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DECAYING POSITIVE ENTIRE SOLUTIONS OF THE p-LAPLACIAN 

YIN X I HUANG, Memphis 

(Received January 16, 1992) 

1. INTRODUCTION 

We consider the following prototype of nonlinear equations 

(1.1) Avu + if(x)\u\x~lu = 0 

in (RN, where 1 < p < N, A < p - 1, N ^ 3, Avu = div(|Vu|p-2Vw) is the p-

Laplacian and p(x) > 0 is continuous. Our objective is to obtain conditions on ip 

such that (1.1) has a global decaying positive solution and further to describe the 
asymptotic behavior of the solution precisely. 

For the case p = 2, (1.1) is the Emden-Fowler equation and has been intensively 
studied. Detailed global existence results and classification of solutions have been 
obtained by many authors. We refer to Kawano, Satsuma and Yotsutani [10], Kusano 
and Swanson [12, 13, 14], Li and Ni [16], Ni [17] and references therein. Much study 
has appeared recently for the case p ^ 2. Properties of global solutions of equations 
of the type (1.1) have been investigated by Ni and Serrin [18], and Friedman and 
Veron [6]. For <p = 1 and A > p— 1, Guedda and Veron [9], Bidaut-Veron [3] studied 
local and global behavior of solutions of (1.1). For A in certain range, classification 
of solutions is achieved. For the case where 1 < p ^ 2, N ^ 3, existence of bounded 
positive solutions bounded away from zero for equation of the form Apu + f(x, u) = 0 
is proved by Kura [11] via the subsolution-supersolution technique. 

In this paper, we study the other half range of A, i.e. A < p — 1. Suggested by the 
terminology for the case p = 2, we use singular, subhomogeneous, and superhomo-
geneous to denote the cases where A < 0 , 0 < A < p — 1, and A > p — 1 respectively. 
We say a function u G W*o

,p(UN) is an entire solution (supersolution, subsolution, 
respectively) of (1.1) (and its alike) if u satisfies 

(1.2) / \Vu\p-2VuVv-ip\u\x~1uv = (*£, <)0 
JRlv 

205 



for all v E C£°(RN), cf. Kura [11, p.7]. Our main results assert the existence of 
such entire positive solutions which decay to zero, with emphasis on their asymp
totic behavior. We will employ the classical Schauder fixed point theorem and the 
subsolution-supersolution technique established for Ap by Kura [11]. 

We start with equation (1.1) in Section 2. With proper assumptions postulated 
upon radially symmetric <p, we prove existence of entire positive solutions u such 
that \x\ i—- u(x) is bounded above and below by positive constants. This result is 
further generalized to nonradial ip with suitable radial majorant. In Section 3 we 
study the following mixed subhomogeneous-superhomogeneous equation 

Apu + <p(\x\)\u\x~lu + *l)(\x\)\u\»-lu = 0, 

where X < p— 1 < / i , ( D > O , ' 0 ^ O . Existence of decaying entire positive solutions is 

also obtained. In Section 4, we consider existence and asymptotic behavior of entire 

positive solutions of the more general problem 

divflVu\p~2 Vu) + f(x, u, Viz) = 0. 

Finally we include in Appendix an application of a device due to Allegretto [1] to a 
general p-Laplace equation. More precisely, we obtain existence of infinitely many 
positive solutions bounded above and below by positive constants, and generalize 
Kura's result to the case p > 2. 

Acknowledgement . The author thanks the referee for his careful refereeing and 
helpful suggestions and for pointing out an error in the original proof of Theorem 4.L 
The author is grateful to Pavel Drabek for some stimulating conversations. 

2 . SUBHOMOGENEOUS AND SINGULAR CASES 

This section deals with existence of decaying positive solutions of the equation 

(2.1) Apu + f(x,u) = 0 in UN, 

where I < p < N, jV^3 and f(x,u) satisfies appropriate assumptions. We note 
that, by known regularity theory (cf. Tolksdorf [20]), if p ^ 2, solutions of (2.1) are 
in C 1 + a (some a > 0) in general, not in C2. 

We first study the following prototype of (2.1) 

(2.2) Apw + ^ ( |x | )H A - 1 u = 0 in [RjV, 
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where A < p— 1 is allowed to assume negative value and (D is continuous. If y(\x\) > 0 
is an entire solution of (2.2), it is easily checked that y satisfies 

(2.3) (rN-1\y,r2y'Y+rN-1>p(r)yX(r)=0, re[0,<x>), 

with r = \x\. We will first concentrate on solvability of equation (2.3). 

Throughout this paper we denote Q(t) = min{l, 11—1 } for t ^ 0 and IR+ = [0, oo). 
We introduce the following closed subset Y of C((R+): 

(2.4) Y :={ye C(R+): cl6(t) ^ y(t) <: c2Q(t)}, 

where Gi and c2 are positive constants, to be determined post priori. We assume 

that (f(t) satisfies the following 

POO p\ 

(2.5) QP
2~

1 := / tN~1if(t)QX(t)dt < oo, / <p(t)dt <oo . 
Jo Jo 

On F , we define an operator T: Y -> C(R+) by: 

/

°° / rs \ I / ( P - I ) 

(y (i/s)w-V(<)2/AWdi) da. 
We first verify that T is well defined. Obviously u(r) is a decreasing function of 

r. We claim that 

A f°° / fS \ l / ( p - l ) 
(2.7) c2 "-1 u(0) ^Qi:= ( / (t/s)N~1ipQX dc) d5 < oo. 

Indeed, we have 

r ( r (t/S)N-^Qx dt) ̂ ds^ f\r ^ ^) ̂  d5 

+ 1°° s-%* (j°° tN~' wX dtf* ds. 

(2.7) then follows from assumption (2.5) and the fact that p < N. Hence T is well 
defined for y £ Y. 

It is our purpose to prove that T maps Y into itself and is continuous and compact, 
which will be achieved by a series of lemmas. Consequently the Schauder fixed point 
theorem implies existence of fixed point of T in Y, which is a solution of (2.3). First 
we have 
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Lemma 2.1. For u given by (2.6), we have 
(i) (rN-l\u'\P-2u')' = - r i V - V ( r ) y A W , and 

(ii) r „ . - ^ )
( , . - „ --> %$ (/0°° * " " V ( % A ( t ) d«) ^ as r -+ oo. 

This lemma follows from direct calculation and the proof is thus omitted. 

Lemma 2.2. T: Y -» C([R+) is continuous and compact. 

P r o o f . For u = Ty with y G F , we have 

|«'(r)| = (/ r(*/r)A f-V(0yA(0dt) i i T. 

Observe that, for r G [0,1), 

KWK(y ^(%A(0dt)^<oo, 

while for r ^ 1, 

\u'(r)\ ^ r'T^T ( P ^ " V ( 0 e ? A ( 0 d *) ^ ^ r 1 < oo, 

i.e. T maps F into a bounded subset of CX((R+) and consequently T is compact. 
Since integration is a continuous operation, we conclude that T is continuous. The 

lemma is proved. • 

Next we estimate u = Ty. Observe that 

(2.8) u(r) < cf~l y°° (J\t/s)N-lwx dt) ^ ds. 

Since A < p — 1, we can choose c2 > 0 so large that 

From (2.8) we derive that 

A i _ A 

u(r) ^ c.j"1 • c2
 ; , _ 1 = c2 = c2g(r) 

for r G [0,1]. 
For r > 1, we obtain 

A r°° / rs \ l 

uirXcŤ* J s-&(J ^ - V ^ d ť ) " - 1 

^ C . Г ^ ^ O . 2 . "2 Л f - p 
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By choosing c2 > 0 so large that 

(2.9) c~~l ^max(O!, ^ 0 2 , 1), 

we conclude that u(r) ^ c2g(r) for all r G IR+. 

On the other hand, for y G Y, we also have 

«(r) = Ty(r) > c p 1 j*'(J'\t/s)N-^QXdí)"" ds. 

It then follows that 

X poo rs l 

u(r) 2 cF1 J [J (t/s)N-^QX dt) p-1 ds 

for r G [0,1], and 

« ( r ) > c f - 1 / ( / ( t / s ^ - W <-*) " - 1 da 

>cr i^r^(j[1tw-Wd.)5 i l 

for r > 1. Again by (2.5) we can choose c\ > 0 so small that u(r) ^ ciO(r) for 
i - - = -r G (R+. Indeed, suffice it to take cx
 v l as the minimum of the following three 

quantities: 

j~(j\tls)N-l<pe>dt)^ds, %±(j\N^^dt)^~\ andl. 

For c\ and c2 so chosen, we have 

Lemma 2.3. T maps Y into itself 

Now by applying the Schauder fixed point theorem, we obtain the following 

Theorem 2.4. Under assumption (2.5), equation (2.2) admits a radial positive 
solution y(r) satisfying CiO(r) ^ y(r) ^ c2g(r). 

Remark 2.1. For <p(t) ~ t~a with a > N - (N - p)X/(p - 1), (2.5) certainly is 
satisfied. By our assumption, necessarily we have a > p. We note that for the case 
p = 2, a > 2 (for jY ^ 3) is a common restriction. See also Ni [17]. 
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Returning to equation (2.1), we now assume that f(x,u) = </?(x)|u|A xu, and 
denote 

Tp(r) = max(D(x), <D_(r) = min (p(x). 
|x|=r |x|=r 

We further assume that Tp satisfies (2.5). We then have 

Theorem 2.5. Under the above assumptions, equation (2.1) has an entire positive 

solution y(x) such that eig(\x\) ^ y(x) ^ £2£(M) for some e\, 62 > 0. 

By well established theorems, see, e.g. Theorem 4.7 of Kura [11], if y ^ y is a 
pair of sub-supersolution of (2.3) (see (1.2) for definition), then (2.3) has a solution 
y such that y ^ y ^y. Now we can prove Theorem 2.5 as follows. 

P r o o f of T h e o r e m 2.5. Suffice it to construct a pair of sub-supersolution 
for (2.1). We observe that, by our assumption, both ip and Tp satisfy (2.5). Theo
rem 2.4 then implies that there exist y and y such that 

APy + Cpyx =0, 

and 

Apy + <p yx = 0. 

It then follows that y (resp., y) is a supersolution (resp., subsolution) of (2.1). Since 
A < p - 1, we deduce that ey_ is also a subsolution of (2.1) for any 0 < e < 1. We 
then take e so small that ey ^ y, which is possible by the asymptotic behavior of y 

and y, derived from Theorem 2.4. This leads to the conclusion of the theorem. • 

Remark 2.2. The case 0 < A < p — 1 corresponds to the sublinear case when 
p = 2. We note that existence of decaying positive solutions has been obtained 
for the sublinear case by many authors. For more details, we refer to Kusano and 
Swanson [13], Kawano, Satsuma and Yotsutani [10], Li and Ni [16], and the survey 
paper by Ni [17]. In our consideration, negative value of A is allowable, i.e. the 
singular case is included. Kusano and Swanson [12], Dalmasso [4] and Edelson [5] 
studied the singular equations for the case p = 2. Our results extend theirs to the 
more general case. 
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3 . MIXED SUB-SUPERHOMOGENEOUS CASE 

The technique we employed in the previous section is not amenable to deal with 
the case A > p — 1. However, for the case 

f(x,u) = ip(\x\)\u\x-lu + ^(\x\)\u\tl-1u 

with ( £ > 0 , ip ^ 0, X < p — I < p, which is called the mixed sublinear-superlinear 
case for p = 2, our method can induce similar result and this is our objective of this 
section. 

We consider the following equation 

(3.1) Apu + (f(\x\)\u\x-lu + Vf lsDM""^ = ° i n J.A! 

where <D > 0, ip ^ 0 are continuous, A < p — 1 < p. Assume that (D satisfies (2.5) 

and ip satisfies 

(3.2) QI~1 := / ^-^Q^dtKoo, / tpdt<oo. 
Jo Jo 

Following the treatment of Section 2, we define an operator J: Y —> C(U+) by 

(3.3) v(r) = (Jy)(r) = J°° (J\tls)N-1 {>pyx + W) dt) ~^~ ds. 

We also have 

Lemma 3 .1 . For v defined by (3.2), 

(i) ( r ^ - V C - V ) ' = -rN-1(vyx + tpy>1), 

(ii) H r - M , - , , -» ^ (/o°° <Af_1 ( ^ A + W ) dt) ^ as r -* oo, a*d 
(iii) J is continuous and compact. 

Next we show that, for properly chosen cr > 0 and c2 > 0, J maps Y into itself. 
Indeed, for any y G F , we have 

v ( r ) = / ° ° ( / S ( ( / s ) N _ 1 ^ y A + ^ M ) d 0 ^ d s 

/ A r°° / rs \ * 
^ 2 ^ T (c>-i / ( / (t/sf-1^ dt) "_1 ds 

/i roo / rS \ - + - \ 
+crJ \j Ws)N~'Wdt)v~1('s)-
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For r > 1, calculation shows that 

v(r) < 2F^T ^ r ^ (cJT (J°° tN'ltp0
x dt) ^ 

(3-4) +cf-1(J°°tN-^Q»dt)1^) 

= ^fj^r^(cf~1Q2+cfTQ3). 

Denote g(t) = t ^ 1 " 1 ^ + t^~lQ3. It follows that at 

(3-5) c2 = I — — ) 
\(»-p+l)Q3' 

function g(t) achieves its minimum value 

(,a, ,^^( (^ )^ + ( ;^ )^ ) . 

Assuming 

(3-7) 7^2-^rfff, 

we then derive from (3.4) that v(r) ^ c2Q(r) for r > 1. For r G [0,1], we observe 
that 

A /»oo /«S 1 

v(r) ^ 2 ^ (cJT1 J (J (t/s)N~^QX dt) '~l ds 

_JL_ rOO nS _ i _ 

+ <%-* J [J (t/sf-'^dty-'ds). 
For c2 given by (3.5), we assume that 

r([\t/s)N^^dt)^ds^2^^cl-^, 
^ j l*00/ l*s \ - ^ - i _ _ _ _ 

y (y (l/5)
7V-1^dr)7'-1d^2-1-^r4--1, 

then U(r) ^ c2 for r G [0,1]. We thus conclude that v(r) ^ c2D(r) for all r G (R+. 
We now claim that, for c\ > 0 small enough, for r G [0, oo), ciD(r) ^ v(r). Indeed, 

since 

v(r) > cf1 J°°(J\t/s)N-lvex dt)1^ ds, 

by the analysis of the previous section, we conclude that there exists a small ci ^ c2 

such that CiD(r) ^ v(r) for r G 1R+. Thus we have proved 
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Lemma 3.2. Assume that (2.5) and (3.2) hold. For c2 defined by (3.5), assume 

moreover that (3.7) and (3.8) ho1d. Then for c\ > 0 sina11 enough, J maps Y into 

itself, where Y is defined by (2.4). 

We note that, if we replace <p and \\> by sip and sip (e > 0) respectively, c2 defined 
by (3.5) does not change at all. Observe that D2 and D3 are increasing functions of 
(p and ip, whence so is 7 . Consequently by choosing e > 0 small we can always have 
(3.7) and (3.8) satisfied. Thus we can state 

Theorem 3.3. Assume that (2.5) and (3.2) hold. Then there exists an £0 > 0, 

for any £ £ (0, £0], the problem 

Apu + e<p(\x\)\u\x-lu + erpQx^u^u = 0 in UN 

has an entire positive radial solution y£ such that c[g(r) ^ Ve(r) ^ c2D(T) for some 
c[ > 0, where c2 is given by (3.5). 

Remark 3.1. ip(t) ~ t~a with a > N - (N - p)X/(p - 1) and ip(t) ~ t~s with 
5 > N - (N - p)/i/(p - 1) satisfy (2.5) and (3.2) respectively. 

Remark 3.2. For p = 2, Kusano and Trench [15] studied a mixed sublinear-
superlinear problem and obtained existence of radially symmetric positive solutions. 
Recently the same problem has been treated by Allegretto and Huang [2], and Fu-
rusho [7] when nonradially symmetric functions are involved. Our study here extends 
that of Kusano and Trench. However, for ip and ip nonsymmetric, extension of results 
in Allegretto and Huang [2] and Furusho [7] is not obvious, and any results in this 
direction will be of interest. 

4. GENERAL CASE 

In this section we are concerned with the more general equation 

(4.1) div(|VH |p-2Vu) + /(x,H ,Vu) = 0 in UN. 

Existence of bounded positive solutions bounded away from zero has been obtained 
by Kura [11]. See also Appendix. Here we will follow in principle the treatment of 
Kusano and Swanson [13], invoking the subsolution-supeisolution method justified 
for A7, by Kura [11]. 

First we state the following basic assumptions: 
(HI) / : UN x R+ x UN -» R+ is locally Holder continuous with Holder exponent 

fl€(0,l). 
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(H2) / satisfies a Nagumo type condition, i.e., for any It > 0, and any positive 

constants k, K > 0, there exists a positive constant C, depending on R, k, K, such 

that 

(4.2) f(x,u,0^C-(\ + \tf-1) 

for x G BR = {x G UN: \x\ ^ R}, k ^ u ^ K, and £ G RN. 

(H3) There exist locally 0-Holder continuous functions / and / : (R+ x (R+ x (R+ —> 

R+, such that f(t, 1,0) > 0 for some t G [0,1] and 

(4.3) l(\xlu,\Z\) ^ f(x,u,0 ^7(\xlu,\Z\) 

for all (x,u,0 E ^ x K + x UN. 

(H4) For t ^ 0, u > 0, v ^ 0, j_(t,u,v), f(t,u,v) are nondecreasing in both u and 
v for all t > 0, and for all a > 0, 

(4.4) / ( t , cm, av) = ax7(t, u, v), /(£, au, av) = aA/(£, w, u), 

for A G [0,p- 1). 

Remark 4.1. Nagumo type condition is needed for the subsolution-super-

solution method. See also condition (4.1) of Kura [11] for a more general require

ment. We note that (4.2) is more stringent than (H2) in Kusano and Swanson [13]. 

(4.4) can also be replaced by the similar condition (H4) given in [13]. We also remark 

that functions of the form f(x,u,Vu) = q(x)\u\^'|VTu\5 are precluded by (H3), where 

7 and 5 are some positive constants. 

We denote £* = max{l,£} in the sequel. 

Theorem 4 .1 . Assume that (H1)-(H4) hold and that either 

(i) p > 2 and for some s G (p - 2,1V - 2), 

/
oo 

tl+£~f(t,l,t~^)dt < OO 

OГ 

(ii) for some e G (p - 1, N - 1), 

(4.5)' / t£J(t, l,t~i^)dt < oo. 
Jo 

Then (4.1) has an entire positive decaying solution. 
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Proof, (i) We define in this case two functions as follows: 

/

OO . />S i . l 

(y (t/s)N-ij(t,c2,c2t;^)dty-1 ds, 

/

OO rS . __L_ 

(y (</s)N- i/(t,c1e(<),o)dt)"- ids, 
where 0 < c\ < c2 are two constants to be determined later. 

It is easily checked that, y(0) < co, y is decreasing in r, and for r large, 
x poo / /»S i . -

virXcF J s-&(J ( t / s ) N - 2 - ^ 1 + £ 7(M,^ ' - 1 )d<) p - 1 ds 

< c | ^ - i = i - r - £ 7 - + 2 ( j f 0 0 ^ 7 ( t , l , C 5 i T ) d t ) ? i T , 

hence H(r) —> 0 as r —> oo. 
Observe that, using the similar estimates as above, 

l i A O K ^ ^ 7 ( U , i ) d ( ) ^ , r e [0,1], 

ll/'(r)| < cT l r -5 - r (y i1+*/(*, 1,*• "-1) d*) " 

^ c r 1 r - F ^ ( y t 1 + V ( t , l , C F ^ ) d t ) , ' " \ r > l . 

Hence |H'(r)l < co by (H4) and (4.5). We thus conclude that we can choose C2 large 
enough, such that 

(4.8) y(r)^c2, | y , ( r ) K c 2 r - ^ r , r G R+. 

For O2 so chosen, we obtain, by (H4), 

(r"-VrV)' = -rW-17(r,c2,c2C^) 
<-r^^r ,»(r) , | ! / ' ( r ) | ) 

^-r^HrMrWir)])-

Consequently y is a supersolution of (4.1). 
Similar arguments show that, for c\ < c2 small enough, we have 

(4.9) z(r)^crD(r), r € (R+. 
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Moreover, we have 

(r"-Vr'V)' = -r^/Jr.d^O) 
>-rN-1l{r,z[rW(r)\) 

>-rN-lf(r,z(r),\z'(r)\). 

Thus z is a subsolution of (4.1). 
It follows from the definitions of y and z, c\ < c2 and (H4) that z(r) ^ y(r) for 

all r G (R+. Theorem 4.5 of Kura [11] again implies the existence of a solution u(x) 
such that 

z(\x\)^u(x)^y(\x\). 

The theorem is proved. 

(ii) For this case, we define z(r) as in (4.7), and define y(r) as 

/

oo ps _ _L_ 

(J (t/s)N-1f(t,c2,c2U'-1)dty-1 ds. 
One easily checks that the similar estimates hold. In particular, in the place of (4.8) 
one has 

(4.8)' y(r) ^ c2, \y'(r)\ ^ c2r~-^, r G (R+. 

Then the same arguments as in (i) are applicable here and the existence of a positive 
solution follows. • 

Corollary 4 .1 . Assume that f is independent ofVu. If for some e G (p— 1, N — l), 

t£J(t,l)dt< oo, 
/ 
Jo 
/o 

then (4.1) has an entire positive decaying solution. 

Theorem 4 .2. Assume that (H1)-(H4) hold and that 

pOO _ 1-7V 

(4.10) / tN-1f(t,Q(t),tr1)dt<oo. 
Jo 

Then (4.1) has an entire positive solution which behaves as Q(\X\) at infinity. 

P r o o f . We define a new function 

(J (t/s)N~lf(t,c3g(t),c3tr
l)dty" ds. 

Following the same lines of arguments as in the proof of Theorem 4.1 we can prove 
that, for c3 > C\ properly chosen, z(r), given by (4.7), and w(r) form a pair of 
sub-supersolution. The theorem then follows. • 
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Remark 4 .2. When reduced to p = 2, condition (4.5) is more stringent than 
condition (5) of Kusano and Swanson [13]. The reason is that we cannot change the 
order of integration in (4.6) for the general case p ^ 2. 

Remark 4 .3. In Kusano and Swanson [14], existence of radial entire solutions of 
quasilinear equations of the form V-[o(|Vu|)Vu] = \f(\x\,u) is considered. However, 
we note that our problem is precluded from their consideration since no suitable 
functions a and b for our case exist to satisfy conditions (2.1) and (2.2) there. 

APPENDIX: BOUNDED SOLUTIONS 

We briefly sketch here the procedure of Allegretto [1] utilized for the p-Laplacian 

to obtain solutions bounded above and below by positive constants. 

Let n(x) = (1 + | X | P ) 1 / ( P - I ) , q > N/p, p' = p/(p - 1), and denote by Lp (D) 

the associated weighted Lp space defined on the domain D, with norm | |^| |p
r / = 

fD n\ip\p . For any x G IRN, let B{(x) (resp. B{) be the ball in RN centered at x (resp. 
at the origin) with radius z, and 

(A.1) H{V,q,i,D) = s u p f l M I ^ U . 

We first have the following a priori estimate: 

Lemma A . l . Let 0 ^ / e Lq
loc(U

N) D Lp (UN). Then for any r > 0, the problem 

—Apu = f(x) in Br, u = 0 on \x\ = r 

has a nonnegative solution ur G W^v(Br) and ur satisfies 

(A.2) IKI lL- ( B r ) < C{\\f\\^rl) +H(f,q,2,RN)), 

where C is independent of f, r and ur. 

This lemma can be proved using Theorem 1 of Serrin [19] and the following Hardy 
type inequality: 

(A.3) ( / M
p(l + \x\p)-ldx)1/P ^ - ^ - ( [ | V ^ d x ) 1 / P , 

for 1 < p < N and <p G C§°(RN). 
Now we can state 
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Theorem A . l . Let f(x,u) be such that f(x,u) <E Lq
oc(U

N) D Lp'(UN) for any 
u 6 L°°(UN) and F(x,a) = sup \f(x,u)\ for a > 0. Assume 

0<u<a 

IK A^ ,. M(F(x,a)) n .. M(F(x,a)) „ 
(A.4) hm —v v n =0 or hm —v v ' n = 0, 

a->0 a a-»+oo a 

where M(v) := ||v||1/p
(,p"1) + H(v,q,2, UN). Then the problem -Apu = f(x,u) has 

infinitely many solutions in UN which are bounded above and below by positive 
constants. 

S k e t c h p r o o f . Without loss of generality, we assume f(x, u) ^ 0 for u ^ 0. 
(For the case where f(x, u) changes sign for u ^ 0, we simply replace in the following 
proof f(x,u) by \f(x,u)\, cf. Allegretto [1]). 

For 0 < e < l , r > 0 and a > 0, define 

T(u) = (l-e)a + (-Ap)-
l(f(x,u)) 

on 
K = Lp(Br) fl {u: (1 - e)a <\ u <: a a.e.}. 

We note that —Ap(T(u)) = f(x,u) even though Ap is nonlinear. It is well known 
that (—Ap)-1 is a positive continuous compact operator on K, hence so is T. By 
assumption (A.4), one easily checks that T maps K into itself if a is sufficiently small 
(resp. large for the case a -> +oo). Thus T has a fixed point in K by the Schauder 
fixed point theorem, i.e. for any r > 0, there exists a ur such that — Apur = f(x,ur), 

(1— e)a <: ur <: a. To prove that such ur converges to a solution u as r —•> oo, we 
follow the scheme of Allegretto [1]. 

Let (D G C%°(UN), 0 ^ (p <: 1, and <p = 1 on BT for some r > 0. We have 

(A.5) ||V(ipur)\\lP <: c ( | |V(D|P ' < dx + J \Vur\
p • <pr dx). 

We note that the first term on the right hand side can be bounded by a constant 
independent of ur and r. To estimate the second term, we observe that for r large 
such that supp(D C Br, 

J |Vur\
p~2VurV(ippur) dx = J f(x, u)ippur dx. 

Therefore, 

(A.6) 

f | V u r | V
p d x ^ f \f(x,u)\ypadx+p f \VuT\p~Vp_1 Vipdx 

: f \F{x, a)\yp dx + Sp'p f | V u r | V
p dx + 6~pp f |V<̂ »|P dx. 
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Taking S such that 6P p = 1/2 and combining (A.6) with (A.5), we conclude that 
{(pur} is bounded in PV1,P. First letting r -» oo and then r -» oo we conclude 
that there exists a u G ^V/10'C

P(^N) such that ||ur - u||L7>(£R) -.> 0 for any R > 0. 
Analogously we estimate 

| | V M u r - ut))\\
p
LP ^ cU |V<D|P • K -ut\

pdx + J \V(ur - ut)\
p • <DP d r ) . 

Multiplying (pp(ur — ut) to —Apur = f(x,ur) and —Aput = f(x,ut), integrating by 
parts and subtracting the resulted equations, we obtain 

f (\Vur\
p~2X7ur - \Vut\

p-2Vut)V((pp(ur - ut)) dx 

= (f(x,ur) - f(x,ut))(p
p(ur - ut)dx. 

Thus 

/ \V(ur -ut)\
p(ppdx ^ / \f(x,ur) - f(x,ut)\(p

p\ur -ut\dx 

+ p f(\Vur\
p-1 + iVutf-^ipr-^Vtpldx. 

Estimating as in (A.6) we conclude 

\\V(p(ur -ut))\\
p
Lv ^ d\\ur -ut\\

p
LP{supp(p) +C2\\ur-ut\\LJ>{supp(p). 

Consequently we obtain the convergence of {(pur} in VV1,P, and the limit function u 

is the required solution. We iterate the procedure by replacing a by (1 — e)a for the 
case a —>> 0 and (1 — e)a by a for the case a —•> oo, and thus obtain infinitely many 
solutions. This completes the proof. • 

Example . For f(x,u) = (1 + |.x|a)|i/|(S~1u, with 5>p-lor:0<5<p-l, and 
a < — N — 1 + N/p, equation — Apu = f(x,u) has infinitely many solutions bounded 
above and below by positive constants. We remark that here we lift the restriction 
1 < p ^ 2 posted in Kura [11]. 
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