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CERTAIN CUBIC MULTIGRAPHS 

AND THEIR UPPER EMBEDDABILITY 

LADISLAV NEBESKY, P r a h a 

(Received April 19, 1993) 

Let G be a connected cubic multigraph such that each edge of G belongs to a cycle 
of length ^ 5. We shall find a global property of G (Theorem 1). Then we shall 
show that G is upper embeddable (Theorem 2). 

1. Let G be a multigraph (in the sense of [1], for example) with a vertex set 
V(G) and an edge set E(G). (Note that G is a graph if and only if it has no multiple 
edges; and G is a path if and only if it is a tree with no vertex of degree ^ 3 . ) If 
u,v e V(G), e e E(G), u ^ v and e is the only edge of G incident with u and v, 
then we shall write e = uv. Let U be a nonempty subset of V(G); we denote by (U) 
the multigraph F defined as follows: V(F) = U, 

E(F) = {e e E(G); e is incident with no vertex in V(G) - U}, 

and e and u are incident in F if and only if they are incident in G, for any e G E(F) 
and ueV(F). 

Let G be a multigraph, and let 2? be a partition of V(G). If 2% C 2?, then we 
denote by E@ the set of all edges e of G with the property that the vertices incident 
with e belong to distinct elements of 2$. We shall say that 2? is a D-partition of G 
if (£?) is a connected multigraph different from a path for each P G ^ . 

One of the two main results of the present paper is given by the next theorem: 

Theo rem 1. Let G be a connected cubic multigraph. Assume that each edge of 
G belongs to a cycle of length ^ 5. Then 

(1) | ^ | ^ 2 ( | ^ | - l ) 

for every D-partition 2? of G. 
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The proof of Theorem 1 depends on the following lemma: 

Lemma 1. Let G be a connected cubic multigraph, and let 2? be a D-partition of 
G such that \g?\ ^ 2. Assume that each edge of G belongs to a cycle of length ^ 5. 
Then there exists & C &> such that 

(2) \&\ J> 2, / ( J R\ is connected and \E&\ ^ 2(\@\ - l ) . 

P r o o f . If there exist distinct F*7F** e g? SUch that \E{P+iP**}\ ^ 2, then we 
put 3> = {P*,F**} and (2) holds. 

Thus, we will assume that 

(3) |_5{P/>P//} | ^ 1 for any distinct P',P" G 2?. 

We denote by <g the set of all cycles C in G such that E(C)nE<? / 0 and \E(C)\ ^ 5. 
IfCetf, then, as follows from (3), 3 ^ \E(C) n E&\. Let AC E&. We denote by 
3C(A) and 3f(A) the sets of all P G 3? with the property that at least one vertex 
in P is incident with an edge in A and with the property that exactly one vertex in 
P is incident with an edge in A, respectively If P G 3f(A), then the vertex in P 

incident with an edge in A will be denoted by w(P, A). Finally, we denote by &(A) 

the set of all P G 3f(A) such that w(P, A) is incident with exactly two edges in A. 

We shall construct infinite sequences E0, E\, ... and /o, / i , • • • such that Ei C E&> 

and fi G {0,1} for every i = 0 , 1 , . . . . 
We put /o = 0. Consider an arbitrary C° G & and put E0 = E(C°) n E&. 

Certainly, &(EQ) = &(E0). It follows from (3) that &(E0) 7- 0. 
Let i ^ 1 and suppose that we have already constructed Ft_i and fi-\. If 

&(Ei-i) = 0 and / ,_i = 0, then we put Ei = F,_i and /,- = 0. 
We shall assume that either (a) <&(Ei-i) 7- 0 and / ,_i = 0 or (b) / ,_i = 1. We 

first discuss (a). Consider an arbitrary Si G ^ ( F z _ i ) . Put Fi = (Si). Since F2 is 
connected and different from a path, we see that there exist an integer O,- ^ 1 and 
mutually distinct vertices Ui0,... ,Uigi G V(Fi) such that 

H,o = w(Si,Ei-i), degF. uigi = 3, degF. u{j = 2 for each j , 

1 ^ j < 9i, and iii0un, • • • ,uigi-iuigi G E(F{) 

(note that degF. H denotes the degree of u in Fi). Since G is cubic, we see that 

\V(C) n V(F{)\ ^ 3 for every cycle C in G such that uigi-iuigi G F(G). We put 

hi = 1. 
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We now discuss (b), i.e. the case when f;_i = 1. We put Si = S;-i, gi = g;-i, 
and Uij = W(i_i)j for each j , 0 ^ j ^ gi. Moreover, we put hi = hi-\ + 1. 

In the sequel, we will not distinguish between (a) and (b). Consider an arbitrary 
C{ e K such that Uiht-iuihi e E(C{). Put E{ = E{-X U (E(C{) n E<?). Clearly, 
\V(C{) n V(F{)\ ^ 2. Moreover, if h{ = gu then \V(C{) n V(F;)| ^ 3. If \V(C{) n 
V(Fi)| ^ 3, then we put /» = 0. If \V(C{) n V(F;)| = 2, then we put f{ = 1. 

Obviously, E0 C Fi C . . . . Since _>V is finite, it is easy to see that there exists 
n > 0 such that En ^ En-\ and E n = En+j for every j ^ 0. Consider an arbitrary 
k e { l , . . . , n } . Since Ek = Ek^ U (E(Ck)nE&), we see that <3((Ek) = 3T(Ek). 

Moreover, it is easy to see that 

(4) u is incident with an edge in Ek-\ if and only if u G {itfco, •.. ,ukhk-\] 

for each u G Sk. 

We define 

E = Ek — J-fc-i, 

&k = {Pe X(Ek) - &(Ek)\ P £ %(Ek-X)}, 

Wk = {Pe X(Ek) - &(Ek); P e ^(F /c- i ) , P # Sk}, and 

ffc = { ^ W ; pg.r(_;„_i)}. 

We shall show that 

(5) \Ek\ ^ 2 | ^ \ + \<%k\ + |g/fc| + 1 - fk. 

Clearly, Ek C E(Ck). Combining (3) and (4) with the fact that G is cubic, we 
see that exactly one edge in Ek is incident with a vertex in Sk. Thus, 1 ^ \Ek\ ^ 3. 
Moreover, if fk = 0, then 1 ^ \Ek\ ^ 2. Consider an arbitrary P G 3T(E(Ck)nE<?) 
such that P ^ Sk. Clearly, exactly two edges in E(Ck) n E&, say edges e' and e/;, 
are incident with vertices in P. Without loss of generality we assume that if e' G _ / \ 
then e" G _?fc. Let v' and v" denote the vertices in P incident with e' and with e", 
respectively. It is easy to show that 

if e ,,e , / g j _ \ then P £ ^ U ^ U f ^ , 

if er £ F\ e/; G Ek and Dr = D", then P ^ ^ U f ^ U g / \ 

if e' £ F\ e" G £* and v' 7- D", then P £ STk U <&k, 

if e' e Ek and v' = U", then P g T \ and 

if i/ ^U" , then ffc = 1. 
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It is now to see that (5) holds. 

Obviously, 

(6) \Eo\ Z 2(\&(Eo)\ - 1) - \&(Eo)\ ~ jo-

Combining (5) and (6) and using induction on m, we get 

\Em\ > 2(\&(Em)\ - 1) - \&(Em)\ - fm 

for each m € {0 , . . . , n} . 

It is clear that &(En) = 0 and fn = 0. We have 

\En\>2(\&(En)\-l). 

Put @. = S£(En). Obviously, En C F^ and 3C(Ea) = ^ . Hence, (2) holds. The 
proof of the lemma is complete. • 

P r o o f of Theorem 1. Let & be a D-partition of G. We proceed by induction 
on | ^ | . If | ^ | = 1, then & = {V(G)} and thus (1) holds. Let \&>\ J> 2. According 
to Lemma 1, there exists 0?. C g? such that (2). Put 

P0= \J R and ,^o = ( ^ ~ @) U {Fb}. 

Clearly, /^o is a F)-partition of G and | ^ 0 | <\&\. The induction hypothesis implies 
that | F ^ 0 | ^ 2 ( | ^ 0 | - 1). By virtue of (2), \E&\ ^ 2 ( | ^ | - l ) . Combining these 
facts we get (1), which completes the proof of the theorem. • 

R e m a r k 1. Let G be a connected multigraph, and let ^ be a partition of V(G); 
we say that ;i^ is a C-partition of G if (tP) is a connected multigraph with at least 
two vertices, for each F G ^ . The concept of a C-partition was introduced in [7] for 
graphs and in [8] for multigraphs. In [7] a class of graphs with a certain local property 
was studied; it was proved that if C is a graph in that class, then (1) holds for every 
C-partition 2? of G. The same result was obtained for a larger class of multigraphs 
in [8]. On the other hand, the concept of a D-partition cannot be changed to that 
of a C-partition in Theorem 1. Fig. 1 shows a connected cubic graph G\ such that 
each edge of G\ belongs to a cycle of length ^ 5. Fig. 1 also shows a C-partition t? 
of G\\ the edges in E& are drawn by thick lines. We can see that \E&\ — 9 and 
2 ( | ^ | - 1 ) = 10. 
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Figure 1 

2. A connected pseudograph G is said to be upper embeddable if there exists a 
2-cell embedding of G into the closed orientable surface of genus [|/3(G)], where 

P(G) = \E(G)\-\V(G)\ + 1. 

The upper embeddability plays an important role in studying the maximum genus 

of a pseudograph (cf. [10] of Chapter 5 in [1]). 

If F is a pseudograph, then we denote by c(F) and b(F) the number of all com

ponents of F and the number of the components H of F such that /3(H) is odd, 

respectively. 

The following theorem will be useful for us: 

Theorem A. Let G be a connected pseudograph. Then the statements (7), (8) 

and (9) are equivalent: 

(7) G is upper embeddable, 

(8) there exists a spanning tree T of G with the property that at most one compo

nent of G — E(T) has an odd number of edges, 

(9) c(G - A) + b(G - A) - 2 <C \A\ for each A C E(G). 

The equivalence (7) <£> (8) was proved in [5] and [11]; a similar result was proved 
in [4]. The equivalence (8) <=> (9) was proved in [6]; a similar result was proved in [3]. 

Let G be a pseudograph, and let 2? be a partition of V(G). We shall say that 2P 

is a H-partition of G if (P) is connected and j3((P)) is odd for every P £ £?. 

Lemma 2. Let G be a connected pseudograph. Then G is upper embeddable if 
and only if (1) holds for every B-partition £P of' G. 

P r o o f . Let G be upper embeddable. It follows from (9) that (1) holds for every 
H-partition g? of G. 
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Conversely, let G be not upper embeddable. We denote y(A) = c(G — A) + b(G — 

A) - 2 - | A | for each A C E(G). There exists A* C E(G) such that y(A*) ^ y(A') 

for each A1 C E(G) and y(-4*) > 2/(̂ 4") for each proper subset A" of A*. 

Denote 

^ = {P; there exists a component F of G - A* such that P = V(P)}. 

Obviously, &> is a partition of V(G) and P^» C A*. The definition of A* implies 
that E<? = A*. 

Since G is not upper embeddable, it follows from (9) that y(A*) ^ 1. Hence 
b(G - A*) ^ 2. Assume that b(G -A*) < c(G - A*). Since b(G - A*) > 0, there 
exist P i ,P 2 G ^ such that P((Pi)) is odd, /3((P2» is even and -E{P-,P2} # 0- Then 

£ ( A * - P { P l , p 2 } ) ^ ( A * ) , 

which is a contradiction. Thus b(G — A*) = c(G — A*). This implies that ^ is a 
P-partition of G. We have | A * | < 2 ( | ^ | - l ) , which completes the proof. • 

Note that a pseudograph is a multigraph if and only if it contains no loop. Obvi

ously, if G is a cubic pseudograph such that each edge of G belongs to a cycle, then 

G is a multigraph. 

Certainly, every P-partition of a multigraph is a P-partition. Thus, combining 
Theorem 1 and Lemma 2 we get the second main result of the present paper: 

Theorem 2. Let G be a connected cubic multigraph. If each edge of G belongs 

to a cycle of length ^ 5, then G is upper embeddable. 

Remark 2. Let G be a connected multigraph. We can see that if (1) holds 
for every G-partition of G, then G is upper embeddable. This fact was used in [7] 
and [8]. 

Remark 3. Fig. 2 shows a connected cubic graph G2 such that each edge of 
G2 belongs to a cycle of length ^ 6. Fig. 3 shows a connected graph G3 with the 
maximum degree four and such that each edge of G3 belongs to a cycle of length <J 5. 
We see that neither G2 nor G3 are upper embeddable. 

Remark 4. Glukhov [2] proved that if G is a 2-connected multigraph such that 
each edge of G belongs to a cycle of length ^ 3, then G is upper embeddable. It was 
shown in [7] that there exists a 2-connected graph G with the properties that G is 
not upper embeddable and each edge of G belongs to a cycle of length ^ 4. 
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Figure 2 Figure 3 

R e m a r k 5. If G is a connected multigraph and k is a positive integer, then a 2-

cell embedding e of G into a closed orientable or nonorientable surface such that the 

length of the boundary of no region of e is exceeding k will be called a k-embedding. 

Nedela and Skoviera [9] proved that if a connected multigraph has a 4-embedding, 

then it is upper embeddable. Moreover, Nedela and Skoviera [9] conjectured that if 

a connected multigraph has a 5-embedding, then it is upper embeddable, too. Let 

G be a connected cubic multigraph; it is not difficult to show that if G has a 5-

embedding, then each edge of G belongs to a cycle of length ^ 5. Thus, as follows 

from Theorem 2, the above conjecture is correct for connected cubic multigraphs. 

Acknowledgement. The author is very grateful to the referee for helpful com

ments and to Martin Skoviera for inspiring letters concerning the subject of Re

mark 5. 
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