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1 . INTRODUCTION 

In this paper we are concerned with the nonlinear damped difference equation of 
the type 

(1) A(a nAy n ) + pnAyn + qn+if(yn+i) = 0, n = 0 ,1 ,2 , . . . 

where the forward difference operator A is denned by Ayn = yn+i — yn and the real 
sequences {an}, {pn} and {qn} and the function / satisfy the following conditions: 

(ci) an > 0, pn ^ 0 and qn > 0 for all n ^ n0 ^ 0; 
(C2) / : R —» R = (—00,00) is a nondecreasing function such that 

uf(u) > 0 for u 7-- 0. 

By a solution of (1) we mean a real sequence {yn}, n = 0 ,1 ,2 , . . . satisfying (1). 
We consider only such solutions which are nontrivial for all large n. A solution of (1) 
is said to be oscillatory if for every N ^ 0 there exists n ^ N such that ynyn+i ^ 0. 
Otherwise it is called nonoscillatory. 

In recent years there has been an increasing interest in the study of the qualitative 
behavior of solutions of difference equations of the type (1) and/or related equations; 
see, for example, [1, 3, 5, 7, 8, 9] and the references cited therein. 

Our purpose in this paper is to establish some new oscillation criteria (sufficient 
conditions) for oscillation of all solutions of (1). 
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2. MAIN RESULTS 

We begin with the following lemma which is a discrete analogue of Lemma 1 of 
Baker [2]. 

Lemma 1. Assume that 

(2) an - pn > 0 for n ^ ?i0 ^ 0 

and 

OO - r f l - 1 

= 00 . 

If {yn} is a nonoscillatory solution of Eq. (1), then there is N ^ 0 sucii that 
ynAyn > 0 for all n^ N. 

P r o o f . Let {yn} be a nonoscillatory solution of Eq. (1) and assume yn > 0 for 
n ^ no ^ 0 . Suppose {AHn} is oscillatory Then there exists an integer n\ ^ n0 ^ 0 
such that 

Ayni < 0 or Ayni = 0. 

First we consider Ayni < 0. Now Eq. (1) implies 

A(an iAyn i)Aun1 = - Pni(Auni)
2 - a n i + i / (u n i + i )AH n i 

> - p n i ( A u n i )
2 

since -g n i + i / (H n i + i )AH n + i > 0. Hence 

A u n i [ a n i + i A u n i + i - a n i A y n i ] > -p n i (AH n J 2 

or 

a n i + iAt / n i + iAH n i > (ani - p n i ) (Au n i )
2 > 0. 

Thus, by dividing the above by a negative term a n i + i Ayni we obtain 

Au n i + i < 0. 

By induction, we obtain Ayn < 0 for all n^ n\. 

Next, consider Ayni — 0. Then Eq. (1) implies 

AHni+i < 0 
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and we obtain as above Ayn < 0 for all n ^ n\. Hence in both cases we obtain 
Ayn < 0 for all n ^ n\ which, however, contradicts the assumption that {Ayn} 

oscillates. Thus {Ayn} is eventually of fixed sign. 
Let Ayn < 0 for n ^ N ^ 0, then 

(4) Azn + —zn^0 for n^N 
an 

where 

From (4) we obtain 

or 

zn = -anAyn. 

n—i 

ZnïZNY[(l-^) 
s=N 

n-\ 

(5) anAyn ^ -zN TT ( l - ^ ) , n>N. 
AT V a S J 

s=N 

Now summing (5) and using (3) we obtain a contradiction. The proof for the case 
of {yn} eventually negative is similar and hence omitted. • 

Remark. If pn = 0, then the condition (3) assumes the form 

oo 1 

un 

which is used in [5, 8]. 

Lemma 1 is false if we omit the assumption (3). This is illustrated in the following 
example. 

Consider the difference equation 

(Ei) A(n(n+ l )AH n ) + nAyn + (n + l)2Hn+1 = 0, n ^ 1. 

Let f(x) = x3, an = n(n + l ) , p n = n, qn = (n + 1)2. Eq. (Ei) has a nonoscillatory 
solution yn = l//i , a contradiction to the conclusion of Lemma 1 since the condition 
(3) does not hold. 

In the following theorem we study the oscillatory behavior of Eq. (1) subject to 
the conditions 

_ f + o c du , r00 du 
(6) / —— < oo and / - — < oo. 

J fW J f(u) 
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Theorem 2. Suppose that the conditions (2), (3) and (6) hold. Assume that 

there exists a positive sequence {hn} such that 

(7) Ahn > 0 and A(anAhn) ^ 0 for n ^ n 0 ^ 0. 

If 
oo 

( 8 ) ^ hnQn+l = 0 0 

then every solution of Eq. (1) is oscillatory. 

P r o o f . Let {yn} be a nonoscillatory solution of Eq. (1) which must then be 

eventually of constant sign. In view of Lemma 1, there is no loss in generality in 

assuming that there is an integer IV ^ 0 such that yn > 0 and Ayn > 0 for all n ^ N. 

Define 
hnvn 

zn f(Vn) 

where vn = anAyn. Note that zn > 0. 

Then for n ^ IV, 

, n v A , pnhnAyn Ahnvn+i hnvnAf(yn) 
(9) Azn = -hnqn+i — + 

f(yn+i) f(yn+i) f(yn+i)f(yn)' 

Now using the condition (7) and Un+i ^ vn in (9), we obtain 

A / U . A h n V n r ^ AT 

Azn ^ -hnqn+x + 77 r for n > IV. 
/(2/n+l) 

Since (anAhn) is nonincreasing for n ^ V, we have 

----Vn 

(10) Az n < -hnqn+i + aNAhN——-----, n ^ V. 
/ U / n + l ) 

Now for yn ^ x ^ yn+i we have j ^ y > y^—-, and it follows that 

/ ' 
•12/n 

dx Дy n 

/0*0 /(Уn+l) 

Using the above inequality in (10) and summing the resulting inequality from N to 

n leads to 
n ry ri + i c | x 

^ / i s a s + i ^ Â! - ^n+i + aNAhN / T f T -
s=N VN J^X' 

In view of (6) and 2n > 0, n ^ V, the above inequality gives 

n 

^2 hsQs+i < oo, 
s=IV 

which contradicts (8). • 
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Remark. In Theorem 2, let pn = 0, an = 1, f(u) — ua, a > 1 ratio of odd 
positive integers and hn = n. Then it reduces to Theorem 4A of Hooker and Patula 
[3], Also Theorem 2 reduces to Theorem 4.2 of Kulenovic and Budincevic [6] if pn = 0 

7 1 - 1 

and hn = £ 7T-
s=0 " 

All solutions of the difference equation 

(E2) A((n + l)Ayn) + —^ Ayn + (n + l)(4n2 + lOn + 5)Hn+1 = 0 , n ^ 1 

are oscillatory by Theorem 2. One such solution of (E2) is yn — ( l ) n /n . 
We now state a lemma which will be used in the proof of our next theorem. The 

proof is similar to Lemma 4.1 of [3]. 

Lemma 3. If H/v ^ 0, A(anAyn) ^ 0 and Ayn > 0 for n ^ IV ̂  1, then 

Hn+i ^ R(n)anAyn 

where 

R(n) = £ 1. 
. = * a* 

Theorem 4. Suppose that the conditions (2) and (3) are satisfied. Assume that 

f±c du 
(11) / .. , < oo for every positive constant c > 0 

J / fa) 

and / satisfies 

(12) f(xy)>Kf(x)f(y) and - f(-xy) > Kf(x)f(y) 

on (0, oo) U (-co, 0) wliere K Is a positive constant. If 

oo 

(13) ^ f(R(n))qn+1 =00 

then every solution of Eq. (1) is oscillatory. 

P r o o f . Let {yn} be a nonoscillatory solution of (1). As before, there exists an 
integer IV ̂  0 such that 

yn > 0 and Ayn > 0 for all n ^ TV. 
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Since pn ^ 0, we have from (1) 

(14) A(OnAun) + qn+1f(yn+.1) <$ 0. 

Since A(anAyn) ^ 0 for n ^ N, we can use Lemma 3 in (14) and then using (12) 
we obtain 

A(anAHn) + Kqn+lf{R(n))f(anAyn) <C 0 for n ^ N, 

or 

(15) A(araAy ) + / ^ 
f(anAyn) 

Observe that for anAyn ^ x ^ a n + iAH n + i we have JT-T ^ Ju\—7 a n c ^ ^ follows 
that 

fanAyn d x A(anAyn) 

-
J an 

Ln+1Ayn+1 f{x) f(anAyn) ' 

Using the last inequality in (15) and summing the resulting inequality from N to n 

leads to 
raNAyN ^ "• raNĹb 

K E f(Җs))я.+i < / 
S=N Jan + 1Ayn + 1 J\x) 

which is by (11) an immediate contradiction. D 

Remark. Let pn — 0 in Theorem 4, then it reduces to Theorem 4.1 of Kulenovic 

and Budincevic [5]. If pn = 0, an = 1 and f(u) = ua, 0 < a < 1, then Theorem 4 

reduces to Theorem 4.3 of Hooker and Patula [3]. 

Consider the difference equation 

(Ea) A((n + l)AyB) + ^ A f e + ^ ^ / t V + 1 = 0. O 1-

All conditions of Theorem 4 are satisfied and hence all solutions of (E3) are oscillatory 

One such solution is yn = (—l)n/n. 

Finally, we discuss the oscillatory behavior of Eq. (1) subject to the condition 

(16) f(u) - f(v) = g(u,v)(u - v), g(u,v) ^ M > 0 for u,v ^ 0. 

Theorem 5. Let the conditions (2), (3) and (16) be satisfied. Assume there exists 

a positive non-decreasing sequence {hn} such that 

(17) lim s u p - i - r V ( „ - s ) ( ' » ) / l . L + 1 - - ^ - ( P l - ^ i + ? -)"1 = o o 
v ' «->oo ^ (n)(a) --', L 4MVa s hs n - s + a - 1 / J (») ( C . - * 

332 



for some positive integer a ^ 1. where (n)^ —• n(n — 1 ) . . . (n — a + 1) is the usual 

factorial notation. Then every solution of Eq. (1) is oscillatory. 

P r o o f . Let {yn} be a nonoscillatory solution Eq. (1). As before, there exists 

an integer jN ^ 0 such that 

yn > 0 and Ayn > 0 for all n ^ N. 

Consider the function zn defined in the proof of Theorem 2. We obtain (9) and using 

the condition (16), we get 

/ 1 Qs A . 7 pnhnAyn Ahnvn+i MhnvnAyn 18 Azn <: -hnqn+\ - — r- + — - - for n ^ N. 
f(yn+\) f(yn+\) f(yn)f(yn+\) 

Using the inequalities Un+i ^ vn and f(yn) ^ f(yn+\), we obtain from (18) 

pnhn Ahn Mhn 2 

L\ZU ^ -tinqn+i - -—- zn+i + zn+i - -------—z„ 

Since 

Pnhn Ahn Mhn 2 
, ^n+l + , ^n+l , 2

 Zn+\' 
аnfln+i ilrг+\ Q>n">n+i 

n—\ n—\ 

~ ; ( n - s)<a>A2s _ - ( n - JV)<Q>^ + aJ2^~ « ) ( a _ 1 ) ^ + i , 
s=N S=JV 

we get 

1 " - 1 

- — ^ ( n - S ) W / i s ? s + 1 
^ ' s=N 

(n-JV)( a> 1 £-í ( n - s ) ( a ) A í h . 

(n )(«) ( n ) < « > ^ as/гҘ+1 

Г 2 as/žs+1 / p s A/гs q \-» 

Г s + 1 M Vas h, n-s + а-lJÌ 

(n - ЛQ<a> 1 ^ (n - s)(°>as/гs f / p s A/гsч a ^ 

(n)(«> ZN (n)(«) 2-; 4M X l U s n s / +

 n - s + a - l J 

oг 

1 y v -,(„), Г °* /Ps &hs а \ 2 i 

— - Ę ( n - s)< )h.[Яв+1 - ш ( - - — + -———i) j (»)( ._* 

( n - N ) ( a ) 
^ —r~77~— Z A r "^ z ^ as n -> oo, 

which contradicts (17). This completes the proof of the theorem. • 
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Corol lary 6. If the condition (17) is replaced by 

n - l 

(19) lim sup -—-ү У2 (n - s){а)hsqs+l = oo, 
n—»oo ( П P ' ^-"-' 

v 7 s=7V 

/̂ ^x .. 1 >r^ (n — s){cc)hsas r ,/Ps Ahs\ V2 

20 lim-—-V-^ s-^ n - s + c Y - 1 ) ( — - - r - - ) + a < oo 
n-+oo (n)( a ) ^ (n - s + a - l ) 2 Lv y Va s hs J J 

x 7 s=N 

for a positive integer a ^ 1. then every solution of Eq. (1) is oscillatory. 

R e m a r k . Corollary 6 is a discrete analogue of Theorem 1 when an = 1 and 

hn = n and of Theorem 2 when an = 1 and bn = 1 of C C Yeh [10]. If f(u) = u, 

an = 1, bn = 1 and pn = 0, then the condition (20) holds for a = 1 and in this case 

Corollary 6 reduces to the discrete analogue of Kamanev's result [4]. 

It follows from (20) t h a t pn ^ 0 and an = 1 and lin = n in Corollary G, in which 

{pn} can be thought of as a small perturbation of ^ . If an = 1 and hn = 1, it 

follows from (20) t h a t {pn} may be equal to zero in Corollary 6, in which {pn} can 

be thought of as a small perturbat ion of 0. 

Consider the difference equation 

1 4/i2 + 4n + 1 
( E 4 ) A2Hn + — — Ayn + un+1 = 0 , n > 1. 

n + 2 n(?i + 2) 

All conditions of Corollary 6 are verified for a = 1. Hence every solution of ( E 4 ) is 

oscillatory. One such solution is yn = ( — l ) n / n . 

T h e o r e m 7. In addition to (2). (3), (6) and (16) assume that there is a constant 

K > 0 and a positive nondecreasing sequence {hn} such that 

(21) A ( a n + i A / i n ) ^ 0 and pn ^ - — for all n ^ N > 0. 
^ n 

If 

oo 

(22) ^ / ^ n g n + l = OO 

then all solutions of (1) are oscillatory. 

P r o o f . Let {yn} be a nonoscillatory solution of (1) such that yn > 0 and 

Ayn > 0 for n ^ jY ^ 0. We multiply (1) by hn/f(yn+\), summing from Ar to n — 1, 
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and use (16) and (21) to obtain 

hnanAyn ^-4 lis+ias+i(AHs+i)- ^ 
— r- +M y —— — — + > n s a s + i 
/(2/n+i) ~ f(ys+i)f{ys+2) f^N 

П-1 д П - 1 Д 

^ , г V^ A ^ s , л ь V^ A ^ + i ^ с + Л \ — + алг+i AliA/ > т? V 
ťNf(ys+l) sfNf(ys+2) 

ryn d x гуп+i á x 

<c + К / — - + aN+xAhN J 
JyN J\X) JyN + 1 m 

where c is a constant. Taking the limit as n -» oo and using (6) and (22) we arrive 

at a contradiction t h a t Ayn < 0 for all n ^ IV. This completes the proof. • 

R e m a r k . Let an = 1 and hn = n, then Theorem 7 is a discrete analogue of 

Theorem 4 of Naito [6]. 

T h e equation 

A 2 1
 A

 4™2 + 6n + 1 3 

(E5) A » y w - - A y w + w ( w + 1 ) 3 y w + 1 = 0 , n ^ l 

has an oscillatory solution yn = (—l)nn. All conditions of Theorem 7 are satisfied. 
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