Mathematica Slovaca

Ladislav Mišík

On continuous interval functions

Mathematica Slovaca, Vol. 34 (1984), No. 2, 141--154
Persistent URL: http://dml.cz/dmlcz/128564

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1984

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

ON CONTINUOUS INTERVAL FUNCTIONS

LADISLAV MIŠíK

Dedicated to Academician Stefan Schwarz on the occasion of his 70th birthday
In 1966, in the references of my paper ([7]) I announced that my paper entitled "Über stetige Intervalfunktionen" was in the press. But I had written only the first draft of the paper and as I did not find it interesting enough, I did not finish it for publication. Unfortunaly, I forgot to correct the announcement in the references of [7]. My first aim for writting the mentioned paper was the study of Darboux functions on the spaces of intervals. Some statements of the original draft are introduced in [7].

On January 29, 1981, M. Laczkovich sent me preprints [2] and [3] of his papers, which he had submitted to Acta Math. Acad. Sci. Hung. Simultaneously, he asked me for a reprint of my mentioned unpublished paper. I sent him the copy of the mentioned first draft with some comments concerning the proof of theorem 5 in the draft. In August, I received a letter from H. W. Pu in which he asked me for the full reference of my paper "Über stetige Intervalfunktionen". I sent him the English translation of the draft of the paper. In that translation, I made some corrections and suitable modifications in the proof of theorem 5, as I mentioned in my letter to M. Laczkovich. Simultaneously, I wrote a letter to H. W. Pu in which I mentioned that M. Laczkovich in [2] proves that any additive interval function defined on the space of all closed subintervals of a given closed interval I is uniformly continuous if it has a finite strong derivative on I ([2], theorem 3). I also added some comments concerning the relations between the theorem of M. Laczkovich and my theorem 5.

The facts introduced above were an impulse to my decision to adapt for publication the English translation which I had sent to H. W. Pu.

1. Let there be $n \geqq 1$ and E_{n} the euclidean n-dimensional space. Let $a_{i}<b_{i}$ for $i=1, \ldots, n$. By the closed interval $I=\left\langle a_{1}, b_{1} ; \ldots ; a_{n}, b_{n}\right\rangle$ in E_{n} we understand the set $\left\{\left(x_{1}, \ldots, x_{n}\right) \in E_{n}: a_{i} \leqq x_{i} \leqq b_{i}\right.$ for $\left.i=1, \ldots, n\right\}$. The boundary (the interior) of the interval I will be denoted by $\operatorname{Fr}(I)(\operatorname{Int}(I))$. The intervals I_{1}, \ldots, I_{n} will be called non-overlapping iff $\operatorname{Int}\left(I_{i}\right) \cap \operatorname{Int}\left(I_{i}\right)=\emptyset$ for all $i \neq j, i, j=1, \ldots, n$, where \emptyset is the empty set. The Lebesgue measure of a Lebesgue measurable set A in E_{n} will be denoted by $m(A)$. A set expressible as the sum of a finite number of closed
intervals in E_{n} will be termed a figure in E_{n}. If R is a figure in E_{n} or G is an open set in E_{n}, then $X(R)$ or $X(G)$ will denote the space of all closed intervals contained in R or in G, respectively, and $X_{0}(R)=X(R) \cup\{\emptyset\}, X_{0}(G)=X(G) \cup\{\emptyset\}$.

Lemma 1. Let I and J be elements of $X\left(E_{n}\right)$. Let $\left\{s_{k}\right\}_{k}^{\infty}$, be a sequence of naturals defined as follows: $s_{1}=2, s_{k+1}=3 s_{k}+2$ for $k=1,2,3, \ldots$. Then the difference $I-J$ is either the empty set or there exists a finite system $\left\{I_{1}, \ldots, I_{1}\right\}$ of non-overlapping closed intervals such that

$$
\bigcup_{1}^{1} \operatorname{Int}\left(I_{1}\right) \subset I-J \subset \bigcup_{1}^{\prime} I_{1} \quad \text { and } \quad t \leqq s_{n} .
$$

Proof. If $I \subset J$, then $I-J=\emptyset$.
If $I \cap J \subset \operatorname{Fr}(I)$, then $\operatorname{Int}(I) \subset I-J \subset I$. Since $I-J=I-(I \cap J)$, we can assume that $J \subset I$ and $I-J \neq \emptyset$.

Let be $J \subset I$ and $I-J \neq \emptyset$. We prove the lemma for $n=1$. In this case for $I=\langle a, b\rangle \supset\langle c, d\rangle=J$ there holds: $(a, c) \cup(d, b) \subset I-J \subset\langle a, c\rangle \cup\langle d, b\rangle$ if $a<$ $c<d<b ;(a, c) \subset I-J \subset\langle a, c\rangle$ if $a<c<d=b$ and $(d, b) \subset I-J \subset\langle d, b\rangle$ if $a=c<d<b$. Lemma 1 holds for $n=1$.

Let Lemma 1 be true for n. Let I and $J \in X\left(E_{n+1}\right), J \subset I$ and $I-J \neq \emptyset$. Then there exist $\tilde{Y}, \tilde{Y}_{2} \in X\left(E_{n}\right)$ and $a \leqq c<d \leqq b$ such that $I=\tilde{Y}_{1} \times\langle a, b\rangle$ and $J=$ $\tilde{Y}_{2} \times\langle c, d\rangle$. If $\tilde{Y}_{1}-\tilde{Y}_{2} \neq \emptyset$, then there exists a finite system $\left\{Y_{1}, \ldots, Y_{,}\right\}$, of non-overlapping closed intervals in E_{n} such that $\bigcup_{1} \operatorname{Int}\left(Y_{i}\right) \subset \tilde{Y}_{1}-\tilde{Y}_{2} \subset \bigcup_{1} Y_{1}$ and $s \leqq s_{n}$. If $\langle a, b\rangle-\langle c, d\rangle \neq \emptyset$, then there exists a system \mathscr{T} of maximally two non-overlapping closed intervals in E_{1} such $\cup\{\operatorname{Int}(T): T \in \mathscr{T}\} \subset\langle a, b\rangle-\langle c, d\rangle \subset$ $\cup\{T: T \in \mathscr{T}\}$. The following cases are possible: a) $\tilde{Y}_{1}-\tilde{Y}_{2} \neq \emptyset,\langle a, b\rangle-\langle c$, $d\rangle \neq \emptyset, \mathrm{b}) \quad \tilde{Y}_{1}-\tilde{Y}_{2} \neq \emptyset,\langle a, b\rangle=\langle c, d\rangle$ and c) $\tilde{Y}_{1}=\tilde{Y}_{2},\langle a, b\rangle-\langle c, d\rangle \neq \emptyset$.

In case a) the system $\left\{Y_{i} \times T: i=1, \ldots, s, \quad T \in \mathscr{T}\right\} \cup\left\{Y_{i} \times\langle c, d\rangle: i=\right.$ $1, \ldots, s\} \cup\left\{\tilde{Y}_{2} \times T: T \in \mathscr{T}\right\}$, in case b) the system $\left\{Y_{i} \times\langle c, d\rangle: i=1, \ldots, s\right\}$ and in case c) the system $\left\{\tilde{\boldsymbol{Y}}_{2} \times T: T \in \mathscr{T}\right\}$ is the system $\left\{I_{i}: i=1, \ldots, t\right\}$ mentioned in lemma 1.

Let be $\varrho(A, B)=m(A \triangle B)$, where $A \triangle B$ is the symmetric difference of A and B for each $A, B \in X_{0}\left(E_{n}\right)$. Then $\left(X_{0}\left(E_{n}\right), \varrho\right)$ and $\left(X\left(E_{n}\right), \varrho\right)$ are metric spaces.

Lemma 2. Let $I=\left\langle a_{1}, b_{1} ; \ldots ; a_{n}, b_{n}\right\rangle, 0<\varepsilon<m(I), \quad K=\max \left\{b_{1}-a_{1}\right.$: $i=1, \ldots, n\}, \delta \geqq \frac{K \varepsilon}{m(I)-\varepsilon}$ and $Y=\left\langle a_{1}-\delta, b_{1}+\delta ; \ldots ; a_{n}-\delta, b_{n}+\delta\right\rangle$. Then $\cup \overline{O_{l}(\varepsilon)} \subset Y$, where $\overline{O_{l}(\varepsilon)}$ is the closure in $\left(X\left(E_{n}\right), \varrho\right)$ of the ε-neighbourhood of I.
Proof. Let $J=\left\langle c_{1}, d_{1} ; \ldots ; c_{n}, d_{n}\right\rangle \in \overline{O_{1}(\varepsilon)}$. Let there exist a $j \in\{1, \ldots, n\}$ for which either $c_{j}<a_{j}-\delta$ or $b_{i}+\delta<d_{j}$. Let $e_{i}=\max \left(a_{t}, c_{i}\right)$ and $f_{t}=\min \left(b_{i}, d_{i}\right)$ for $i=1, \ldots, n$. Then

$$
\begin{gathered}
\varrho(I, J)=m(I-(I \cap J))+m(J-(I \cap J))= \\
=\prod_{i}^{n}\left(b_{i}-a_{i}\right)-\prod_{i}^{n}\left(f_{i}-e_{i}\right)+\prod_{1}^{n}\left(d_{i}-c_{i}\right)-\prod_{1}^{\prime \prime}\left(f_{i}-e_{i}\right) \geqq \\
\geqq \prod_{i=1}^{n}\left(f_{i}-e_{i}\right) \frac{b_{i}-f_{1}+e_{i}-a_{1}+d_{1}-f_{1}+e_{i}-c_{i}}{f_{1}-e_{i}}> \\
>\prod_{1}^{n}\left(f_{i}-e_{i}\right) \frac{\delta}{f_{i}-e_{i}} \geqq \prod_{i-1}^{n}\left(f_{i}-e_{i}\right) \frac{\delta}{K} \geqq \frac{m(I \cap J) \varepsilon}{m(I)-\varepsilon} \geqq \varepsilon .
\end{gathered}
$$

However, this is a contradiction and therefore $J \subset Y$ if $J \in \overline{O_{I}(\varepsilon)}$.
Theorem 1. The space $\left(X_{0}\left(E_{n}\right), \varrho\right)$ is a metric connected space and $\left(X\left(E_{n}\right), \varrho\right)$ is a metric locally compact connected space.

Proof. Let I be in $X\left(E_{n}\right)$ and $0<\varepsilon<m(I)$. According to lemma 2, there exists a $Y \in X\left(E_{n}\right)$ such that $\cup \overline{O_{l}(\varepsilon)} \subset Y$. Let $\left\{I_{k}\right\}_{h}^{\infty}$, be a sequence of elements in $\overline{O_{l}(\varepsilon)}$ and let $I_{k}=\left\langle a_{1, k}, b_{1, k} ; \ldots ; a_{n, k}, b_{n, k}\right\rangle$ for $k=1,2,3, \ldots$. Since $\bigcup_{k}^{\infty} I_{k} \subset Y$, the sequences $\left\{a_{i, k}\right\}_{k=1}^{\infty}$ and $\left\{b_{i, k}\right\}_{k=1}^{\infty}$ are bounded for $i=1, \ldots, n$. Therefore there exists a sequence $\left\{k_{\mathrm{v}}\right\}_{v=1}^{\infty}$ such that all sequences $\left\{a_{i, k}\right\}_{\vee=1}^{\infty}$ and $\left\{b_{1, k, k}\right\}_{1}^{\infty}$, for $i=1, \ldots, n$ are convergent. Let $a_{i}=\lim _{v \rightarrow \infty} a_{1, k,}$ and $b_{i}=\lim _{i \rightarrow \infty} b_{i, k,}$ for $i=1, \ldots, n$. Since $0<\varepsilon<m(I), \varrho\left(I, I_{k}\right) \leqq \varepsilon$ for $k=1,2,3, \ldots$ and ϱ is continuous, we have $a_{i}<b$, for $i=1, \ldots, n$. Let $J=\left\langle a_{1}, b_{1} ; \ldots ; a_{n}, b_{n}\right\rangle$. Then $\lim _{v \rightarrow \infty} \varrho\left(J, I_{k_{1}}\right)=0$ and $\varrho(I, J) \leqq \varepsilon$. Thus $J \in \overline{O_{I}(\varepsilon)}$ and we have proved that $\overline{O_{I}(\varepsilon)}$ is a compact set in $X\left(E_{n}\right)$. Therefore $\left(X\left(E_{n}\right), \varrho\right)$ is a locally compact space.

Assume that $X\left(E_{n}\right)=O_{1} \cup O_{2}$, where O_{1} and O_{2} are two nonempty open disjoint sets. Then there exist $I, J \in X\left(E_{n}\right)$ such that $I=\left\langle a_{1}, b_{1} ; \ldots ; a_{n}, b_{n}\right\rangle \in O_{1}$ and $J=\left\langle c_{1}, d_{1} ; \quad \ldots ; \quad c_{n}, d_{n}\right\rangle \in O_{2} . \quad$ Let $\quad J_{t}=\left\langle t a_{1}+(1-t) c_{1}, \quad t b_{1}+(1-t) d_{1} ; \quad \ldots\right.$; $\left.t a_{n}+(1-t) c_{n}, t b_{n}+(1-t) d_{n}\right\rangle$ for $t \in\langle 0,1\rangle$. The map $\varphi:\langle 0,1\rangle \rightarrow X\left(E_{n}\right)$ defined as follows: $\varphi(t)=J_{1}$ for each $t \in\langle 0,1\rangle$ is continuous. Thus $\varphi^{-1}\left(O_{1}\right)$ and $\varphi^{1}\left(O_{2}\right)$ are two non-empty disjoint open sets in $\langle 0,1\rangle$ for which $\langle 0,1\rangle=$ $\varphi^{-1}\left(O_{1}\right) \cup \varphi^{-1}\left(O_{2}\right)$. However, this is a contradiction, since $\langle 0,1\rangle$ is a connected set.

Since $X\left(E_{n}\right)$ is a connected set in $X_{0}\left(E_{n}\right),\{\emptyset\}$ is not open in $X_{0}\left(E_{n}\right)$ and $X_{0}\left(E_{n}\right)-\{\emptyset\}$ is open in $X_{\emptyset}\left(E_{n}\right)$, the space $X_{0}\left(E_{n}\right)$ is connected. Analogously we can prove the following theorem:

Theorem 2. Let R be a figure in E_{n}. Then $\left(X_{\theta}(R), \varrho\right)$ is a compact metric space. If $I \in X\left(E_{n}\right)$, then $\left(X_{0}(I), \varrho\right)$ is a compact connected metric space.

If R is a figure in E_{n}, the space $\left(X_{0}(R), \varrho\right)$ is a one-point compactification of $(X(R), \varrho)$.

Theorem 3. The space $\left(X_{0}\left(E_{n}\right), \varrho\right)$ is a complete metric space in which the base $\mathscr{B}=\left\{O_{l}(\varepsilon): I \in X\left(E_{n}\right), 0<\varepsilon \leqq m(I)\right\} \cup\left\{O_{\natural}(\varepsilon): \varepsilon>0\right\}$ has the following two properties:
(1) Let $I \in X_{0}\left(E_{n}\right)$ and U be an open set for which $I \in U$. Then there exists a $B \in \mathscr{B}$ such that $B \subset U$ and $I \in \bar{B}-B$.
(2) Let $B \in \mathscr{B}$ and let be $B=A_{1} \cup A_{2}$, where $A_{1} \neq \emptyset, A_{2} \neq \emptyset, A_{1} \cap A_{2}=\emptyset$ and $\bar{C} \cap B \subset A_{1}$ or $\bar{C} \cap B \subset A_{2}$ if $C \in \mathscr{B}$ and $C \subset A_{1}$ or $C \subset A_{2}$, respectively. Then the sets $A_{i}^{\prime} \cap A_{2}$ and $A_{1} \cap A_{2}^{\prime}$ are non-empty. By A_{1}^{\prime} or A_{2}^{\prime} we denote the set of all points of accumulation of A_{1} or A_{2}, respectively.

Proof. Let $\left\{I_{k}\right\}_{k}^{\infty}$, be a Cauchy sequence in $\left(X_{0}\left(E_{n}\right), \varrho\right)$. If there exists a sequence $\left\{k_{,}\right\}_{v, 1}^{\infty}$ such that $\lim _{\bullet \rightarrow \infty} m\left(I_{k,}\right)=0$, then $\lim _{k \rightarrow \infty} \varrho\left(I_{k}, \emptyset\right)=0$ and the sequence $\left\{I_{\kappa}\right\}_{\kappa}^{\infty}$, converges to \emptyset in $\left(X_{0}\left(E_{n}\right), \varrho\right)$.

If there does not exist a sequence $\left\{k_{1}\right\}_{\vee-1}^{\infty}$ such that $\lim _{\bullet \infty} m\left(I_{k}\right)=0$, then there exists a positive number K and a natural number N such that $K<m\left(I_{N}\right)$ and $\varrho\left(I_{p}, I_{q}\right)<\frac{K}{2}$ for all $p, q \geqq N$. Then $I_{p} \in O_{I_{N}}\left(\frac{K}{2}\right)$ for all $p \geqq N$. According to Icmma 2, there exists a $J \in X\left(E_{n}\right)$ such that $\overline{\cup O_{I_{N}}\left(\frac{K}{2}\right)} \subset J$. It is easy to prove that $\left\{I_{k}\right\}_{k}^{\infty}$, converges to some $I \in X(J)$.

Now let $I \in X_{0}\left(E_{n}\right), U$ an open set in $X_{0}\left(E_{n}\right)$ and $I \in U$. Then there exists a $\delta>0$ such that $O_{l}(\delta) \subset U$. If $I=\emptyset$, we choose a $J \in O_{l}(\delta) \cap X\left(E_{n}\right)$ such that $m(J)<\frac{\delta}{2}$. Then $B=O_{l}(m(J)) \in \mathscr{B}, B \subset U$ and $I=\emptyset \in \bar{B}-B$. Let be $I \in X\left(E_{n}\right)$. Then we choose a $J \in X\left(E_{n}\right)$ such that $I \subset \operatorname{Int}(J)$ and $\varrho(I, J)<\frac{\delta}{2}$. Then for $B=O_{J}(\varrho(I, J))$ we have: $B \in \mathscr{B}, B \subset U$ and $I \in \bar{B}-B$.

Let $B \in \mathscr{B}$ and $B=A_{1} \cup A_{2}$, where A_{1} and A_{2} are two nonempty disjoint sets with the following property: $\bar{C} \cap B \subset A_{1}$ or $\bar{C} \cap B \subset A_{2}$ if $C \in \mathscr{B}$ and $C \subset A_{1}$ or $C \subset A_{2}$, respectively.

First let $B=O_{I}(\varepsilon)$, where $I \in X\left(E_{n}\right)$ and $0<\varepsilon \leqq m(I)$. We shall prove the following proposition: There exist two closed intervals $J_{1}=\left\langle u_{1,1}, v_{1,1} ; \ldots\right.$; $\left.u_{n, 1}, v_{n, 1}\right\rangle$ and $J_{2}=\left\langle u_{1.2}, v_{1,2} ; \ldots ; u_{n, 2}, v_{n, 2}\right\rangle$ in B and a natural $i \in\{1, \ldots, n\}$ such that $J_{1} \in A_{1}, J_{2} \in A_{2}$, either $u_{1.1} \neq u_{1.2}, u_{j .1}=u_{i .2}$ for $j=1, \ldots, i-1, i+1, \ldots, n$ and $v_{k, 1}=v_{k, 2}$ for $k=1, \ldots, n$ or $u_{k, 1}=u_{k, 2}$ for $k=1, \ldots, n$ and $v_{t, 1} \neq v_{t, 2}$ and $v_{1,1}=v_{1,2}$ for $\quad j=1, \ldots, \quad i-1, \quad i+1, \ldots, n \quad$ and $\quad \tilde{J}_{1}=\left\langle u_{1,1}, v_{11} ; \quad \ldots ; \quad u_{1}, 1, v_{1}, 1\right.$; $\left.t u_{t, 1}+(1-t) u_{i .2}, v_{i, 1} ; u_{t+1,1}, v_{t+1,1} ; \ldots ; u_{n, 1}, v_{n, 1}\right\rangle \in B$ for all $t \in\langle 0,1\rangle$ in the first
case or $\tilde{Y}_{t}=\left\langle u_{1,1}, v_{1.1} ; \ldots ; u_{i-1.1}, v_{i-1.1} ; u_{i .1}, t v_{i .1}+(1-t) v_{i .2} ; u_{i+1.1}, v_{i+1.1} ; \ldots\right.$; $\left.u_{n, 1}, v_{n, 1}\right\rangle \in B$ for all $t \in\langle 0,1\rangle$ in the second case.

We can assume that $I \in A_{1}$. In the case of $I \in A_{2}$ we proceed similarly. Let $I=\left\langle a_{1}, b_{1} ; \ldots ; a_{n}, b_{n}\right\rangle \in A_{1}$ and $J=\left\langle c_{1}, d_{1} ; \ldots ; c_{n}, d_{n}\right\rangle \in A_{2}$. Since $\varrho(I, J)=$ $m(I \cup J)-m(I \cap J)<\varepsilon \leqq m(I)$, there must be $\operatorname{Int}(I \cap J) \neq \emptyset$. Thus $Y=$ $I \cap J \in X\left(E_{n}\right)$. Since $\varrho(Y, I) \leqq \varrho(I, J)<\varepsilon, Y$ is in B. Therefore either $Y \in A_{1}$ or $Y \in \boldsymbol{A}_{2}$.

Let $Y=\left\langle e_{1}, f_{1} ; \ldots ; e_{n}, f_{n}\right\rangle \in A_{1}$. Then $e_{i}=\max \left(a_{i}, c_{i}\right)$ and $f_{i}=\min \left(b_{i}, d_{i}\right)$ for $i=1, \ldots, n$. If $\left.e_{1}=\max \left(a_{1}, c_{1}\right)=a_{1}\right\rangle c_{1}$, then the intervals $I_{1}=\left\langle t c_{1}+(1-t) e_{1}, f_{1}\right.$; $\left.e_{2}, f_{2} ; \ldots ; e_{n}, f_{n}\right\rangle$ belong to B for all $t \in\langle 0,1\rangle$, because $Y \subset I \cap I \subset I \cup I \subset I \cup J$ and $\varrho\left(I, I_{t}\right) \leqq \varrho(I, J)<\varepsilon$ for all $t \in\langle 0,1\rangle$. If $I_{1} \in A_{2}$, the proposition is proved.

If either $I_{1} \in A_{1}$ or $e_{1}=c_{1}$ and if $f_{1}=\min \left(b_{1}, d_{1}\right)=b_{1}<d_{1}$, we consider the following system of intervals $\tilde{I}_{1}=\left\langle c_{1}, t d_{1}+(1-t) f_{1} ; e_{2}, f_{2} ; \ldots ; e_{n}, f_{n}\right\rangle$ for $t \in\langle 0,1\rangle$. Then $\tilde{I}_{t} \in B$ for all $t \in\langle 0,1\rangle$, because $Y \subset I \cap \tilde{I}_{t} \subset I \cup \tilde{I}_{I} \subset I \cup J$ and $\varrho\left(I, \tilde{I}_{t}\right) \leqq$ $\varrho(I, J)<\varepsilon$. If $\tilde{I}_{1} \in A_{2}$, the proposition is proved.

If $e_{1}=c_{1}$ or $I_{1} \in A_{1}, f_{1}=d_{1}$ or $\tilde{I}_{1} \in A_{1}$ and $e_{2}=\max \left(e_{2}, c_{2}\right)=a_{2}>c_{2}$, then we take the system of intervals $Y_{1}=\left\langle c_{1}, d_{1} ; t c_{2}+(1-t) e_{2}, f_{2} ; e_{3}, f_{3} ; \ldots ; e_{n}, f_{n}\right\rangle$ for $t \in\langle 0,1\rangle$ in consideration and we proceed as we proceed in the case of the systems $\left\{I_{1}: t \in\langle 0,1\rangle\right\}$ and $\left\{\tilde{I}_{1}: t \in\langle 0,1\rangle\right\}$. Since $Y \in A_{1}$ and $J \in A_{2}$, we get by induction the existence of some $i \in\{1, \ldots, n\}$ such that either $T_{1}=\left\langle c_{1}, d_{1} ; \ldots ; c_{i-1}, d_{i-1} ; e_{i}, f_{1}\right.$; $\left.\ldots ; e_{n}, f_{n}\right\rangle \in A_{1}$ and $\tilde{T}_{1}=\left\langle c_{1}, d_{1} ; \ldots ; c_{i-1}, d_{i} ; c_{i}, f_{i} ; e_{i+1}, f_{i+1} ; \ldots ; e_{n}, f_{n}\right\rangle \in A_{2}$ or $T_{2}=\left\langle c_{1}, d_{1} ; \ldots ; c_{i-1}, d_{i-1} ; c_{i}, f_{i} ; e_{i+1}, f_{i+1} ; \ldots ; e_{n}, f_{n}\right\rangle \in A_{1}$ and $\tilde{T}_{2}=\left\langle c_{1}, d_{1} ; \ldots ;\right.$ $\left.c_{1}, d_{i-1} ; c_{i}, d_{i} ; e_{i+1}, f_{i+1} ; \ldots ; e_{n}, f_{n}\right\rangle \in A_{2}$.

If $Y \in A_{2}$, it is easy to see that we must proceed similarly to prove the proposition.

Now let $\left\{\tilde{J}_{t}: t \in\langle 0,1\rangle\right\}$ or $\left\{\tilde{Y}_{i}: t \in\langle 0,1\rangle\right\}$ be the system mentioned in the proposition in the first case, or in the second case, respectively. We shall deal only with the system $\left\{\tilde{J}_{t}: t \in\langle 0,1\rangle\right\}$ which corresponds to the first case. The second case can be treated similarly.

The system $\left\{\tilde{J}_{I}: t \in\langle 0,1\rangle\right\}$ is a compact subset of $O_{I}(\varepsilon)$ and therefore $\delta=$ $\inf \left\{\varrho\left(\tilde{J}_{t}, Y\right): \quad Y \in \overline{O_{I}(\varepsilon)}-O_{I}(\varepsilon), \quad t \in\langle 0,1\rangle\right\}>0 . \quad$ Let $\quad \delta_{t}=\inf \left\{\varrho\left(\tilde{J}_{t}, Y\right):\right.$ $\left.Y \in \overline{O_{I}(\varepsilon)}-O_{I}(\varepsilon)\right\}$ for $t \in\langle 0,1\rangle$. Then $0<\delta \leqq \delta_{t}$ for all $t \in\langle 0,1\rangle$. If $\varepsilon=m(I)$, then $\emptyset \in \overline{O_{I}(\varepsilon)}-O_{I}(\varepsilon)$ and therefore $\delta_{t} \leqq \varrho\left(\tilde{J}_{t}, \emptyset\right)=m\left(\tilde{J}_{t}\right)$. If $0<\varepsilon<m(I)$, then $m(I-(I \cap J)) \leqq \varrho(I, J)<\varepsilon<m(I)$. Therefore there exists a closed interval T such that $T \subset I \cap J$ and $m(I-T)=\varepsilon$. But then $T \in \overline{O_{I}(\varepsilon)}-O_{I}(\varepsilon)$ and $\delta_{t} \leqq \varrho\left(\tilde{J}_{t}, T\right)=$ $m\left(\tilde{J}_{t}-T\right)<m\left(\tilde{J}_{t}\right)$.

For each $t \in\langle 0,1\rangle$ there exists an $\varepsilon_{t} \geqq 0$ such that either $O_{j_{1}}\left(\varepsilon_{t}\right) \subset A_{1}$ and

$\neq \emptyset$ for all $\varepsilon^{\prime}>\varepsilon_{1}$ if $\tilde{J}_{1} \in A_{1}$ or $\tilde{J}_{1} \in A_{2}$, respectively. If $\varepsilon_{1}=0$, we put $O_{J_{1}}(0)=\emptyset$. If $0<\varepsilon_{1}<\delta_{t}$, then there exists an interval $J \in \overline{O_{J_{t}}\left(\varepsilon_{t}\right)}$ such that either $J \in A_{1} \cap A^{\prime}$; or $J \in A_{1} \cap A_{2}$ when either $\tilde{J}_{r} \in A_{1}$ or $\tilde{J}_{1} \in A_{2}$, respectively. This is a consequence of the compactness of $\overline{O_{J_{t}}\left(\varepsilon_{t}\right)}$. If $\varepsilon_{t}=0$ and if $\tilde{J}_{t} \in A_{1}$ or $\tilde{J}_{t} \in A_{2}$, then either $\tilde{J}_{t} \in A_{1} \cap A_{2}^{\prime}$ or $\tilde{J}_{t} \in A_{i} \cap A_{2}$, respectively.

Let $\alpha=\inf \left\{t \in\langle 0,1\rangle: \varepsilon_{u}=\delta_{u}\right.$ for all $\left.u \in(t, 1\rangle\right\}$ and $\beta=\sup \left\{t \in\langle 0,1\rangle: \varepsilon_{u}=\delta_{u}\right.$ for all $u \in\langle 0, t)\}$. From the properties of A_{1} and A_{2}, from the definition of ε_{1} and from $\tilde{\boldsymbol{J}}_{1} \in \boldsymbol{A}_{1}$ and $\tilde{\boldsymbol{J}}_{0} \in \boldsymbol{A}_{2}$ we conclude that $0 \leqq \beta<\beta+\delta \leqq \alpha \leqq 1$. But then there exist two numbers r and s such that $\beta \leqq r<s \leqq \alpha, \tilde{J}_{r} \in A_{2}, \tilde{J}_{,} \in A_{1}, \varepsilon_{r}<\delta$, and $\varepsilon,<\delta$. However, from the consideration in the preceding paragraph it follows that $A_{i}^{\prime} \cap A_{2} \neq \emptyset$ and $A_{1} \cap A_{2}^{\prime} \neq \emptyset$.

Now let $B=O_{\emptyset}(\varepsilon)$, where $\varepsilon>0$. There can neither $A_{1}=\{\emptyset\}$ nor $A_{2}=\{\emptyset\}$. Then there exist two intervals I and J such that $I=\left\langle a_{1}, b_{1} ; \ldots ; a_{n}, b_{n}\right\rangle \in A_{1}$ and $J=\left\langle c_{1}, d_{1} ; \ldots ; c_{n}, d_{n}\right\rangle \in A_{2}$. Two cases are possible: either a) $\left\{\left\langle t a_{1}, t b_{1} ; \ldots\right.\right.$; $\left.\left.t a_{n}, t b_{n}\right\rangle: t \in(0,1\rangle\right\} \subset A_{1}$ or b) $\left\{\left\langle t a_{1}, t b_{1} ; \ldots ; t a_{n}, t b_{n}\right\rangle: t \in(0,1\rangle\right\}-A_{1} \neq \emptyset$. We shall prove that in both cases there exist an interval $Y \in O_{g}(\varepsilon)$ and $\delta>0$ such that $O_{Y}(\delta) \subset O_{\emptyset 1}(\varepsilon)$ and $O_{Y}(\delta) \cap A_{1} \neq \emptyset$ and $O_{Y}(\delta) \cap A_{2} \neq \emptyset$.

Let there be $\left\{\left\langle t a_{1}, t b_{1} ; \ldots ; t a_{n}, t b_{n}\right\rangle: t \in(0,1\rangle\right\} \subset A_{1}$. Then there exists a $t>0$ such that $t\left(b_{1}-a_{1}\right) \leqq d_{1}-c_{i}$ for $i=1, \ldots, n$. Let $\quad Y_{,}=\left\langle s t a_{1}+(1-s) c_{1}\right.$, $\left.s t b_{1}+(1-s) d_{1} ; \ldots ; s t a_{n}+(1-s) c_{n}, \quad s t b_{n}+(1-s) d_{n}\right\rangle$ for $s \in\langle 0,1\rangle$ and $\alpha=$ $\inf \left\{s \in\langle 0,1\rangle: Y_{\checkmark} \in A_{1}\right\}$. If $\alpha=1$, then $Y_{\alpha} \in A_{1} \cap A_{2}^{\prime}$, if $\alpha=0$, then $Y_{\alpha} \in A_{i} \cap A_{2}$ and if $0<\alpha<1$, then either $Y_{a} \in A_{1} \cap A_{2}^{\prime}$ or $Y_{u} \in A_{1}^{\prime} \cap A_{2}$. Since $0<$ $\alpha t\left(b_{i}-a_{i}\right)+(1-\alpha)\left(d_{i}-c_{i}\right) \leqq d_{i}-c_{t}$ for $i=1, \ldots, n$, there holds: $\varrho\left(\emptyset, Y_{a}\right)=$ $m\left(Y_{\alpha}\right)=\prod_{i=1}^{n}\left(\alpha t\left(b_{i}-a_{i}\right)+(1-\alpha)\left(d_{i}-c_{i}\right)\right) \leqq \prod_{i=1}^{n} \quad\left(d_{i}-c_{i}\right)=m(J)<\varepsilon$. Therefore $Y_{a} \in O_{\emptyset}(\varepsilon)$. There exists a $\delta>0$ such that $O_{Y_{n}}(\delta) \subset O_{\emptyset}(\varepsilon)$ and $O_{Y_{a}}(\delta) \cap A_{1} \neq \emptyset$, $O_{Y_{t}}(\delta) \cap A_{2} \neq \emptyset$.

Let there $\left\{\left\langle t a_{1}, t b_{1} ; \ldots ; t a_{n}, t b_{n}\right\rangle: t \in(0,1\rangle\right\}-A_{1} \neq \emptyset$. Let $\beta=\sup \{t \in(0,1\rangle$: $\left.\left\langle t a_{1}, t b_{1} ; \ldots ; t a_{n}, t b_{n}\right\rangle \in A_{2}\right\}$. Then $0<\beta \leqq 1$. If $\beta=1$, then $Y=\left\langle a_{1}, b_{1} ; \ldots\right.$; $\left.a_{n}, b_{n}\right\rangle \in A_{1} \cap A_{2}^{\prime} \quad$ and if $0<\beta<1$, then either $Y=\left\langle\beta a_{1}, \beta b_{1} ; \ldots\right.$; $\left.\beta a_{n}, \beta b_{n}\right\rangle \in A_{1} \cap A_{2}^{\prime}$ or $Y=\left\langle\beta a_{1}, \beta b_{1} ; \ldots ; \beta a_{n}, \beta b_{n}\right\rangle \in A_{i}^{\prime} \cap A_{2}$. Since $\varrho(\emptyset, Y)=$ $\beta m(I)<\varepsilon, Y$ is in $O_{b}(\varepsilon)$. There also exists a positive number δ such that $O_{Y}(\delta) \subset O_{\emptyset}(\varepsilon)$ and $O_{Y}(\delta) \cap A_{1} \neq \emptyset$ and $O_{Y}(\delta) \cap A_{2} \neq \emptyset$.
Let $Y \in O_{\emptyset}(\varepsilon)$ and $\delta>0$ such that $O_{Y}(\delta) \subset O_{g}(\varepsilon), O_{Y}(\delta) \cap A_{1} \neq \emptyset$ and $O_{Y}(\delta)$ $\cap A_{2} \neq \emptyset$. Let $\tilde{A}_{1}=O_{Y}(\delta) \cap A_{1}$ and $\tilde{A}_{2}=O_{Y}(\delta) \cap A_{2}$. Then $O_{Y}(\delta)=\tilde{A}_{1} \cup \tilde{A}_{2}$, $\tilde{A}_{1} \cap \tilde{A}_{2}=\emptyset$ and $\tilde{A}_{1} \neq \emptyset, \tilde{A}_{2} \neq \emptyset$. Let $C \in \mathscr{B}$ and either $C \subset \tilde{A}_{1}$ or $C \subset \tilde{A}_{2}$. Therefore either $\bar{C} \cap O_{\vartheta}(\varepsilon) \subset A_{1}$ or $\bar{C} \cap O_{g}(\varepsilon) \subset A_{2}$ and thus $\bar{C} \cap O_{Y}(\delta) \subset \bar{C} \cap O_{g}(\varepsilon) \cap O_{Y}(\delta) \subset$ $A_{1} \cap O_{Y}(\delta)=\tilde{A}_{1}$, or $\bar{C} \cap O_{Y}(\delta) \subset \bar{C} \cap O_{\varnothing}(\varepsilon) \cap O_{Y}(\delta) \subset A_{2} \cap O_{Y}(\delta)=\tilde{A}_{2}$ if either $C \subset \tilde{A}_{1}$ or $C \subset \tilde{A}_{2}$, respectively. But then there holds: $\tilde{A}_{1} \cap \tilde{A}_{2}^{\prime} \neq \emptyset$ and $\tilde{A}_{i} \cap \tilde{A}_{2} \neq \emptyset$ and therefore $A_{1} \cap A_{2}^{\prime} \neq \emptyset$ and $A_{1}^{\prime} \cap A_{2} \neq \emptyset$.

Thus the property (2) for the base \mathscr{B} is proved.
We remark that the properties (1) and (2) are important in the study of the \mathscr{B}-Darboux Baire 1 functions (see [4] and [5]).

We note that also the base \mathscr{B} in $X\left(E_{n}\right)$ of all sets $U(I, \varepsilon)=\left\{J \in X\left(E_{n}\right):\left(a_{1}+\varepsilon\right.\right.$, $\left.\left.b_{1}-\varepsilon ; \ldots ; a_{n}+\varepsilon, b_{n}-\varepsilon\right) \subset J \subset\left(a_{1}-\varepsilon, b_{1}+\varepsilon ; \ldots ; a_{n}-\varepsilon, b_{n}+\varepsilon\right)\right\}$ for $I=\left\langle a_{1}, b_{1}\right.$; $\left.\ldots ; a_{n}, b_{n}\right\rangle \in X\left(E_{n}\right)$ and $0<\varepsilon<\frac{1}{2} \min \left(b_{1}-a_{1}, \ldots, b_{n}-a_{n}\right)$ satisfies the properties (1) and (2).
2. There are several definitions of the continuity of interval functions.

The first is as follows: An interval function f is continuous on a figure R in E_{n} (or on an open set G in E_{n}) iff for each $x \in R(x \in G)$ and $\varepsilon>0$ there exists a $\delta>0$ such that $|f(I)|<\varepsilon$ holds whenever $I \in X(R)(I \in X(G)), x \in I$ and $m(I)<\delta$ ([10]). If an interval function is continuous on a figure R (or on G) in this sense, we shall say that f is pointwise continuous on R (on G).

The second is the following: An interval function f is continuous on a figure R (on an open set G) iff for each $\varepsilon>0$ there exists $\delta>0$ such that $|f(I)|<\varepsilon$ whenever $I \in X(R)(I \in X(G))$ and $m(I)<\delta([9])$. If f is continuous on R (on G) in this sense, we shall say that f is uniformly continuous on R (on G). However, this continuity is usually, also by M. Laczkovich, called simply continuity.

In [8] C. J. Neugebauer gives the following definition of the continuity of an interval function: An interval function f is continuous on a figure R (on an open set $G)$ iff for each $\varepsilon>0$ and for each $I \in X(R)(I \in X(G))$ there exists a $\delta>0$ such that $|f(I)-f(J)|<\varepsilon$ holds whenever $J \in X(R)(J \in X(G))$ and $\varrho(I, J)<\delta$. Thus f is continuous on R (on G) in this sense iff f is continuous on $(X(R), \varrho)$ (on $(X(G), \varrho)$). This continuity is introduced also in my paper [6] in theorem 3. In such a case of the continuity we shall say that f is metrically continuous on R (on G).

An interval function f is called additive on a figure R (on an open set G) iff $f(I \cup J)=f(I)+f(J)$ for each nonoverlapping interval I and J of $X(R)(I$, $J \in X(G))$ for which $I \cup J$ is an interval. Let f be an additive interval function on R (on G). Then the function $f: X_{0}(R) \rightarrow(-\infty, \infty)\left(f: X_{0}(G) \rightarrow(-\infty, \infty)\right.$ defined as follows: $f(I)=f(I)$ for each $I \in X(R)(I \in X(G))$ and $f(\emptyset)=0$, is an additive extension of f to $X_{0}(R)$ (to $X_{0}(G)$).

Theorem 4. Let f be an additive interval function on a figure R (on an open set G). Then the following properties are equivalent:
a) f is uniformly continuous on R (on G)
b) The additive extension f is continuous at \emptyset in the metric space $\left(X_{0}(R), \varrho\right)$ $\left(X_{0}(G), \varrho\right)$,
c) f is metrically continuous on R (on G) and there holds b).

Proof. The equivalence of a) and b) is evident. The theorem will be proved if we prove that b) implies c).

Let f be continuous at \emptyset in $\left(X_{0}(R), \varrho\right)\left(\left(X_{0}(G), \varrho\right)\right)$. Let s_{n} be the number
introduced in Lemma 1. Let $\varepsilon>0$ Let $\delta>0$ such that $|f(I)|<\frac{\varepsilon}{2 s_{n}}$ whenever $I \in X(R)(I \in X(G))$ and $m(I)<\delta$. Let $I \in X(R)(I \in X(G))$. According to Lemma 1 for each $J \in X(R)(J \in X(G))$ for which $\varrho(I, J)<\delta$ there exists a finite system $\left\{J_{1} \ldots, J_{,}\right\}$of non-overlapping closed intervals in $X(R)$ (in $\left.X(G)\right)$ such that $\bigcup_{1}^{v} \operatorname{Int}\left(J_{i}\right) \subset I-J \subset \bigcup_{1}^{p} J_{i}, \quad \bigcup_{p+1} \operatorname{Int}\left(J_{t}\right) \subset J-I \subset \bigcup_{p+1} J_{i}, \quad 0 \leqq p \leqq s_{n}, \quad p \leqq s \leqq 2 s_{n}$, where $\bigcup_{1}^{\prime} \operatorname{Int}\left(J_{t}\right)$ and $\bigcup_{i}^{\prime} J_{t}$ for $p=0$ and $\bigcup_{i} \bigcup_{p+1} \operatorname{Int}\left(J_{t}\right)$ and $\bigcup_{i p+1} J_{i}$ for $s=p$ we shall put equal to \emptyset. If $I \cap J$ is an interval, then $f(I)=f(I \cap J)+\sum_{1}^{p} f\left(J_{t}\right)$ and $f(J)=$ $f(I \cap J)+\sum_{i} \dot{1}_{p+1} f\left(J_{t}\right)$ and if $I \cap J$ is not an interval, then $f(I)=\sum_{1}^{p} f\left(J_{t}\right)$ and $f(J)=$ $\sum_{p+1} f\left(J_{i}\right)$. Therefore $|f(I)-f(J)| \leqq \sum_{1}\left|f\left(J_{i}\right)\right|<\varepsilon$. We put here $\sum_{1}^{p} f\left(J_{i}\right)=0$ if $p=0$ and $\sum_{p}{ }_{1} f\left(J_{t}\right)=0$ if $s=p$.

If I is a closed interval, then according to theorem 2 , the metric space ($\left.X_{0}(I), \varrho\right)$ has some properties as interval. Any continuous function on $\left(X_{0}(I), \varrho\right)$ is uniformly continuous on $X_{01}(I)$ and has a maximum and a minimum on $X_{01}(I)$. All continuous functions on $\left(X_{0}(I), \varrho\right)$ form a separable Banach space with the norm $\|f\|=$ $\max \left\{|f(J)|: J \in X_{0}(I)\right\}$, where f is continuous function on $X_{0}(I)$ ([1], p. 397). Any continuous function on $\left(X_{0}(I), \varrho\right)$ has the Darboux property according to the base \mathscr{B} which is introduced in theorem 3 , thus: for each $B \in \mathscr{B}$ each $Y, J \in \bar{B}$ each c such that $f(J)<c<f(I)$ there exists $T \in B$ such that $f(T)=c$.

It is well known that any real function of a real variable is continuous on an interval J if it has a finite derivative at any point of J. We shall prove that any additive interval function which has at any point of an open set (of a figure) a finite strong derivative is metrically continuous. We recall the definition of the strong derivative. Let f be an interval function on an open set G (on a figure R). Then a number a is a strong derivative of f in $X \in G(X \in R)$ iff for each $\varepsilon>0$ there exists $\delta>0$ such that $\left|\frac{f(I)}{m(I)}-a\right|<\varepsilon$ for each $I \in X(G)(I \in X(R)), X \in I$ and $d(I)<\delta$, where $d(I)$ is the diameter of I.

Lemma 3. Let $J=\left\langle a_{1}, b_{1} ; \ldots ; a_{n}, b_{n}\right\rangle$ be an interval, $X=\left(x_{1}, \ldots, x_{n}\right) \in J$, let f be an additive interval tunction on J and K a positive number. If $|f(I)| \leqq K m(I)$ whenever I is in $X(J), X \in I$ then there holds : $|f(I)| \leqq 2^{n} K m(J)$ for each $I \in X(J)$.

Proof. Let $I=\left\langle c_{1}, d_{1}, \ldots ; c_{n}, d_{n}\right\rangle \in X(J)$ and $N_{I}=\left\{i \in\{1, \ldots, n\}: c_{1} \leqq x_{1} \leqq d_{1}\right\}$. We shall prove that $|f(I)| \leqq 2^{\prime} K m(J)$ if the cardinality of N_{I} is $n-j$.

If the cardinality of N_{l} is n, then $X \in I$ and therefore $|f(I)| \leqq K m(I) \leqq K m(J)$.

We shall assume that $|f(Y)| \leqq 2^{j} K m(J)$ for each $Y \in X(J)$ such that the cardinality of N_{Y} is $n-j$. Let the cardinality of N_{I} be $n-(j+1)$. Then there exists an $i \in\{1, \ldots, n\}-N_{I}$. There must hold either $x_{i}<c_{i}$ or $d_{i}<x_{i}$. If $x_{i}<c_{i}$, we put $Y_{1}=\left\langle c_{1}, d_{1} ; \ldots ; c_{i-1}, d_{i-1} ; a_{i}, c_{i} ; c_{i+1}, d_{1+1} ; \ldots ; c_{n}, d_{n}\right\rangle$ and $Y_{2}=\left\langle c_{1}, d_{1} ; \ldots\right.$; $\left.c_{1}, d_{1} ; a_{i}, d_{i} ; c_{i+1}, d_{i+1} ; \ldots ; c_{n}, d_{n}\right\rangle$. Then $Y_{2}=Y_{1} \cup I$ and Y_{1} and I are nonoverlapping closed intervals. Therefore $f\left(Y_{2}\right)=f\left(Y_{1}\right)+f(I)$ and $|f(I)|=\left|f\left(Y_{2}\right)-f\left(Y_{1}\right)\right|$ $\leqq\left|f\left(Y_{2}\right)\right|+\left|f\left(Y_{1}\right)\right| \leqq 2^{i+1} K m(J)$ because $N_{Y_{1}}=N_{Y_{2}}=N_{I} \cup\{i\}$. We treat the case $d_{i}<x_{i}$ analogously.

Theorem 5. Let f be an additive interval function on an open set G (on a figure R) which has a finite strong derivative at any point of G (of R). Then f is metrically continuous on G (on R).

Proof. Let $I=\left\langle a_{1}, b_{1} ; \ldots ; a_{n}, b_{n}\right\rangle \in X(G)$ and $\varepsilon>0$. For every $X \in \operatorname{Fr}(I)$ there exists a positive number $\delta(X)$ such that $\left(\mathrm{D} f(X)-\frac{1}{2}\right) m(J)<f(J)<\left(\mathrm{D} f(X)+\frac{1}{2}\right)$ $m(J)$ if $J \in X(G), X \in J$ and the diameter $d(J)$ of J is less than $\delta(X)$, where $\mathrm{D} f(X)$ is the strong derivative of f at X.

Let \mathscr{F} be the system of all triple $\left(N_{1}, N_{2}, N_{3}\right)$ such that $\left\{N_{1}, N_{2}, N_{3}\right\}$ is a disjoint decomposition of $\{1, \ldots, n\}$ such that $N_{1} \cup N_{2} \neq \emptyset$. Let $\left(N_{1}, N_{2}, N_{3}\right) \in \mathscr{F}$ and let $F_{\left(N_{1}, N_{1}, N_{1}\right)}$ be the set $\left\{\left(x_{1}, \ldots, x_{n}\right)\right.$: for each $i \in N_{1}$ there is $x_{i}=a_{1}$ for each $i \in N_{2}$ there is $x_{t}=b_{1}$, and for each $i \in N_{3}$ there holds $\left.a_{i} \leqq x_{i} \leqq b_{i}\right\}$. The cardinality of the system \mathscr{F} is $p_{n}=\sum_{k=0}^{n-1}\binom{n}{k} 2^{n-k}$.

Let $J(X)$ be an n-dimensional cube in $X(G)$ with the centre X and with the diameter less than $\delta(X)$. Since $\operatorname{Fr}(I)=\cup\left\{F_{\left(N_{1}, N_{2}, N_{2}\right)}:\left(N_{1}, N_{2}, N_{3}\right) \in \mathscr{F}\right\}$ and since each set $F_{\left(N_{1}, N_{2}, N_{3}\right)}$ for $\left(N_{1}, N_{2}, N_{3}\right) \in \mathscr{F}$ is compact, there exists a finite system $\left\{X_{1}, \ldots, X_{1}\right\}$ of points of $\operatorname{Fr}(I)$ such that $F_{\left(N_{1}, N_{2}, N_{2}\right)} \subset \cup\left\{\operatorname{Int}\left(J\left(X_{1}\right)\right): X_{1} \in F_{\left(N_{1}, N_{2}, N_{2}\right)}\right\}$ for each $\left(N_{1}, N_{2}, N_{3}\right) \in \mathscr{F}$. Let $K=\max \left\{\max \left(\left|\mathrm{D} f\left(X_{i}\right)-\frac{1}{2}\right|, \quad\left|\mathrm{D} f\left(X_{i}\right)+\frac{1}{2}\right|\right)\right.$: $i=1, \ldots, s\}$ and l be the minimum of the lengths of the cubes $J\left(X_{i}\right)$ for $i=1, \ldots, s$.

Let \mathscr{S}_{0} be the system $\{\mathrm{J}: J$ is a closed interval for which there exists a finite set $K_{J} \subset\{1, \ldots, s\}$ such that $\left.J=\cap\left\{J\left(X_{i}\right): i \in K_{J}\right\}\right\}$ and let \mathscr{S} be the system of all minimal elements of \mathscr{S}_{0}; thus $\mathscr{S}=\left\{J \in \mathscr{S}_{0}\right.$: for each $T \in \mathscr{S}_{0}$ there holds: if $T \subset J$, then $T=J\}$. Then the system \mathscr{S} is a finite system of non-overlapping closed intervals, for $J \in \mathscr{S}$ there exists a point X_{k} such that $J \subset J\left(X_{k}\right)$ and $\cup\left\{J\left(X_{i}\right)\right.$: $\left.X_{i} \in F_{\left(N_{1}, N_{2}, N_{3}\right)}\right\}=\cup\left\{J \in \mathscr{P}: J \subset J\left(X_{i}\right), X_{i} \in F_{\left(N_{1}, N_{2}, N_{3}\right)}\right\}$ for each $\left(N_{1}, N_{2}, N_{3}\right) \in \mathscr{F}$. Let j be the cardinality of the system \mathscr{S}.

It is easy to prove that there exists an $\eta>0$ such that: $\eta<\frac{1}{3}, \eta<\frac{1}{2} \min \left\{b_{t}-a_{t}\right.$: $i=1, \ldots, n\}, I_{\eta}-\operatorname{Int}\left(J_{\eta}\right) \subset \cup\left\{J\left(X_{i}\right): i=1, \ldots, s\right\}$ and $j\left(p_{n}\right)^{2} 2^{n} K m\left(I_{\eta}-J_{\eta}\right)<\varepsilon$, where $J_{\eta}=\left\langle a_{1}+\eta, b_{1}-\eta ; \ldots ; a_{n}+\eta, b_{n}-\eta\right\rangle \subset\left\langle a_{1}-\eta, b_{1}+\eta ; \ldots ; a_{n}-\eta\right.$, $\left.b_{n}+\eta\right\rangle=I_{\eta}$. Now for each $\left(N_{1}, N_{2}, N_{3}\right) \in \mathscr{F}$ we define two intervals: $Y_{\left(N_{1}, N_{2}, N_{3}\right)}=$ $\left\langle t_{1}, u_{1} ; \ldots ; t_{n}, u_{n}\right\rangle$ and $Y_{\left(N_{1}, N_{2}, N_{3}\right)}=\left\langle v_{1}, w_{1} ; \ldots ; v_{n}, w_{n}\right\rangle$, where $t_{i}=a_{1}, u_{i}=a_{t}+\eta$, $v_{t}=a_{t}-\eta, w_{i}=a_{i}$ if $i \in N_{1}, t_{i}=b_{i}-\eta, u_{1}=b_{i}, v_{i}=b_{i}, w_{t}=b_{i}+\eta$ if $i \in N_{2}$ and
$t_{1}=a_{t}+\eta, \quad u_{t}=b_{t}-\eta, \quad v_{t}=a_{t}, \quad w_{t}=b_{t} \quad$ if $\quad i \in N_{3} . \quad$ Let $\quad \mathscr{Y}=\left\{Y_{\left(N_{1}, N, N\right)}:\right.$ $\left.\left(N_{1}, N_{2}, N_{3}\right) \in \mathscr{F}\right\}$ and $\mathscr{Y}^{*}=\left\{Y_{\left(N_{1}, N_{2}, N_{3}\right)}^{*}:\left(N_{1}, N_{2}, N_{3}\right) \in \mathscr{F}\right\}$.

We shall prove that $\mathscr{Y} \cup \mathscr{Y}^{*}$ is a finite system of non-overlapping closed intervals and $\overline{I-J_{\eta}}=\cup \mathscr{Y}, \overline{I_{n}-I}=\cup \mathscr{Y}$ *

Let $P=\left(p_{1}, \ldots, p_{n}\right) \in \overline{I-J_{\eta}}$ and let $N_{1}=\left\{i \in\{1, \ldots, n\}: p_{t} \leqq a_{1}+\eta\right\}, \quad N_{2}=$ $\left\{i \in\{1, \ldots, n\}: b_{1}-\eta \leqq p_{i}\right\}$ and $N_{3}=\{1, \ldots, n\}-\left(N_{1} \cup N_{2}\right)$. Since $P \in \overline{I-J_{\eta}}$, there is either $P \in I-J_{\eta}$ or $P \in \operatorname{Fr}\left(J_{\eta}\right)$. Therefore $N_{1} \cup N_{2} \neq \emptyset$ and $\left(N_{1}, N_{2}, N_{3}\right) \in \mathscr{F}$. But then $P \in Y_{\left(N_{1} N_{2}, N_{2}\right)}$ and therefore $\overline{I-J_{\eta}} \subset \cup \mathscr{Y}$. Let $P \in \cup \mathscr{Y}$. Then there exists $a\left(N_{1}, N_{2}, N_{3}\right) \in \mathscr{F}$ such that $P \in Y_{\left(N_{1} N_{2}, N_{3}\right)}$. From the definition of $Y_{\left(N_{1}, N_{N}, N_{3}\right)}$ it follows that $a_{t} \leqq p_{i} \leqq b_{t}$ for each $i \in\{1, \ldots, n\}$ and therefore $P \in I$. For each $i \in N_{1} \cup N_{2}$ there cannot hold $a_{t}+\eta<p_{t}<b_{1}-\eta$ and since $N_{1} \cup N_{2} \neq \emptyset$ there holds : $P \notin \operatorname{Int}\left(J_{\eta}\right)$. Thus $P \in \overline{I-J_{\eta}}$. This gives that $\cup \mathscr{Y} \subset \overline{I-J_{\eta}}$ and we have proved that $\overline{I-J_{n}}=\cup \mathscr{Y}$. The proof of $\overline{I_{\eta}-I}=\cup \mathscr{Y}$ * is similar.

Let $T, U \in \mathscr{Y} \cup \mathscr{Y}^{*}$ and $\operatorname{Int}(T) \cap \operatorname{Int}(U) \neq \emptyset$. Since $\operatorname{Int}(T) \cap \operatorname{Int}(U) \neq \emptyset$ and $\operatorname{Int}\left(\overline{I-J_{\eta}}\right) \cap \operatorname{Int}\left(\overline{I_{\eta}-I}\right)=\emptyset$, there can be either $T, U \in \mathscr{Y}$ or $T, U \in \mathcal{Y}^{*}$. Let T, $U \in \mathscr{Y}$. Then there exists a $\left(N_{1}, N_{2}, N_{3}\right)$ and $\left(K_{1}, K_{2}, K_{3}\right)$ of \mathscr{F} such that $T=$ $Y_{\left(N_{1} . N_{1}, N_{3}\right)}=\left\langle t_{1}, u_{1} ; \ldots ; t_{n}, u_{n}\right\rangle$ and $U=Y_{\left(\kappa_{1}, K_{2}, K_{3}\right)}=\left\langle v_{1}, w_{1} ; \ldots ; v_{n}, w_{n}\right\rangle$. Since $\operatorname{Int}(T) \cap \operatorname{Int}(U) \neq \emptyset$, there exists a point $P=\left(p_{1}, \ldots, p_{n}\right) \in \operatorname{Int}(T) \cap \operatorname{Int}(U)$. Therefore there holds: $t_{t} \leqq p_{t} \leqq u_{t}$ and $v_{t} \leqq p_{t} \leqq w_{1}$ for each $i \in\{1, \ldots, n\}$. Since $a_{t}<$ $a_{1}+\eta<b_{t}-\eta<b_{t}$ for each $i \in\{1, \ldots, n\}$, there must be $t_{1}=v_{t}$ and $u_{i}=w_{1}$ for each $i \in\{1, \ldots, n\}$. Thus $\left(N_{1}, N_{2}, N_{3}\right)=\left(K_{1}, K_{2}, K_{3}\right)$ and $T=U$.

For $T, U \in \mathscr{Y}^{*}$ the proof is similar.
Let $\mathscr{G}=\{J: J$ is a closed interval for which there exist a $T \in \mathscr{S}$ and a $\left(N_{1}, N_{2}, N_{3}\right) \in \mathscr{F}$ such that $\left.J=T \cap Y_{\left(N_{1}, N_{n}, N_{3}\right)}\right\}$ and let $\mathscr{I}=\{Y: Y$ is a closed interval for which there exist a $T \in \mathscr{S}$ and a $\left(N_{1}, N_{2}, N_{3}\right) \in \mathscr{F}$ such that $Y=$ $\left.Y^{*}{ }_{\left.N_{1}, N_{2}, N_{3}\right)} \cap T\right\}$. Then the systems \mathscr{F} and \mathscr{I} are finite systems of nonoverlapping closed intervals of the cardinality not greater than $j \cdot p_{n}$ and $\cup \mathscr{F}=I-\overline{J_{n}}$ and $\cup \mathscr{I}=\overline{I_{\eta}-I}$.

Let $J \in \mathscr{F}$. Then there exist a $T \in \mathscr{S}$ and a $\left(N_{1}, N_{2}, N_{3}\right) \in \mathscr{F}$ such that $J=$ $T \cap Y_{\left(N_{1} . N_{2} . N_{3}\right)}$. Let $\hat{Y}=\left\langle t_{1}, u_{1} ; \ldots ; t_{n}, u_{n}\right\rangle$, where $t_{1}=a_{i}, u_{1}=a_{t}+\eta$ for each $i \in N_{1}$, $t_{1}=b_{i}-\eta, u_{1}=b_{1}$ for each $i \in N_{2}$ and $t_{i}=a_{i}$ and $u_{1}=b_{i}$ for each $i \in N_{3}$. Then $J \subset Y_{\left(N_{1}, N_{N}, N_{3}\right)} \subset \cup\left\{J\left(X_{t}\right) \cap \hat{Y}: \quad X_{t} \in F_{\left(N_{1}, N_{2}, N_{1}\right)}\right\} \quad$ and therefore there exists an $i \in\{1, \ldots, s\}$ such that $J \subset J\left(X_{i}\right) \cap \hat{Y}, J\left(X_{i}\right) \cap \hat{Y}$ is an interval contained in $\overline{I-J_{\eta}}$ and $X_{i} \in J\left(X_{i}\right) \cap \hat{Y}$.

Let $Y \in \mathscr{I}$: Then there exist a $T \in \mathscr{S}$ and a $\left(N_{1}, N_{2}, N_{3}\right) \in \mathscr{F}$ such that $Y=$ $T \cap Y_{\left(N_{1}, N_{1}, N_{3}\right)}^{*}$. Then $Y \subset Y_{\left(N_{1}, N_{2}, N_{3}\right)}^{*} \subset \cup\left\{J\left(X_{1}\right) \cap Y_{\left(N_{1}, N_{1}, N_{3}\right)}^{*}: \quad X_{i} \in F_{\left(N N_{N}, N_{1}\right)}\right\}$.

Therefore there exists an $X_{i}, j \in\{1, \ldots, s\}$ such that $Y \subset J\left(X_{i}\right) \cap Y_{\left(N_{1}, N_{2}, N_{3}\right)} \subset \overline{I_{\eta}-I}$, $J\left(X_{t}\right) \cap Y_{\left(N_{1}, N_{2}, N_{3}\right)}^{*}$ is an interval and $X_{j} \in J\left(X_{i}\right) \cap Y_{\left(N_{1}, N_{2}, N_{3}\right)}^{*}$.

It is easy to see that there exists a $\delta>0$ such that $J_{\eta} \subset J \subset I_{\eta}$ for each $J \in X(G)$ satisfying $\varrho(I, J)<\delta$.

Let $J=\left\langle c_{1}, d_{1} ; \ldots ; c_{n}, d_{n}\right\rangle$ an interval of $X(G)$ such that $\varrho(I, J)<\delta$. Then $J_{\eta} \subset J \subset I_{\eta}$. Let there for each $\left(N_{1}, N_{2}, N_{3}\right) \in \mathscr{F}$ be $\hat{J}_{\left(N_{1}, N_{2}, N_{3}\right)}=\left\langle e_{1}, f_{1} ; \ldots ; e_{n}, f_{n}\right\rangle$, where $e_{1}=a_{i}, f_{i}=\max \left(a_{i}, c_{i}\right)$ for each $i \in N_{1}, e_{i}=\min \left(b_{i}, d_{i}\right), f_{i}=b_{i}$ for each $i \in N_{2}$ and $e_{1}=\max \left(a_{i}, c_{i}\right), f_{i}=\min \left(b_{i}, d_{i}\right)$ for each $i \in N_{3}$. Then the system $\hat{\mathscr{F}}=$ $\left\{\hat{J}_{\left(N_{1}, N_{2}, N_{3}\right)}: \hat{J}_{\left(N_{1}, N_{2} . N_{3}\right)}\right.$ is a closed interval in $\left.E_{n},\left(N_{1}, N_{2}, N_{3}\right) \in \mathscr{F}\right\}$ is a finite system of non-overlapping closed intervals for which $\overline{I-(J \cap I)}=\cup\left\{\hat{J}_{\left(N_{1}, N_{2}, N_{3}\right)}\right.$: $\left.\hat{J}_{\left(N_{1}, N, N_{1}\right)} \in \hat{\mathscr{F}}\right\}$. We give here only the proof of the last relation.

Let $P=\left(p_{1}, \ldots, p_{n}\right) \in \overline{I-(J \cap I)}$. Then $a_{i} \leqq p_{i} \leqq b_{i}$ for each $i \in\{1, \ldots, n\}$ and there exists a $j \in\{1, \ldots, n\}$ such that either $p_{i} \leqq \max \left(a_{j}, c_{j}\right)$ or $\min \left(b_{i}, d_{j}\right) \leqq p_{i}$ holds. Let $N_{1}=\left\{i \in\{1, \ldots, n\}: a_{i}<c_{i}\right.$ and $\left.p_{i} \leqq c_{i}\right\}, N_{2}=\left\{i \in\{1, \ldots, n\}: d_{i}<b_{i}\right.$ and $\left.d_{t} \leqq p_{i}\right\}$ and $N_{3}=\{1, \ldots, n\}-\left(N_{1} \cup N_{2}\right)$. Since either $P \in I-(J \cap I)$ or P is a limit point of $I-(J \cap I)$, there must be $N_{1} \cup N_{2} \neq \emptyset$. Thus $\left(N_{1}, N_{2}, N_{3}\right) \in \mathscr{F}$ and $P \in \hat{J}_{\left(N_{1}, N_{2}, N_{3}\right)}$, because $a_{i} \leqq p_{i} \leqq c_{i}$ for each $i \in N_{1}, d_{i} \leqq p_{i} \leqq b_{i}$ for each $i \in N_{2}$ and $c_{i} \leqq p_{i} \leqq d_{i}$ for each $i \in N_{3}$. Let there be $\left(N_{1}, N_{2}, N_{3}\right) \in \mathscr{F}$, let $\hat{J}_{\left(N_{1}, N_{2}, N_{3}\right)}$ be a closed interval and $P=\left(p_{1}, \ldots, p_{n}\right) \in \hat{J}_{\left(N_{1}, N_{2}, N_{3}\right)}$. Then $a_{i} \leqq p_{i} \leqq c_{i}<a_{1}+\eta<b_{i}-\eta<b_{i}$ for each $i \in N_{1}$, $a_{i}<a_{i}+\eta<b_{i}-\eta<d_{i} \leqq p_{i} \leqq b_{i}$ for each $i \in N_{2}$ and $a_{i} \leqq \max \left(a_{i}, c_{i}\right) \leqq p_{i} \leqq$ $\min \left(b_{i}, d_{i}\right) \leqq b_{i}$ for each $i \in N_{3}$. Therefore $P \in I$. Since $N_{1} \cup N_{2} \neq \emptyset$, there exists $a j \in\{1, \ldots, n\}$ such that the inequality $\max \left(a_{j}, c_{j}\right)<p_{j}<\min \left(b_{j}, d_{j}\right)$ does not hold. Therefore $P \notin \operatorname{Int}(J \cap I)$. Thus $P \in I-\operatorname{Int}(J \cap I)=\overline{I-(J \cap I)}$.

Let there be $\hat{J}_{\left(N_{1}, N_{2}, N_{3}\right)}^{*}=\left\langle g_{1}, h_{1} ; \ldots ; g_{n}, h_{n}\right\rangle$ for each $\left(N_{1}, N_{2}, N_{3}\right) \in \mathscr{F}$, where $g_{1}=c_{i}, h_{1}=\max \left(a_{i}, c_{i}\right)$ for each $i \in N_{1}, g_{i}=\min \left(b_{i}, d_{i}\right), h_{i}=d_{i}$ for each $i \in N_{2}$ and $g_{i}=\max \left(a_{i}, c_{i}\right), h_{i}=\min \left(b_{i}, d_{i}\right)$ for each $i \in N_{3}$. Then the system $\hat{\mathscr{H}}=\left\{\hat{J}_{\left(N_{1}, N_{2}, N_{2}\right)}^{*}\right.$: $\hat{\boldsymbol{J}}_{\left(N_{1}, N_{2}, N_{3}\right)}$ is a closed interval in E_{n} and $\left.\left(N_{1}, N_{2}, N_{3}\right) \in \mathscr{F}\right\}$ is a finite system of non-overlapping closed intervals for which $\overline{J-(J \cap I)}=\cup\left\{\hat{J}_{\left(N_{1}, N_{2}, N_{3}\right)}\right.$: $\left.\hat{J}_{\left(N_{1}, N_{2}, N_{3}\right)} \in \hat{\mathscr{F}}^{*}\right\}$.

Let \mathscr{U} be the system $\{T: T$ is a closed interval for which there exist an $J \in \mathscr{F}$ and $\hat{J}_{\left(N_{1}, N_{2}, N_{2}\right)} \in \dot{\mathcal{H}}$ such that $\left.T=J \cap \hat{J}_{\left(N_{1}, N_{2}, N_{3}\right)}\right\}$ and let \mathscr{V} be the system $\{T: T$ is a closed interval for which there exist an $Y \in \mathscr{I}$ and $\hat{J}_{\left(N_{1}, N_{2}, N_{3}\right)} \in \hat{\mathscr{J}}^{*}$ such that $T=$ $\left.Y \cap \hat{J}_{\left(N_{1}, N_{2}, N_{3}\right)}\right\}$. It is evident that \mathscr{U} and \mathscr{V} are finite systems of non-overlapping closed intervals of the cardinality not greater than $j\left(p_{n}\right)^{2}$ and for each $T \in \mathscr{U}$ there exists a closed interval $J\left(X_{i}\right) \cap \hat{Y}$ contained in $\overline{I-J_{\eta}}$ such that $T \subset J\left(X_{i}\right) \cap \hat{Y}$ and $X_{i} \in J\left(X_{i}\right) \cap \hat{Y}$ and for $T \in \mathscr{V}$ there exists a closed interval $J\left(X_{i}\right) \cap \hat{Y}_{\left(N_{1}, N_{2}, N_{3}\right)}^{*}$ and $X_{j} \in J\left(X_{j}\right) \cap \hat{Y}_{\left(N_{1}, N_{2}, N_{3}\right)}$. According to lemma 3 we have $|f(T)| \leqq 2^{n} K m\left(J\left(X_{i}\right)\right.$
$\cap \hat{Y}) \leqq 2^{n} K m\left(\overline{I-J_{\eta}}\right)$ for each $T \in \mathscr{U}$ and $|f(T)| \leqq 2^{n} K m\left(J\left(X_{l}\right) \cap \hat{Y}_{\left(N_{1}, N_{1}, N_{z}\right)}\right) \leqq$ $2^{n} K m\left(\overline{I_{\eta}-I}\right)$ for $T \in \mathscr{V}$. Then we have: $f(J)=f(J \cap I)+\Sigma\{f(T): T \in \mathcal{I}\}$ and $f(I)=f(J \cap I)+\Sigma\{f(T): \quad T \in \mathcal{U}\}$. Therefore $|f(J)-f(I)|=\mid \Sigma\left\{f(T): T \in \mathfrak{V}^{\prime}\right\}-$ $\Sigma\{f(T): T \in U\} \mid \leqq \Sigma\{|f(T)|: T \in \mathscr{U} \cup \mathscr{V}\} \leqq j\left(p_{n}\right)^{2} 2^{n} K m\left(I_{\eta}-J_{\eta}\right)<\varepsilon$.

The proof of the mentioned theorem 3 of Laczkovich [2] is based on theorem 1 of [2] and on theorem 7 of [3].

We give here Laczkovich's theorems 1 of [2] and 7 of [3]. We do not give here the definition of the C_{k} property because this property is not important for Laczkovich's proof of theorem 3.

If φ is an additive interval function defined on $X(I)$, where $I=\left\langle a_{1}, b_{1} ; \ldots\right.$; $\left.a_{1}, b_{n}\right\rangle$ is a closed interval, M. Laczkovich defines a function f_{4} on I as follows: $f_{1}(x)=0$ if $x=\left(x_{1}, \ldots, x_{n}\right)$ and $x_{t}=a_{t}$ for some $i \in\{1, \ldots, n\}$ and $f_{4}(x)=\varphi\left(\left\langle a_{1}, x_{1}\right.\right.$; $\left.\left.\ldots ; a_{n}, x_{n}\right\rangle\right)$ if $x=\left(x_{1}, \ldots, x_{n}\right)$ and $a_{1}<x_{1} \leqq b_{1}$ for each $i \in\{1, \ldots, n\}$.

Laczkovich's theorem 7 of [3] says that f_{q} is differentiable on I if φ is an additive interval function defined on $X(I)$, which has a finite strong derivative at each point of I. Theorem 1 of [2] says that for any additive interval function φ defined on $X(I)$ the following three assertions are equivalent:
(i) φ is uniformly continuous on I,
(ii) φ has the C_{k} property in I for every $k=0,1, \ldots, n-1$,
(iii) f_{4} is continuous on I.

It is easy to prove that theorem 5 is a consequence of Laczkovich's theorem 3 of [2].

We give here another proof of Laczkovich's theorem 3 of [2] in a way similar to the one used in the proof of our theorem 5.

Theorem 6. (M. Laczkovich) Let f be an additive interval function on $X(I)$, where I is a closed interval. If f has at each point of I a finite strong derivative, then f is uniformly continuous on I.

Proof. Let f be an additive interval function on I which has a finite strong derivative at each point of I. If we suppose that f is not uniformly continuous on I, then there exist a $\varepsilon>0$ and a sequence $\left\{J_{k}\right\}_{k-1}^{\infty}$ of $X(I)$ such that $\left|f\left(J_{k}\right)\right| \geqq \varepsilon$ for $k=1,2,3, \ldots$ and $\lim _{k \rightarrow \infty} m\left(J_{k}\right)=0$. Let there be $J_{k}=\left\langle a_{1 . k}, b_{1 . k} ; \ldots ; a_{n . k}, b_{n, k}\right\rangle$ for $k=1,2,3, \ldots$ Then there exists an $i \in\{1, \ldots, n\}$ such that $\liminf _{k \rightarrow \infty}\left(b_{l, k}-a_{l, k}\right)=0$. Since the sequences $\left\{a_{1 k}\right\}_{k}^{\infty}$ । and $\left\{b_{1}\right\}_{k}^{\infty}$, for $j=1, \ldots, n$ are bounded, there exist a sequence $\left\{k_{,}\right\}_{\substack{\infty}}$ and numbers a_{j} and b, for $j=1, \ldots, n$ such that $a_{1}=\lim _{1 \rightarrow \infty} a_{1, k_{1}}$, $b_{1}=\lim _{1 \rightarrow \infty} b_{1, k}$, and $a_{i}=b_{i}$.

Let $H=\left\{\left(x_{1}, \ldots, x_{n}\right) \in I: x_{i}=a_{i}\right\}$. Since f has a finite strong derivative at each point of I, there exist a finite system $\left\{X_{r}=\left(x_{1}^{r}, \ldots, x_{n}^{r}\right): r=1, \ldots, s\right\}$ of points of H and δ such that $0<\delta<1$, for each $r \in\{1, \ldots, s\}$ and $Y \in X(I)$, we have $\left(D f\left(X_{r}\right)-\right.$ $\left.\frac{1}{2}\right) m(Y)<f(Y)<\left(\mathrm{D} f\left(X_{r}\right)+\frac{1}{2}\right) m(Y)$ if $X_{r} \in Y$ and $d(Y)<\delta$, and $H \subset \cup\left\{Y_{r}\right.$: $r=1, \ldots, s\}$, where $Y_{r}=I \cap\left\langle x_{1}^{r}-\frac{\delta}{2 n}, x_{1}^{r}+\frac{\delta}{2 n} ; \ldots ; x_{n}^{r}-\frac{\delta}{2 n}, x_{n}^{r}+\frac{\delta}{2 n}\right\rangle$ for $r=$ $1, \ldots, s$.

Let \mathscr{S}_{0} be the system $\{J: J$ is a closed interval for which there exists a finite set $K_{J} \subset\{1, \ldots, s\}$ such that $\left.J=\cap\left\{Y_{r}: r \in K_{J}\right\}\right\}$ and let \mathscr{S} be the system of all minimal elements of \mathscr{S}_{0}. Then \mathscr{S} is a finite system of non-overlapping closed intervals such that $\cup\left\{Y_{r}: r=1, \ldots, s\right\}=\cup\{J: J \in \mathscr{P}\}$ and for each $J \in \mathscr{S}$ there exists an $r \in\{1, \ldots, s\}$ such that $J \subset Y_{r}$. Let j be the cardinality of \mathscr{S}. Let $\eta>0$ such that $Y=\left\{\left(x_{1}, \ldots, x_{n}\right) \in I: a_{i}-\eta \leqq x_{i} \leqq a_{i}+\eta\right\} \subset \cup\left\{Y_{r}: e=1, \ldots, s\right\}$ and $j 2^{n} K m(Y)<$ ε, where $K=\max \left\{\max \left(\| \mathrm{D} f\left(X_{r}\right)-\frac{1}{2}\left|, \mathrm{D} f\left(X_{r}\right)+\frac{1}{2}\right|: r=1, \ldots, s\right\}\right.$.

Since $\left\{J_{k_{\mathrm{s}}}\right\}_{v=1}^{\infty}$ is a sequence of intervals of $X(I)$ such that $\lim _{s \rightarrow \infty} a_{i, k_{\mathrm{v}}}=\lim _{s \rightarrow \infty} b_{i, k_{\mathrm{v}}}=a_{i}$, there exists a natural m such that $J_{k_{m}} \subset Y$. The interval $J_{k_{m}}$ is a union of the system $\mathscr{J}^{*}=\left\{J_{k_{m}} \cap J \cap Y: J_{k_{m}} \cap J \cap Y\right.$ is a closed interval, $\left.J \in \mathscr{S}\right\}$ of non-overlapping closed intervals. According to Lemma 3, we have $\mid f\left(J_{k_{m}} \cap J \cap Y \mid \leqq 2^{n} K m\left(Y_{r} \cap Y\right) \leqq 2^{n}\right.$ $K m(Y)$ for each $J_{k_{m}} \cap J \cap Y \in \mathscr{L}^{*}$ if $J \subset Y_{r}$ for $r \in\{1, \ldots, s\}$. Therefore we get $\varepsilon \leqq\left|f\left(J_{k_{m}}\right)=\left|\Sigma\left\{f\left(J_{k_{m}} \cap J \cap Y\right): J_{k_{m}} \cap J \cap Y \in \mathscr{L}^{*}\right\}\right| \leqq \Sigma\left\{\left|f\left(J_{k_{m}} \cap \cap Y\right)\right|: J_{k_{m}} \cap J \cap Y \in \mathscr{F}^{*}\right\}\right.$ $\leqq j 2^{n} K m(Y)<\varepsilon$. But, this is a contradiction and the theorem is proved.

REFERENCES

[1] DUNFORD, N. and SCHWARTZ, J. T.: Linear Operators I. New York, 1958.
[2] LACZKOVICH, M.: Continuity and derivability of additive interval functions. Acta Math. Acad. Sci. Hungar. 39, 1982, 393-400.
[3] LACZKOVICH, M.: On additive and strongly derivable interval functions. Acta Math. Acad. Sci. Hungar. 39, 1982, 255-265.
[4] MIŠfK, L.: Über die Funktionen der ersten Baireschen Klasse mit der Eigenschaft von Darboux, Mat.-fyz. čas. SAV 14, 1964, 44-49.
[5] MIŠíK, L.: Über die Eigenschaft von Darboux und einige Klassen von Funktionen, Revue Roum. Math. pures et appl. 11, 1966, 411-430.
[6] MIŠíK, L.: Über der Mittelwertsatz für additive Zellenfunktionen, Mat.-fyz. čas. 13, 1963, 260-274.
[7] MIŠíK, L.: Über die Ableitung der additiven Intervallfunktionen, Čas. pěst. mat. 91, 1966, 394-411.
[8] NEUGEBAUER, C. J.: Darboux property for functions of several variables, Trans. Amer. Math. Soc. 107, 1963, 30-37.
[9] SAKS, S.: Theory of the Integral, New York, 1937.
[10| SAKS, S.: Sur les fonctions d’intervalle, Fund. Math. 10, 1927, 211-224.

Received Januaty 6, 1982
Matematichy ustav SAV
Obrancov mieru 49
81473 Bratislda

О НЕПРЕРЫВНЫХ ФУНКЦИЯХ ИНТЕРВАЛА

Ladislav Mišith

Резкме

В статье изучается пространство замкнутых интервалов в n-размерном эвклидовом пространстве и доказывается, что аддитивная функция интервала метрически непрерывна, если имеет конечную сильную производную. Приводится также другое доказдтельство теоремы М. Лацковича.

