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Czechoslovak Mathemat ica l Journal , 45 (120) 1995, P r a h a 

ANGULAR LIMITS OF DOUBLE LAYER POTENTIALS 

JOSEF KRAL and DAGMAR MEDKOVA, Praha 

(Received March 19, 1993) 

Dedicated to the memory of Professor Jan Mafik 

We use the standard notation U for the real line, (Rm for the Euclidean space 
m 

of dimension m ^ 2 equipped with the usual scalar product x • y = ]P xiyi for 
i= i 

x = (:vi,... , £ m ) , y = (yi,. •. ,Hm) G tRm and the Euclidean norm |x| = (x • x) 1 / 2 . 
For M C [Rm the symbols <9M, clM and int M will stand for the boundary, closure 
and interior of M, respectively. N is the set of natural numbers. If k G N, then Xk 
denotes the outer /c-dimensional Hausdorff measure with its natural normalization 
(so that Afc([0, l]k) = 1). The open ball with center z G lRm and radius r > 0 will be 
denoted by 

B(z,r) = {xe Wn',\x-z\ < r } , 

O-m = Am_! (5H(0,1)) = 27 i i m / r ( |m) 

is the area of the unit sphere in [Rm. If z G Um is fixed, then the fundamental 
harmonic function with pole at z is given by 

hz(x) = -—L.*-^|2-m, x G K
m \ { z } 

(m - z)Om 

if m > 2, while for m = 2 

hz(x) = — In \x - z\~\ x G U2 \ {z}. 
2K 

For M C [Rm and x G (Rm the upper density of M at x is defined by 

d(M,x) = l imsupA m (MnH (T , r ) ) /A m (H (x , r ) ) . 
r | 0 

Support by the grant N° 11957 of the Academy of Sciences of the Czech Republic is 
gratefully acknowledged. 
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The so-called essential boundary of M will be denoted by 

deM = {x 6 (Rm; d(M,x) >0,d(Um\M,x) > 0}. 

If U C lRm is open, then ^0
(1)(U) is the class of all continuously differentiable func

tions ip with a compact support spt ip contained in U. We will fix a Borel set A C lRm 

with a compact boundary and put G = Um \ A. Let 

VW(dA) = {f\dA; f €tf0
(1 )(Rm)} 

be the class of all restrictions to dA of functions in <*f0
(1)((Rm). Given / G ^{l)(dA) 

and z e Um \ dA we choose a </?/ E ^0
(1)((Rm) such that 

z £ s p t < D / , <pf\dA = f 

and define (compare [1], [7], [11], [15]) 

WAf(z) = / gTdidiff(x) -gr<idhz(x) dXm(x). 
JG 

It is easily verified that this quantity does not depend on the choice of iff with the 
above properties (cf. [11], Lemma 2.1). The function 

WAf = z i-> WAf(z) 

is harmonic on (Rm \ dA (cf. [11], Lemma 2.4) and will be called the double layer 
potential of the density / . If (D G ^0

(1)((Rm) and z G !Rm \ spt<D, then 

JR" 
grad(D(x) • gradb2(:r) d\m(x) = 0, 

which shows that WAf(z) = —WGf(z). Since one of the sets A, G is bounded, 

we may assume without loss of generality that G is bounded when we investigate 

WAf = Wf. If 1 M denotes the constant function equal to 1 on M C (Rm, then easy 

calculation shows that 

f — 1 for x G int G, 
(1) WldA(x) = \ 

[0 for x G int A 

(compare [10], p. 21). We will fix a point 77 G dA and a lower-semicontinuous function 
q: dA —> [0, +00] which is bounded and strictly positive on dA \ {rj}. Let ^(dA, q) 

be the linear space of all continuous functions / : dA -> U satisfying the condition 

f(0 ~ f(ri) = o(q(0) as £ -+ 77, £ G d_4. 
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We define the norm in ^(dA,q) by 

11/11, = m a x / sup l / ( 0 " / ( 7 ? ) l , sup [ / (OlV 
IjedAXM 0vS) ted* J 

In the subspace %(dA,q) = {/ G ^(<9A,<7); /(rl) = 0} this norm is equivalent to 

||/||gt0= sup M . 
£GaA\{n} 914; 

Clearly, ^(dA.q) and ^o(^-4,9) (when normed as shown above) are Banach spaces. 
We will see below (in Lemma 1) that 

(2) / q dXm-i < oo 
JdeA 

is a necessary and sufficient condition for the operator WA = W: f «-> VV/ to be 
continuous from ^l)(dA) n ^(<9A,^) into the space of all harmonic functions on 
lRm \ dA equipped with the topology of uniform convergence on compact subsets 
of (Rm \ dA. We will always assume (2) which permits to extend the operator W 

continuously to the whole space ^(dA,q). For any / G tf(dA,q) we thus have the 
corresponding double layer potential Wf which is a harmonic function on (Rm \ dA. 

We will be engaged in the existence of angular limits of double layer potentials W f 

at 7/. In order to be able to formulate some sample results we adopt the following 
notation. The contingent of a set M C lRm at a point £ G [Rm (cf. [16], chap. IX, 
§2), to be denoted by contg(M, £), consists of all half-lines 

(3) H(£,0) = {Z + tO;t>0} 

for which there exists a sequence of points zn G M \ {£} such that 

lim r ^ = 0. 
n->oo \Zn - f | 

Introducing for 0 G dB(0,1) and f G (Rm the sum 

(4) n*(0,O = Y^q(x), xedeAnH(z,0), 

we obtain a non-negative extended real-valued function of the variable 0 G <9H(0,1) 
which is Am_i-measurable (cf. Lemma 3 below), so that we may put 

(5) v"(0 = —[ n"(9,0 dA-_1(6»). ±[ n< 
°vn JӘB(0,1) 

269 



Let 

(6) L(£,u) = {£} U H(£, u) U Hfo -u) 

be the line of direction u G 31?(0,1) passing through the point f G (Rm. If u G 
<9H(0,1) is fixed then for any open set U C Um the sum 

(7) nq(u^;U) = ^2q(x), x e U D deAn L(^u), 

is a Am_i-measurable extended real-valued function of the variable f on {£ G lRrn; 
£ • u> = 0} = 1V(u;) and we may define 

(8) Hl(U)= [ n*(L,,S;U) dX^iQ. 
JN(U) 

With this notation we may formulate the following result. 

Theorem 1. Let S C (Rm \ dA be a connected set, r\ G cl S n <9A, 

contg(<9A, r?) n contg(S, 77) = 0. 

If6?G 3.8(0,1) and 

(z-rj)\ 
= 0(\z-7]\m-1) as z->ri, z £ S, 

then a necessary and sufficient condition for the existence of a finite limit 

(9) JimW7(z) 
zes 

for every f G C(dA,q) consists in 

(10) D'7(7/)+supr1-m^(H(I/,r)) <oo . 

r>0 

Defining further 

(11) ^(M)= f adA7n_! 
JMnaeA 

for any Borel set M C lRm we have also the following result. 
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Theorem 2. Suppose that Sj C (Rm \ dA are connected sets such that 

77 e cl Sj DdA, Jim (2 ~rj)/\z - r]\ = 0j (j = 1,. . . , m ) . 

If the vectors 9\,..., 0m are linearly independent, then the condition 

(12) 7j9(77)+supr1-mLi9(_i(r7,r)) < oo 
r>0 

is necessary for the existence of finite limits 

(13) J imW/(z ) (j = l , . . . , m ) 
zGS; 

f o r a J J / e C ( 3 A , g ) ; i f 

contg(<9,4,77) n contg(5 i, 77) = 0 (j = 1,..., m), 

then (12) is aiso sufficient. 

Proofs of these theorems depend on a series of auxiliary results. We will extend 
q from dA to lRm defining q = sup q(d A) on (Rm \ dA; thus g ^ 0 is bounded and 
lower-semicontinuous on (Rm, g > 0 on IRm \ {77}. If 0 7- U C (Rm is open, then 
JP(U) denotes the space of all harmonic functions on U equipped with the topology 
of uniform convergence on compact subsets of U. 

L e m m a 1. The operator W: f •-> Wf acting from <gM(dA) n tf(dA,q) into 
^ ( I R m \ dA) is continuous (where tf(dA,q) is equipped with the norm || . . . \\q) iff 
(2) holds. 

P r o o f . Assuming (2) we conclude that, for each bounded open set U C (Rm 

with clU C (Rm \ {77}, Am_i(U n deG) < 00. This implies that G has locally finite 
perimeter in lRm \ {77} (cf. [5], chap. 4 and [19], section 5.8) which means that the 
distributional first order partial derivatives of the indicator function \G of G are 
locally in lRm \ {r]} representable by signed Radon measures. Let us recall that a 
unit vector n G <9H(0,1) is termed Federer's exterior normal of G at f G dG if the 
symmetric difference of G and the half-space Pn(0 — {x € (Rm; (x — £) • n < 0} has 
vanishing density at £: 

d(G\Pn(O,O = 0 = d(Pn(O\G,O-
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Obviously, there is at most one vector n G <9_3(0,1) with this property which will 

then be denoted by nG(£); we put nG(£) = 0 (G Um) if no Federer's normal of G 

at £ exists in the above described sense. Then 

dG = {$edG;\nG(0\ = l} 

is a Borel set (cf. [4]) which is called the reduced boundary of dG. Clearly, dG = 

dA C deA = deG, nG = -nA. Since G has locally finite perimeter in LRm \ {r/}, 

(14) Xrn_l(deG\dG) = 0 

and for any vector-valued function v = ( f i , . . . ,Um) with components Vj G 
^Q ' (R m \ {77}) the divergence formula holds 

(15) j ~ V n G àXm~l = / (Ž ð , J 'ü j ) dЛ„ 

where 3j denotes the partial derivative with respect to the j- th variable. Using this 

formula we get for g G ^l\dA) vanishing near n and any z G IRm \ dA 

W9(z) = I 9n° ' grad/iг d Л m _ ь 

JдG 

and this formula extends easily to any g G ^l\dA) n ^(dA^q). Using (1) we 

conclude that for any / G ^(dA) C)tf(dA,q), 

(16) Wf(z) = -f(n)XG(z) + / [f(0 - f(n)]nG(0 • g r a d M O d A - ^ K ) . 
JaG 

Denoting by 

dist(*,M) = inf {\z - £\; £ G M} 

the distance from 2 to M C (Rm we get 

(17) \Wf{z)\ < |/(r,)| + [di_t(z,aC)]1— • 11/11, • — I q dAm_! 
^m JaG 

( l + t d i s t ^ d G ) ] 1 " ™ - — fqd\m-
{ ani JdG 

^ lu lig 

which shows that W maps ^ ( d A ) n tf{dA,q) continuously into Jf(Um \ dA). 

Conversely, let W act continuously from tfM{dA) ntf(dA,q) into Jf(Uni \ dA). 

Using the argument from [11] (cf. the proof of Thm. 2.12) we shall first show that G 
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has locally finite perimeter in lRm \ {rj}. For this purpose we fix affinely independent 

points z 1 , . . . , z m + x G (Rm \ dA. There is a c G [0, oo[ such that 

(18) fetf{l)(dA)n%(dA,q) => |VV/(^)K c||/||,,0, K k ^ m + 1. 

Consider an arbitrary bounded open set U with clU C IRm \ {rj} and denote by 

dQ — d - grad the derivative in the direction of 6 G 92?(0,1). We wish to show that, 

for any fixed 0 G 95(0,1), 

Ц sup^ / d^dAm;V>e<r0

(1)(U), H ^ l } <oo. 

Let IIj be the hyperplane containing all points in {zk\k ^ j} and notice that 
m + l 

| J (lRm \ Uj) = Um. There are infinitely differentiable functions aj with compact 
i = i 
supports sp ta j C Um \ ({rj} U IIj) (j = 1,... ,m + 1) which form a decomposition 
of unity near cl U in the sense that 

m + l 

3 = 1 

equals 1 in a neighborhood of clU. We then have 

/ doty dXm = / a(x)deip(x) dAm(x) 
JG JG 

for ip G ^o (U) s o t n a t **- S U m C e s to verify 

(19) sup j f aj(x)de^(x) dAm(x); ty G ^ 0

( 1 ) (U), \t/>\ ^ l } < oo 

for j = 1,. . . , 7/7, + 1. We will do this, e.g., for j = m + 1. Fix ip G ^ 0 (U) such that 

|V>| ^ 1. For x G spt a m + i the vectors x - z 1 , . . . , x - zm are linearly independent so 

that, in a neighborhood of s p t a m + i , 

0 = 2_\ ak(x) grádhzk (x) 
k=i 

with infinitely differentiable functions ak(x). Hence 

/ am+ideip dXm = y2 arnjri(x)ak(x) gradip(x) • gradhzk(x) dXm(x). 
JG ^ J G 
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Fix k e { l , . . . ,m} and put F(x) = am+1(x)ak(x). Then F e « i ( 1 ) ( R m \ {cfc}) and 

/ F(x)grad^(a:)-grad/i2A:(x) dAm(x) 
JG 

= / grad (F(x)^(^)) • gradhzk(x) d\m(x) 
JG 

— / ip(x)gra,dF(x) • gra,dhzk(x) d\m(x). 
JG 

Clearly, 

/ ip(x)gra,dF(x) • gra,dhzk(x) d\m(x) 
JG 

< — / \gradF(x)\-\x-zk\1-md\m(x) < oo. 
^m JG 

Noting that a is strictly positive on <9_4 D s p t a m + i D <9A H sp tF we can choose 

a e [0, oof such that |F| ^ aq on dA and (18) yields 

/ g radИ,Ж,)) . g radM(,)dЛ m ( , 
JG 

^ ac. 

Thus (19) has been verified for j = ra+1 and, of course, the same reasoning works also 

for j = 1, . . . , 77i. We now know that G has locally finite perimeter in Rm \ {r/} and, 

consequently, (16) holds for / <E ^1\dA)n<tf(dA, q) vanishing near m z £ UTn \ dA. 

It follows easily that 

(20) Jq(0\nG(0 -gradMOI <^m-i(0 

ӘG 

= 8ир{Ж/(^);/е^<1'(аЛ)П'Го(ЗЛ,д), ||/||,,0 < l}, zeUm\dA. 

Since the points z1,..., 2 m + 1 are affinely independent, there is a constant b G ]0, oof 

such that 
m+1 

5 3 | n c ( 0 - g r a d M ( 0 | ^ 6 , ?€ÔA 
fc=l 

Combining this with (18), (20) (where we set z = zk, k = 1 , . . . , m + 1) we arrive at 

r ra+l „ 

/ £ dAm_i ^ b"1 S2 / _ ^ l n G 'grad/ i^l dAm_i ^ b~l(m + l)c, 
•!3G /c_i ^ a G 

which together with (14) proves (2). 
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Remark 1. In what follows we always assume (2) which guarantees that G has 

locally finite perimeter in [Rm \ {n} and (14) holds. The operator W extends, by con

tinuity, from <£M(dA) n ^ ( 5 A , g ) to V(dA,q). For / G tf(dA,q) the corresponding 

function Wf G Jr^(Rm \ dA) is given by (16) for z G (Rm \ dA. 

No tation. We fix an infinitely differentiable function <p on R with spt (p C ] — 1,1[ 
such tliat 

<pd\x=l, (p(-r) = <p(r), r G (R, 
Ju 

and define for each locally integrable function g: R —> (R and each n G M 

Ang(t) = n l g(t - r)<p(nr) dЛi 
JR 

(r). 

Then Ang is infinitely differentiable and for each integrable function ip with compact 

support in IR we have 

/ ipAng dAi = / gAnip dAi. 
JR JR 

Suppose now that Z is a non-void set. For each / : IR x Z -» (R and each 2 E Z define 

/, : R -> R by 

fz(t)=f(t,z), lGR. 

If /. is locally integrable for each z G Z then we define An/: R x Z -> R by 

(-4n/)z = -4n/-5, z € Z , n G N . 

If the finite derivative (fz)' exists on R for each z € Z then 9 / denotes the partial 

derivative on R x Z given by 

(df)z = (fzy, zez. 

Assuming that df: R x Z —> R is well defined as above and, for each z G Z, both / 2 

and (/>)' are locally integrable on R, we have 

Andf = dAnf, n G N. 

Let now A be a O-algebra of subsets in Z and B the O-algebra of Borel sets in R. If 
Jr. R x Z - ^ R i s B x A-measurable and hz is integrable for each z G Z then 

/ h(t, 
JR 

z^ / h(t,z)d\x(t) 
Ju 

is A-measurable on Z. Hence it follows (cf. [9], Remarks 1.2) that Anf is B x A-
measurable provided / : R x Z — > R i s B x A-measurable and fz is locally integrable 
for each z G Z. Consequently, for such an / also dAnf is B x A-measurable. Keeping 
this notation we can formulate the following slight modification of Lemma 1.3 in [9]. 
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Proposition 1. Let A ̂  0 be a measure on A. For each k eN let fyk be a class of 
B x A-measurable functions on U x Z such that the following conditions (Pi)-(P6) 
are satisfied: 

(Pi) * * c * f c + i , fceN. 

(P2) ^ e ^ - ^ - ^ G *fc. 
(P3) For each ^ e ^ = \J $k and each z e Z, ipz is a continuously differentiable 

keM 
function with compact support in U; besides, both ip and di\) are integrable with 
respect to X\ x A on U x Z. 

(P4) For each k e N there is a Uk e H such that 

(ip e *ib, n ^ nk) ==.> An*p e * . 

(P5) Given k e N, there is a B x A-measurabie function pk: U x Z -» [0, 00[ such 
fchafc, for each bounded B x A-measurabie h: U x Z -» IR, 

sup < / h^ d(Ai x A); \j> e ^k \ = / \h\pk d(Ai x A). 

(P6) If a: (R —> IR is a bounded B-measurabie function then, for each z e Z and 

ken, 

sup I gtpz dAi; ip e ^k \ = / Igbfcz dAi, 
L JR J Ju 

where pkz = (Pk)z and pk occurs in (P5). 
Suppose now that f: U x Z —> IR is a bounded B x A-measurabie function and iefc 

F(*) = sup J y fz(6V). dAi; ^ G * J, z e Z. 

Then F: Z —> [0,00] is A-measurabie and 

/ F d A = s u p ( / /6Vd(Ai x A); ^ G * } . 

jZ I ^Rxz J 

P r o o f . We will follow the ideas employed in the proof of Lemma 1.3 in [9]; 
for convenience of the reader we include the details. Having fixed z e Z we get 

from (P4) for k e N and n^Uk 

sup J / fz(dAntl>)z dAi; xl) e *fc J = Fkn(z) ^ F(z), 

so that 
Fk(z) = liminf Fkn(z) ^ limsupF/cn(z) = F^(^) ^ F(z). 
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In view of (Pi) we have for any k € N 

(21) Ek(z) ^ Ek+1(z), Fk(z) ^Fk+1(z) 

and 
lim Fk(z) ^ F(z). 

k—>oo 

On the other hand, for each c < F(z) there is a ip G $ such that 

f fg(dtl>)z d\x >c. 
Ju 

Thanks to (P3) all functions An(^^p)z have supports in a fixed compact subset of U 

and converge uniformly to (dip)z as n -> 00; choosing k G N such that ip G ^fk we 
obtain 

Ek(z)>- f fz(dtl>)z dXt > c. 
JR 

We conclude that 

(22) F(z) = lim Fk(z) = lim Ffc(~). 
k—too k—>oo 

If V G ^A: and ?i ̂  nk (cf. (P4)), then 

/ fz(dAn^)z dAi = / fz(Andil>)z dAi = - f (8Anf)^z dAi, 
JR JR JR 

whence using (P2), (Pe) we get 

(23) ft„W= f \(dAnf)z\pkz d\x. 
Ju 

We see that Ffcn is A-measurable and, consequently, the same holds of F_k = 
lim inf Ffcn and F = lim F.. The proof will be complete when we verify 

71—>oo k—j>oo 

/ F dA ^ sup { / fd$ d(Ai x A); x/; G * 1 = s, 
Jz IJRxz J 

because the opposite inequality follows from the definition of F by Fubini's theorem. 
Referring to (22), (21) we have 

/ F d\ = lim / Fk d\ <C lim lim inf / Fkn d\. 
Jz k->ooJz k->oo n->oo Jz 
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The condition (P 5) together with (23) yields 

/ Fkn dA = sup ( / (dAnf)ijj d(Ai x A); 0 G * f c 1 • 
J Z I JuxZ J 

It remains to notice that, for tp G $k and ?i ^ n/-, we have by (P 4 ), (P 2) 

/ (dAnf)tj> d(Ai x A) = - / /C)An^ d(Ai x A) ^ s. 

D 

Definition 1. If H, M C Um (m ^ 1) are Borel sets, then z G U,n will be called 

a hit of H on M provided 

Ai (B(z, r) n H n M) > 0 and Ax (5(2, r) D (H \ M)) > 0 

for each r > 0 (compare 1.7 in [11] and [7]). We will use the symbol H&M to denote 

the set of all hits of H on M. 

Lemma 2. Let p: U —> [0, oo] be a lower-semicontinuous function, U C IR fin 

open set and M c H a Borel set. If 

o(l) 

then 

(24) 

U{p)={фЄ%l)(U); Џ\<pon s p t ^ } , 

supí [ 1>'d\1;tl>eU(p))= E PW-
<• JM > teUQM 

P r o o f . If ip G U(p), then ip' — 0 almost everywhere on p l(0) = {t G 

p>(l) = 0}. If Ii,..., Ir are all components of U \ P-1(0) intersecting spt \i\ then 

and 

In order to prove 

/ ^dA1 = É / ^'clAi 
JM - = l JMC\Ij 

Е Е *>(*)< Е *>(') 
^•=1 1е1]<эм 1е1?ем 

^ 'dAî 
м íЄl/ M 

278 



it suffices to verify 

(25) / V/dAj 
M n / j teijQM 

for any component Ij = ]a, b[ for which the right-hand side in (25) is finite. There 

is a compact interval [a, b] C ]a, b[ such t h a t spt ipf)]a, b[C [a,b] and inf p([a, b]) > 0. 

Under these circumstances the set 

[ a ^ n ^ - O M ) = { e i , . . . , e s } , 

where e\ < . . . < e s , must be finite. No component of [a,b] \ {e i , . . . , e s } can meet 

both M and R \ M in a set of positive Ai-measure; consequently, these components 

in their natura l order are alternatively almost entirely contained in one of the sets 

M and (R \ M (cf. the reasoning in the proof of 1.8 in [11], p. 13) and 

/ 
JMnii 

V>'dЛ] / Ф' 
JMП[á,ò] 

dAi £(-l)V(e.) ^ £ P(0. 
teijGM г = l 

which proves (25). Denoting by a(p) and (3(p) the left-hand side and the right-

hand side in (24), respectively, we have thus shown t h a t a(p) ^ P(p). It remains to 

establish the opposite inequality 

(26) a(p) > ß(p). 

For this purpose we denote by £? the class of all lower-semicontinuous functions 

p: U —>• [0,oo] fulfilling (26) and proceed by checking validity of the following asser

tions (a) - (d) : 

(a) g? contains the indicator function of any open interval in K. 

(b) If p G <^, then also cp G & for any c E [0, oo[. 

(c) If {pn} is a non-decreasing sequence of functions in ^ , then also lim pn G 2?. 
7 1 — • C O 

(d) If p i , p2 G £*, then also pi + p2 G &>. 

The assertion (a) follows from Lemma 1.8 in [11] and the proofs of (b), (c) are 

easy. In order to prove (d) choose arbitrary functions p\, p2 G 2? and real numbers 

Ck < P(Pk) (ft = 1, 2). There are tpk G U(pk) with 

/ T/VdA! >ck (ft = 1,2). 
JM 

It is easily seen tha t tp = ipi + x[)2 G U(pi + P 2 ) . The relation 

/ ^ d A i = / il>[ dAi + / V2dAi > d + c 2 
JM JM JM 
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shows that a(pi + p2) > ci + c2. Since ck can be chosen arbitrarily close to 0(pk), 
we have a(pi + p2) ^ P(p\) + /?(I>2) = /?(pi + P2) and (d) is established. It follows 
from (a)-(d) that & contains all lower-semicontinuous functions p: U —> [0, 00] and 
the proof is complete (cf. also [10], pp. 22-24). D 

Lemma 3. For any fixed £ G Um, the function 0 H-> nq(0,£) defined by (4) is 

Am_ 1 -measurable on <9L?(0,1), so that we may define vq(£) by (5). Writing 

V« = Rm \ {£,,?}, V«(g) = {</> G ^ 0
( 1 ) ( ^ ) ; M < q on sptt/*}, 

we then have 
(27) 

vq(£) = / <?|nG -gradh^l dAm_i = sup < / grad^ • gradb^ dAm ; ip G V*(q) >. 

P r o o f . Consider -0 G ^ ( ^ ) - Applying the divergence formula (15) to 
v = ipgradhf: (with v(£) = 0 6 Km) we get 

/ gradi/j • gradh^ dAm = / ipnG • gradh^ dAm_i, 
JG JdG 

whence it easily follows that 

(28) sup < / gradt/j • gradh^ dAm ; ip G V*(q) > = / q\nG • gradh^| dAm_i. 

Introducing the spherical coordinates and writing 

\l)0(t) = t/>(£ + t9), Ge = {t>0;Z + tOeG} 

for 9 G 3-8(0,1) we obtain (cf. (18) in [11]) 

/ g r a d ^ - g r a d ^ dAm = - — / / ip'e(t) dAx(t) dAm_i(0). 
JG Grn JdB{0,l) lJGe J 

Next, use Proposition 1 with Z = <9H(0,1), A = Am_i. For xp G V*(q) define ip on 
U x Z by xp: (t,6) i-> ^ ( t ) and let _"* = {xp;xp G V^(g), |^| + £ < g on spt V>}, 
_* = \J _V Proposition 1 tells us that 

keN 

(29) tf^supj / ^(0dAi(0;^G^(g)J 
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is a Baire function of the variable 6 G dB(0,1) whose integral (with respect to 
dAm_i(#)) over dB(0,1) is equal to (28). It follows from Lemma 2 that for any fixed 
9 G dB(0,1) with H(i,6) cUrn\ {T,} (cf. (3)), we have 

sup[ f il>'9{t) dAi(*); </> G V*(q)\ = Yl ti*)' 

M. Chlebik pointed out in [2] that methods of geometric measure theory (cf. [5]) 
permit to conclude that 

Am_! ({0 G dB(0,1); Hfo 0) n deG ± H(i, 0) 0 G}) = 0, 

which shows that 8 »-> nq(6,£) is Xm-i-equivalent to (29) and (27) holds. • 

Corollary 1. The function £ i-> vq(£) is lower-semicontinuous on (Rm. 

P r o o f . This follows easily from the formula (27). • 

Lemma 4. Let S Q (Rm \ dA be contained either in A or in G = Urn\A, 
7] G cl S n dA. Then the limit (9) exists and is finite for every f G ̂ (dA, q) iff 

(30) \imsu\jvq(z) < 00. 
2—>rj 

z<ES 

P r o o f . We have seen in (17) that, for any fixed z G Km \ dA, the linear 
functional 

f^Wf(z) 

is bounded on ^(dA^q) and, according to (20), (27), 

(31) s U p { W / ( ~ ) ; / G S b ( 3 A ) 9 ) , | | / | | , , o < l } = ««(*)• 

The existence of the limit (9) implies that, for any sequence zn G 5 tending to 77, 
the sequence Wf(zn) is bounded for each / G %(^-4,g); by the Banach-Steinhaus 
theorem we conclude in view of (31) that supvq(zn) < 00 and (30) follows. 

n 

Now we shall prove the converse (compare [10]). Since \G is constant on S, it 
follows from (16) that it is sufficient to verify the existence of (9) for / G ^o(dA,q) 

only. According to (30) we have for suitable r > 0 

sup{vq(z); z G B(n,r) n 5} = K < 00. 
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From Fatou's Lemma we conclude by (27) that also 

(32) / q\nG • g r ad /g dAm_i <: K. 
JdG 

We shall show that, for any / _ _f0(<9A,G), 

(33) lim Wf(z) = / fnG • grad/i- dAm_i. 
les JdG 

Fix an arbitrary _ > 0, / _ ^ ( ( .A , ^ ) and choose _ > 0 such that 

l/(y)K _(y), ! / e % í ) n a A . 

By (16) we then have 

(34) Wf(z) = f 
JB(V, 6)ПдG 

fnG • grad/i2 dAm_i + / fnG • grad/i2 dA^ 
JaG\/3(r7,5) 

Clearly, 

lim / fnG -grad/i2 dAm_i = / fnG -grad/i^ dAm_i, 
Z^S JdG\B{r),8) JdG\B{r1,8) 

because grad/*2 -+ grad/i^ uniformly on dG \ B(i],5) as z -» ?7. On the other hand, 

/ _ fnG -grad/i2 dAm_i 
I Jß(r7,á)ПӘG 

^ Є / gl™G • gradb 2 | dAm_i ^ eK, 
JdG 

z G B(i],r)nS, 

and, in view of (32), this estimate holds for z = ?/ as well. We conclude from (34) 

that 

lim sup 

_ЄS 

wf(z) - L fnG - g m d / ^ d л —i 
JдG 

^ 2sIv + lim sup 
>?7 

zЄS 
Ĺ fnG • (gradb2 - grad/ц) dAm_i 

č>G\B(r?,5) 
= 2_Iv 

which proves (33), because e > 0 was arbitrary 
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Lemma 5. For any open U C lRm and UJ G <9H(0,1) the function 

(35) Z^nq(uj,Z;U) 

defined by (7) (cf also (6)) is Am_i-measurable on N(UJ) = {£ G (Rm; £ • UJ = 0}, so 

that we may define ^(U) by (8). Let 

U\q) = {^e %il) (U \ {77}) ; \il>\ < q on spt ^ } 

and denote by du = UJ • grad the derivative in the direction of'UJ G <9I?(0,1). Then 

(3G) / £ ( [ / ) = / _q\nG-uj\ dA,n_i = sup ( / c^-0 dAm ; V G U\q)\. 
JundG I JG J 

P r o o f . Fix ^) G ^o (^Ai7/}) anc^ aPPly t n e divergence formula (15) to v = ^puJ. 
It follows that 

/ 0CJ • nG dAm_i = / d^ dAm, 
JaC JG 

whence 

(37) / _ q\uj -nG\ dXm-i = s u p <̂  / <5L̂  dAm ; -0 G U7?(g) \. 
JundG I JG J 

Let us agree to write for £ G N(cj) 

<</(l) = V(S + M . *G R; G* = {*G R; f + ta ;GG}. 

Using Fubini's theorem we obtain 

clV clAm = / [ / -£^(*) dA 
JN(U) Lies (1t 

i(0 d Л m - i ( 0 -

Next we will employ Proposition 1 with Z = N(UJ) and A = Am_i on the O-algcbra 

A of all Borel subsets in N(UJ). With any 0 G Uv(q) we associate ^ defined on R x Z 

by 

jr. (t,0^'^(t) 

and let. VI'A- = {0; ^ _ U/;(O), |</'| + \ < q on spt'0}> k G N. Proposition 1 tells us 
that the function 

(••iS) £ ^ sup | j ^ ( t ) dX^t); 0 e U"(q) 
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is Borel measurable on N(u) and its integral dAm_i(£) over N(UJ) is equal to (37). 
For fixed f G N(UJ) with L(£,uj) C Um \ {r,} (cf. (6)), Lemma 2 yields 

sup | f ^(t) dAi(i); ^ G U7^)} = Y, QW l ^ [£(£,") n U] 0 G. 

Now we refer to the following result of M. Chlebik from [2] based on geometric 
measure theory (cf. [5]): 

Am_i ({i G N(u>); L(£, uj)nUndG^ [L(£, w) n U] 0 G}) = 0, 

which implies that the function (35) is Am_i-equivalent to (38). Consequently, (35) 
is Am_i-measurable on 1V(cj) and its integral dAm_i(£) over N(LO), which has been 
denoted by ^ ( U ) , satisfies (36). D 

Lemma 6. Let S C IRm, r, G c l5 . If (30) holds, then 

(39) ^( r ? ) - f - sup{r 1 - T n ^(_?( r , , r ) ) ; r > 0, a; G 95(0,1), r, + ru G clS} < oo, 

wLiere fiq
J(...) is defined by (8). 

P r o o f . Employing (30) we get by the lower-semicontinuity of vq(-) that there 
is a 6 > 0 such that 

(40) sup{v9(x); x G _?(ry, 6) n cl 5} = c < oo. 

Let r > 0, u; G o_?(0,1), 2 = r, -hrcj G cl5. If r ^ J, then using the notation (11) we 
have 

r 1 - m ^ ( H ( r , , r ) ) ^ Sl-m^q(Rm) < oo. 

Let now r G]0,o"[, y G dGnB(r/,r). If |(H-r,) -nG(u) | > | r | n G (u ) -o;|, then 

| ( , - n ) - n ^ ) | 1 G 

\y-n\m ^2 ' w ' 

If |(i/ - 17) • nG(y)\ < \r\nG(y) • w|, then 

l ( y 7 y - z " m ( y ) l ^ (2r)'m [K* - »?) • "G(y)l - K ? / - " ) - «G(2/)I] 

> (2r ) - m [r\u • nG(y)\ - ^r\oj • nG(y)\] 
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Hence 

rl-m\nG{y).u>\ ^ 2m+1O-m[|nG(y) • gradft-(j/)| + \nG(y) • grad/i2(u)|] 

and (40), (27) give 

rl-mrt{B(n,r)) 

<C 2m+1O-m J q(y)[\nG(y) • grad/i.(u)| + |nG(u) • gradM!/)l] dAm_!(y) 

B(<n,6)ndG 

^ 2m+2O-mc. 

D 

Remark 2. It follows from Lemma 5 that fiq
J(-), defined so far as a set function 

on open sets, extends naturally to all Borel sets M C U171 by 

(41) nl(M)= f O|nG-cj|dAm_i. 

MndG 

Proposition 2. Suppose that Sj C (Rm \ dA are connected sets such that 

7/ € c\Sj DdA, contg(Sj,i]) = H(n,6j) (j = l,...,m) (cf (3)), where 0u...,0m £ 
m. 

dB(0,1) are linearly independent. If (30) holds for S = [j Sj and fiq(.) is defined 
i= i 

by (11), che22 (12) is true. 

P r o o f . Our assumptions on Sj (j = 1 , . . . , m) guarantee the existence of posi
tive constants J, c such that 

Z3 — ГJ 

\zi - 17I 
žc. (nedB(0,l), zl eSjnB(n,6)(j = l,...,m)) = > ] T 

i=i 

We may suppose that S > 0 has been fixed sufficiently small so that, for every 
r G ]0,6[ and j = 1 , . . . ,m, dB(rj,r) n Sj ?- 0, which implies the existence of an 
LOJ e &B(0,1) with 77 + ro^- = z3 e Sj. In view of (11), (14), fiq(.) can be defined by 

(42) ^(M) = / _ g d A m _ i 
JMDdG 

for any Borel set M C U™. By Lemma 6 we have for 0 < r < S 

viW+r^^iBfar)) 
1 m 

<C^ ( r / ) + _ r i — 2 ^ ( B ( » 7 , r ) ) 

^ ««(rj) + — sup {r1-™/^ (B(r,,r)); r > 0, w € 9.8(0,1), rj + ruj G 5} 

< oo. 
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Obviously, for r ^ 8 we have rl-m]iq{B(i],r)) ^ 8l-7n)iq(Um) < oo and (12) is 
verified. • 

Proposition 3. Let m = 2 and let S C W2 \0A be a connected set with i) G 
clSDdA. Denote by 

S = {2i)-x; x G S} 

its reflection at n and suppose that 

contg(<9G, 1]) n contg(S, 77) = 0 = contg(<9G, //) n contg(5, ?;). 

Then (30) implies (12). 

P r o o f . There are constants 8 G]0,n/4[, g G]0,oo[ such that, for any y G 
dG n [B(i], g) \ {77}] and z G S n #(77, D), the angle enclosed by tlie vectors 

y - T] Z-T] 

\y-r\V \z~v\ 

exceeds 28 and the same holds for the vectors 

y -i] z-1] 

|u - 7 , 1 ' \Z-1][ 

In view of (30) we may assume that g > 0 has been fixed small enough so that 

0 < r < g => SDdB(i],r) / 0, 

sup{vq(z); z G S n B(i), g)} = c < 00. 

It follows from Corollary 1 that also 

vq(i)) ^ c . 

Let now 0 < r < g, y e dG D B(i],r), z G S n dB(i],r). If nG(y) encloses with one 

of the vectors 

,43) |T^- - j f ^ f 

the angle not exceeding ^K — 8, then 

\nG(y) • (y - il)\ + \nG(y) • (y - z)\ > \n° (y) • (z - ,,)| > r cos ( i - - rfj. 
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If both vectors (43) enclose with nG(y) angles exceeding \n - 5, then at least one of 

the vectors 
y-v y-v 
\y-vY \y-n\ 

encloses with nG(y) an angle which is less than \n - 26 + 8 = |TI - 5, whence 

\nG(y) • (y - 7?)| ^\y - n\ COS(±TC - 6). 

In any case (note tha t \y - z\ ^ \y - i]\ + \z - n\ ^ 2r) we have 

\n*(y) • (y - „ ) | + | n ° ( y ) - ( y - , ) | ^ l r _ t . _ ^ 

\y - r)\2 \y - z|2 " 4 2 

whence by (42), (27) we get 

r " V (-*(»/, r ) ) 
L rinGt'j/'i . i?/ — tiW \nG(ii\ • i?/ — y\n 

q(y) dAi(7/) < 4 c o s _ 1 ( ì - - Ä ) / 
jðGПB(»),i-) 

n G ( ž / ) - ( 2 / - » / ) | | n G ( y ) - ( v - z ) G ^ ) - ( y - ^ ) l | \nG 

| H - ? / | 2 l ^ - ^ l 2 

^ S T I C O S - 1 ^ - 6)[vq(i]) + vq(z)] ^ l O n c c o s " 1 ^ - 6). 

If r ^ D, then r _ 1 nq(B(r),r)) ^ D-V([R2) < oo and (12) (where now m = 2) is 

verified. • 

L e m m a 7. Let S C (Rm \ <9A, ?? £ d A n c l S , U9(?/) < oo, contg(dG,n) n 

contg(S,7?) = 0. If 

(44) s u p | * 1 - m / i 2 ( J B ( f 7 , 0 ) ; f l = T J ^ T , zeSnB(n,5), t > \z - n\\ < oo 

for some J > 0, tijen (30) iioids. 

P r o o f . It follows from 

contg(<9G, 77) n contg(5, 77) = 0 

tha t there exist constants a > 0, e > 0 such tha t 

z G SnB(i],e) = » dist(z,<9G) ^ a | z - r ? | 

(cf. [3]). Clearly we may suppose that e ^ 5, where S occurs in the assumption (44). 

We shall first show tha t there is a c G ]0, 00[ such that , for any z £ S n B(n,e) and 

any Borel measure v ^ 0 concentrated on dG, 

(45) s u p { T 1 - r ? V ( H ( ^ , T ) ) ; T > 0} ^ c s u p { r 1 - m z / ( H ( r / , r ) ) ; r > | z - 7 / | } . 
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m —1 

Setting n =\z - v\ and r = n& we get for b € ]0,a] 

B(z,r)ndG = $(=^ u(B(z,r)) = 0), 

while for 6 > a 

r1 _ m i / ( .B(- ,r)) 

^ - ^ ( B f a . r + n ) ) = [ r 1 ( l + 6)]1—u(B(y,(l+ b)n)) (±±?\ 

( 1 -i- \ Tn~1 

We see that (45) holds with c = a1~m( l + a)™"1. 

Now fix any z e S C\ B(rj,e) and put r = \z-rj\, 0 = (z - rj)/\z - v\- Defining the 
Borel measures jiq and \i\ by (42) and (41) we get by (27) 

v«(Z) * J- / \-y-(v--)\ 
PmJdG \y- v\m 

dn«(y) 

Gra Jд 

= vчv) + —L 
Gm JдG 

nG(y) -(y-z) _ nG(y) • (y - y) 

ŠG\ \y- Am \y-v\ 
\y-n\m-\y-z\m^G 

\y - v\m • \y - z\m 

rnG{y)-e W(y) 

dť(y) 

ПG(У)-(У-V) 

\y-AT 

ś 2vq 

+ Gm Jд( 

i . f \nG(y)-(y-v)\ (\y-v 

: JdG 

áf4(y) 

'M + — L i i CTm JdG \y - v\ \y-z\ dßq(y) 

JgG\y-Am' 

In order to get an estimate of the last integral recall that, for any non-negative Baire 

function / on Rm, 

[ fd^9=r^e({xeRm;f(x)>t})dt. 
Juin JO 

Hence we get by (45), denoting by k the supremum occurring in (44), 

r L \y - A~m d !^) = r [ a r ti (B(z>i-^)dt 

JdG Jo 
/•OO 

= rm fi"e(B(z,s))s-1-m ds 
J ar 

/•OO 

^ rmck I s~2 ds = mck/a. 
J ar 
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If y G dG, then \y - z\ ^ a\z - r/|, whence \y - rj\ ^ \y - z\ + \z - r/| ^ (1 + \)\y - z\. 

Hence 

<rmJgG \y-v\7n \\y-z\J \ a ) 

Finally, we arrive at the estimate 

Vq(z)^ 2 + \V <?-) + — . 

D 

The following assertion is an immediate consequence of Lemma 7. 

Corollary 2. Let S C Um \ dA, r/ G dA n cl5, contg(5G,r/) n contg(5,?/) = 0. 

Then (12) implies (30). 

L e m m a 8. Let 5 C IRm be connected, ?/ G (cl5 \ 5) n <9A and suppose that, for 

suitable k G ]0, oo[ and 0 G dB(0,1), the following implication holds: 

(4G) zЄS z~  
\Z - T)\ 

^ k\z - v\ 

Then the following conditions (i)-(iii) are mutually equivalent: 

(i) s u p r 1 - m ^ ( H ( ? / , r ) ) < o o ; 
r>0 

(ii) sup{r1-m/L/.2;(H(7/,r));r7 + rcc;G5, to G dB(0,1)} < oo; 

(hi) sup{f l - m /^(I3(r/,0); V + rueS, ujedB(0,l), t>r}<oo. 

P r o o f . We shall first verify the equivalence (i) <£=> (ii). Choose S > 0 small 

enough to have 5 n dB(i],r) / 0 whenever 0 < r < S. Having fixed such an r we 

choose cD G dB(0,1) with n + rtD G 5 and get from (46) 

» д ~ " > ;;(£('//,?•)) - / . ' (B fa , r ) ) | ^ r 1 — I q(v)\nG{y) • {0 - w)\ dXm.l{y) 
J0GnD(r},r) 

^ kfiq(Um). 

For r ^ 6 and any cD G 913(0,1) the inequality rl~mu^ (B(i], r)) ^ Sl-mfi(}(Rrn) 

holds, whence the equivalence (i) <=> (ii) follows at once. It remains to verify (ii) 

(iii). 
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Let u G dB(0,l), i] + ruo G 5, t > r. If t > S, then J1"™^l(B(i],t)) <$ 
Sl'm^(Rm) < oo. If t G ]0,6[, then we can choose ut G 9.0(0,1) with 7/ + tut G 5. 
We then have 

t 1 -" 1 ^ ' (B(»7,0) - < {B(n,t))\ < 41"™ jq(y)\nG(y) • (u, - 0)| dAm_1(t/) 

9GnB(i),() 

+ ^(j/^d/J-^-wOldA . . ,-!^)! 
a&nB(T7,i) 

^ 2*7x«(Rm), 

which shows that (ii) <=-> (hi). D 

Now we are in position to prove Theorems 1, 2 announced in the introduction. 

P r o o f of T h e o r e m 1. If the limit (9) exists for every / G V(dA, q), then 
(30) holds by Lemma 4 and (39) follows by Lemma 6. The implication (ii) =t> (i) 
from Lemma 8 yields (10). Conversely, (10) and Lemmas 8, 7 imply (30) and 
Lemma 4 guarantees the existence of the limit (9) for every / G ̂ (dA,q). • 

Remark 3. The above proof shows that for Theorem 1 to be valid, the assump
tion concerning contg(5,77) can be weakened to 

contg(5,77) fl contg(dA, 7/) = 0. 

P r o o f of T h e o r e m 2. If the limits (13) exist for each / G ff(dA, q), then 
m 

(30) holds for 5 = IJ Sj by Lemma 4 and (12) follows by Proposition 2. Conversely, 
i=i 

assume (12) and suppose that 

(47) contg(5,-, 77) fl contg(3;4,77) = 0, 1 ^ j ^ m. 

Since //*(.) ^ //*(•) for any 0 G dJ3(0,1) we get by Lemma 7 that (30) holds for 
771 

5 =-. [j Sj and Lemma 4 implies the existence of the limits (13) for any / G ^(dA, q). 

• 

Remark 4. As we have observed in the above proof, the weaker assumption 
(47) concerning the contingents of Sj suffices for validity of Theorem 2. In the plane 
case m — 2 we obtain the following result concerning angular limits of double layer 
potentials. 
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Theorem 3. Let m = 2 and let S C U2\A be a connected set with rj e cl SndA. 

Denote by 

S = {2rj-x',x e S} 

the reflection of S at r] and suppose that 

contg(<9G, ri) fl contg(5, ?/) = 0 = contg(<9G, 7/) D contg(S, n). 

Then the limit (9) exists and is finite for every f e tf(dA, q) iff 

(48) vq(r]) -f-sup^(H(?/,r))/r < oo. 
r>0 

P r o o f . If the limit (9) exists for every / G <e(dA,q), then (30) holds by 
Lemma 4, and (12) (with ??i = 2, which is just (48)) follows by Proposition 3. 
Conversely, (48) together with the inequality frq(-) ^ f.iq

0(-) valid for each 0 e <9H(0,1) 
yields (30) by Lemma 7, and Lemma 4 guarantees the existence of (9) whenever 
f e%\DA.q). • 

Remark 5. Our main results concerning angular limits of the double layer po
tentials were based on obtaining geometric conditions on the boundary guaranteeing 
the validity of the relation (30) occurring in Lemma 4. The same relation serves 
as a basis for obtaining geometric conditions on dA guaranteeing the existence of 
ordinary limits (along kit A or hit G) of the double layer potentials at a boundary 
point //. The following result from [10] may serve as an illustration. 

Theorem 4. Suppose that either S = int A or S = intt7, // G dS. Then the limit 

(9) exists and is finite for every f e ^(dA.q) iff 

(49) limsupU<7(u) < oo. 
y-+v 
yedS 

P r o o f . We know from Lemma 4 that (30) is necessary and sufficient for the 
existence of (9) for each / G ^(dA,q). It follows from the lower-semicontinuity of 
vq(-) (cf. Corollary 1) that (30) implies (49). The converse implication (49) =t> (30) 
has been proved in [10], p. 32. • 

Remark 6. There is a vast literature concerning boundary behaviour of double 
layer potentials. Various results on angular limits which are close in spirit to those 
occurring in the present paper may be found in [3], [6], [8], [12], [13], [14], [17], [18]. 
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