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A CHARACTERIZATION OF GEODETIC GRAPHS 

LADISLAV NEBESKÝ, Praha 

(Received August 30, 1993) 

By a graph we mean a finite undirected graph with no multiple edge or loop (i.e. 
a graph in the sense of the book [1], for example). 

Let G be a connected graph with a vertex set V(G) and an edge set E(G). A 
sequence (u0,... ,um) is called a u0-um path (of length m) in G if m > 0, u0,...,um 

are mutually distinct vertices of G and U{U{+i G E(G) for each integer i, 0 ^ i < m. 

We denote by S?G the set of all paths in G and by «^G(^, S) the set of all r-s paths 
in G for any r,s G V(G). The distance function G?G of G is defined as follows: 

dc(t, u) = min(j; there exists a t-u path of length j in G), 

for any t,u e V(G). Next, we denote by @G(V,W) the set of all v-w paths of length 
dc(v,w) for any v,w £ V(G). Finally, denote 

®G= | J ®G(X,V)-
x,y<EV{G) 

A connected graph G is called geodetic if \S>G(V^^V)\ = 1 for every ordered pair of 
vertices u and v of G. The following theorem gives a characterization of geodetic 
graphs: 

Theorem. A connected graph G is geodetic if and only if there exists srf C 
2?G such that srf fulfils the following Axioms I-V (for arbitrary u, v, u0,... ,um, 

v0,... ,vn € V(G), where m ^ 2 and n ^ 1): 

I | ^ n ^ G ( u , v ) | = l; 
II ifuv e E(G), then (u,v) G srf; 

III if (u0,...,ixm) G .*/, then ( u m , . . . ,u0) G ^ ; 

IV if (u0,..., um ) G £/ and m ^ 3, then (u0,..., u m _i) G srf'; 
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V if (uo,...,Um), (vo,...,vn), (um,vn) G srf, u0 = v0 and ui ^ vi , then 

(H i , . . .,um,vn) G srf. 

This theorem (more exactly: a theorem very similar to it) was proved by the 

present au thor in [2] bu t its proof was ra ther complicated and long: the theorem was 

derived from ano ther (much more general) theorem proved there. 

In the present note a simple proof of our theorem will be given. We will ob tain 

the theorem as a consequence of the following lemma: 

L e m m a . Let G be a connected graph, and let srf C g?G. If srf fulfils Axioms I-V, 

then srf — Q)Q. 

P r o o f . Let srf fulfil Axioms I-V. Consider arbi trary r, s G V(G). According to 

Axiom I, \&/ n &G(T, S)\ = 1. Let a(r, s) denote the only element of srf n &G(r, s). 

Consider arbi trary u,v G V(G). Obviously, &Q(U,V) ^ 0. We want to prove that 

(1) f3 = a(u,v) for each (3 G @Q(U,V). 

We proceed by induction on dc(u,v). If dc(u,v) = 0, then (1) follows from the 

fact that \&G(U,V)\ = 1. If dc(u,v) = 1, then (1) follows from Axiom II. Let 

dc(u,v) = n ^ 2. Suppose the assertion is true for all pairs of vertices whose 

distance is less than n. Consider an arbi trary (3 G VQ(U,V). There exist x0,... ,xm, 

2/o, • • • >2/n £ V(G) such that m ^ n, x0 = u = yn, xm = v = y0, 

a(u,v) = (xo,...,Xm) and (3 = (yn,...,y0). 

First , we will prove that 

(2) {xi,...,xm-i}n {yi,...,yn-i} ^ 0. 

Suppose, to the contrary, 

(2) {xi,..., xm-i} n {H i , . . . , yn-i} = 0. 

Denote 

a{ = (xi,..., xm = yo, • • •, Vi) and 

Pi = (xi,...,x0 = yn,...,yi) 

for each i G {0, ...,n}. Thus a0 = a(u,v) and 0O = P- Recall that a(u,v),(3 G 

3?G(u,v). It follows from (2) that a{,pi G 2?Q for each i G { 0 , . . . , n). If an G sV, 
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then combining Axioms III and IV we get 0 = a(u,v), which is a contradiction with 
(2). Thus an g srf. Since a0 G srf, there exists k G {0 , . . . , n - 1} such that ak € sz/ 

but afc+i £ srf. Hence ak = a(xk,yk). Since /?* G 2?G(xk,yk), we have dG(xk,yk) ^ 
n. If dc(xk,yk) < n, then the induction hypothesis implies that dc(xk,yk) = ^V 
and thus ?n < n, which is a contradiction. Therefore, dc(xk,yk) — n. We get 

0k £ ^G(xk,yk). This implies that 

(xfc,...,a;o = yn,...,yk+\) G ^ G a n d dG(-Cfc,2/fc+i) = n - 1. 

By the induction hypothesis, 

(xk,...,x0 = yn,...,yk+i) G srf. 

Recall that a* = (xk,...,xm =y0,...,yk), (yk,yk+\) € szf, xi / 2/n-i and if A; ^ 1, 
then Xk+i ^ Xk-i- As follows from Axiom V, ak+\ G srf, which is a contradiction. 
Thus (2) holds. 

It follows from (2) that there exist integers g and h, l ^ O ^ r a — 1 and 1 ^ h ^ 
n — 1, such that xg = y^. Put w = xg = yh. Since 0 G ^ G , we get dc(u,w) = 
n — h < n and do(w,v) = h < n. By the induction hypothesis, 

(yn,...,yh) = a(u,w) and (yh,...,y0) =a(w,v). 

Recall that a(u,v) = (x0,..., xm). Combining Axioms III and IV we get 

a(u,w) = (x0,. ..,xg) and a(w,v) = (xg, . . . , x m ) . 

Hence 0 = a(u,v). We see that (1) holds, which completes the proof of the lemma. 
D 

P r o o f of the T h e o r e m . Let G be geodetic. Put srf = 3>G- It is easy to 
see that srf fulfils Axioms I-V. 

Conversely, suppose there exists srf C 2?G such that srf fulfils Axioms I-V. Ac
cording to the lemma, srf = ^G- Axiom I implies that G is geodetic, which completes 
the proof. D 
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