} is the image of $y=\bigvee_{\alpha \in A} y_{\alpha}$ under φ.
(3) φ preserves \vee and \wedge. Let $y^{\prime}=\varphi(y), z^{\prime}=\varphi(z)$. Then

$$
\begin{aligned}
\varphi_{\alpha}\left[(y \vee z)_{\alpha}\right] & =\varphi_{\alpha}\left[(y \vee z) \wedge x_{\alpha}\right]=\varphi_{\alpha}\left[\left(y \wedge x_{\alpha}\right) \vee\left(z \wedge x_{\alpha}\right)\right] \\
& =\varphi_{\alpha}\left(y_{\alpha} \vee z_{\alpha}\right)=\varphi_{\alpha}\left(y_{\alpha}\right) \vee \varphi_{\alpha}\left(z_{\alpha}\right)=y_{\alpha}^{\prime} \vee z_{\alpha}^{\prime} \\
& =\left(y^{\prime} \wedge x_{\alpha}^{\prime}\right) \vee\left(z^{\prime} \wedge x_{\alpha}^{\prime}\right)=\left(y^{\prime} \vee z^{\prime}\right) \wedge x_{\alpha}^{\prime} \\
& =\left(y^{\prime} \vee z^{\prime}\right)_{\alpha} .
\end{aligned}
$$

So

$$
\varphi(y \vee z)=\varphi(y) \vee \varphi(z)
$$

Similarly, we have $\varphi(y \wedge z)=\varphi(y) \wedge \varphi(z)$.
Theorem 5.6. Let G and G^{\prime} be two complete l-groups. If there exist maximal disjoint subsets $\left\{x_{\alpha} \mid \alpha \in A\right\}$ and $\left\{x_{\alpha}^{\prime} \mid \alpha \in A\right\}$ in G and G^{\prime}, respectively, such that $\left[x_{\alpha}\right] \simeq\left[x_{\alpha}^{\prime}\right]$ for $\alpha \in A$, then the essential closures G^{e} and $G^{\prime e}$ are l-isomorphic.

Proof. We need only to show that $P(G) \simeq P\left(G^{\prime}\right)$ as Boolean algebras. By the Bernau representation it is clear that $x_{1} \wedge x_{2}=0$ if and only if $x_{1}^{\Perp} \wedge x_{2}^{\Perp}=0$ in $P(G)$. Hence $\left\{x_{\alpha}^{\Perp} \mid \alpha \in A\right\}$ and $\left\{x_{\alpha}^{\prime \Perp} \mid \alpha \in A\right\}$ are maximal disjoint subsets in $P(G)$ and $P\left(G^{\prime}\right)$, respectively. Now $\left[x_{\alpha}\right] \simeq\left[x_{\alpha}^{\prime}\right]$ as l-groups implies $P\left(\left[x_{\alpha}\right]\right) \simeq P\left(\left[x_{\alpha}^{\prime}\right]\right)$ as Boolean algebras for $\alpha \in A$. By Lemma 5.4 we have

$$
P_{1}\left(x_{\alpha}^{\Perp}\right)=P\left(x_{\alpha}^{\Perp}\right) \simeq P\left(x_{\alpha}^{\prime \Perp}\right)=P_{1}\left(x_{\alpha}^{\prime \Perp}\right)
$$

for $\alpha \in A$. Similarly to the proof of Theorem 1 in [2] we can show that $P(G)$ and $P\left(G^{\prime}\right)$ are complete Boolean algebras. The theorem follows immediately from Proposition 5.5.

References

[1] M. Anderson, T. Feil: Lattice-Ordered Groups (An Introduction). D. Reidel Publishing Company, 1988.
[2] S.J. Bernau: Unique representation of Archimedean lattice groups and normal Archimedean lattice rings. Proc. London Math. Soc. (3)15 (1965), 599-631.
[3] P. Conrad, D. Mcalister: The completion of a lattice ordered group. J. Austral. Math. Soc. 9 (1969), 182-208.
[4] P. Conrad: Lattice-Ordered Groups, Lecture Notes. Tulane University, 1970.
[5] P. Conrad: The essential closure of an Archimedean lattice-ordered group. Duke Math. J. (1971), 151-160.
[6] P. Conrad: The hull of representable l-groups and f-rings. J. Austral. Math. Soc. 16 (1973), 385-415.
[7] L. Fuchs: Partially Ordered Algebraic Systems. Pergamon Press, 1963.
[8] A. M. W. Glass, W. C. Hollad: Lattice-Ordered Groups (Advances and Techniques). Kluwer Academic Publishers, 1989.
[9] K. Iwasawa: On the structure of conditionally complete lattice-groups. Japan J. Math. 18 (1943), 777-789.
[10] J. Jakubik: Homogeneous lattice ordered groups. Czech. Math. J. 22(97) (1972), 325-337.
[11] J. Jakubik: Cardinal properties of lattice ordered groups. Fundamenta Mathematicae 24 (1972), 85-98.
[12] B. Z. Vulikh: Introduction to the Theory of Partially Ordered Space. Groningen, 1967.
Author's address: Dept. of Math. \& Phys., Hohai University, 210024 Nanjing, People's Republic of China.

[^0]: * The author is indebted to W. C. Holland for his memerous suggestions and his patience through long hours of discussion on this material. The author is also grateful to the referee for pointing out a number of obscurities in the original manuscript of this paper.

