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Math . Slovaca 4 1 , 1991, No. 1 , 89—99 

ON THE EXISTENCE OF A SOLUTION O F A VECTOR 
PERIODIC BOUNDARY VALUE PROBLEM 

VLADIMlR HALUSKA 

ABSTRACT. A nonlinear vector periodic boundary value problem for the third order 
is studied. By means of the estimates for the derivatives of scalar functions with 
respect to the Green function the existence of a solution for that problem is establish
ed. 

In the paper a nonlinear vector periodic boudary value problem for the third 
order system is studied. The methods of the papers [5], [6] are used. Existence 
theorems for that problem are obtained by means of the estimates for deriva
tives of scalar functions which are given in the paper [7] and by introducing an 
admissible system of functions with respect to the Green function. The obtained 
results extend some theorems proved in [7]. 

In the paper the following vector boudary value problem will be considered 

where 

x"' + x + F(t, x, x\ x") = e(t) 

, ( 0 , . , ( | ) , , ' ( 0 , = . ' ( | ) , , - ( 0 ) . , - ( | ) 

FeC(D, R*), e e C ( 0, ^]L , Rd\ d^ 1 

(1) 

(2) 

and 

D = To, -?^1 x Rd x Rd x Rd. 

The scalar case (d = 1) has been studied in the paper [7). 

AMS Subject Classif icat ion (1985): Primary 34B15 Secondary 34B27 
Key words: Banach space, Green function, Continuous operator 
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Preliminaries 

If x = (x,, ..., xd)
T is a column vector, then we denote \x\ = (|.x,|, ..., | x , | ) T . A 

partial ordering in Rd will be introduced by the relation: 
If x = (x,, ..., xd)

T, y = (vi, ... , yd)
T belong to R^, then x = y iff x,. = y} for 

j= 1, . . . , d. Further, ud= (1, . . . , l ) T e R'. 
The set of all real d x dmatrices will be denoted as Mdxd. Similarly as in the 

case of vectors, if L = (/^), then \L\ = (|//7|), /, j = 1, . . . , d. Further, L ^ L iff 
ly^ly for ij = 1, . . . , d, and L = (//7), L = (jf). 

Ud{Od) will mean the matrix from Mdxd, all elements of which are 1 (0). Ea will 
denote the unit matrix. As usual, the spectral radius g (L) of the matrix 
L E Mdx d means max | A,|, where | A,| are all eigenvalues of L. 

Denote by G = G(l, s) the Green function of the corresponding homoge
neous scalar problem 

y"'+y = 0 

Then the folowing result holds (Lemma 7 in [7], p. 352) 

Lemma 1. 

(ю 
(2') 

max 
!vi 

2я 

л\/з 

max 
o < t < ^ Jo 

" "v/з" 

lк 

0 

ðG(ł, s) 

0 дt 

\G(t,s)\ds = Ko=l 

ds = Kl=^ 1.04---£ = 3,77270 
V3 

(3) 

max 
i < / < lï Jo 
" "VI 

VI д2G(t,s) 

дt2 
ds = K2< 1.04---£ = 3:77270 

>/3 

Similarly as in [5] we shall use the concept of a generalized norm. Let us 
mention the fundamental properties of the generalized normed space. If E is a 
real vector space, then the generalized norm for E is a mapping || . || G: E —• R^ 
denoted by 

llxllG = ( f l | ( 4 . . . , ad(x))T 
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such that 

a) | |x | | c = Oi.e. a,(x) = 0 fory = 1 ... d, xeE; 
b) 0 iff x = 0, 
c) \\cx\\ = c - \\x\\G, ce R , X G E; 

d) ||x + yllG= \\x\\G+ \\y\\G9x9yeE. 

Then the couple (E, ||. || G) is called a generalized normed space. The Banach 
fixed point theorem (Lemma 1 in [5], p. 78) has the following formulation in the 
generalized Banach space (a complete generalized normed space). 

Lemma 2. Let (E, ||. || G) be a generalized Banach space and let T: E -> E be 
such that for all x, y e E and for some positive integer p 

\\T>-T>\\G£L\\x-y\\G, 

where Le Mdxdis a nonnegative matrix with Q(L) < 1 and Tp is the p-th iterate 
of T. Then T has a unique fixed point. 

Admisible system of functions and associated system of constants 

Let G be the Green function of the scalar problem (1'), (2). Then the 
functions 

/•2/гЛ/З 

Фj(t) = 
Jo 

дJG(t,s) 

дtJ 
ds, 0 = t = 2я/>Д j = 0, 1, 2 (4) 

are continuous in [0, 2/r/>/3]. 
Definition 1. The system of nonnegative continuous scalar functions q)j in [0, 

2zr/V3],j = 0, 1,2, is called admissible (with repect to the Green function G: if 
there exist positive constants kj9j = 0, 2, 1, such that 

Фj(t) = k/pj(t), 0 = t = lя/yfbj = 0, 1, 2. (5) 

If such a situation arises, then in view of the boudedness of the functions <pj9 

j = 0, 1,2, there exist positive constatns /clj9 /, j = 0, 1, 2, such that 

™n (f * <pj(s) ds = £Ui • (pj(t\ Q=t = 2;r/V3, /, j = 0, 1, 2. (6) í 
Jo 

ЬJG(t, s) 

дtJ 

Let ktJ = inflcu, IJ = 0, 1, 2. 
Denote 

я, = max (kю, klt, kl2), 1 = 0, 1,2. (7) 
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Hence 
~2*'^\dJG(t, s) Í 

Jo 
дtJ 

щ(s) ds = x,ęj(t), 0 = t = 2я/..Д l, j = 0, 1, 2. (8) 

By the definition of xt, for a constant x, < xl9 the inequality (8) cannot hold for 
all / e [0, 2fl/V3], andj = 0, 1, 2. 

Definition 2. The system of the smallest nonnegative constants xj9j = 0, 1,2, 
such that (8) are true for all t e [0, 27u/yJ3], /, j = 0, 1, 2, w/// be Ca//ed lhe 
associated system of constants to the admissible system cpj9j = 0, 1,2. 

By means of the last two notions we shall prove the following theorem. 
Theorem 1. Let q>j9j = 0, 1, 2, be an admissible system and xj9j = 0, 1,2, the 

associated system of constants to that system. Let the function F satisfy the 
Lipschitz condition 

2 

\F(t9u09ul9u2)-F(t9v09vl9v2)\= X Lk\uk vk\ (9) 
k = 0 

with nonnegative matrices Lke Mdxd9 k = 0, 1, 2. Then there exists a unique 
solution to (1), (2) provided the spectral radius 

e(io*^*)< i 0°) 

Proof. The problem (1), (2) is eqivalent to the equation 

f2n/y/3 r2njy[i 

x (0 = G(t9 s)e(s) ds - G(t9 s)F[s9 x(s)9 x'(s)9 x"(s)] ds = 
Jo Jo 

f2,T/>l3 

= w(t) - G(t9 s)F[s9 x(s)9 x'(s)9 x"(s)] ds, 0 = t = 2/r/V3. 
Jo 

Now the define the operator T on S = C2([0, 2;r/V3, R^ by 

Tx(t) = w(t) - I G(t9 s)F[s9 x(s)9 c'(s)9 x"(s)] ds, 0 = t = 2/r/V3(11) 
Jo 

Clearly T: S -> S. 
The space S will be provided by the generalized norm 

\x = max ( max |jc(t)|, max |x'(0l> m ^x |x"(0 l 
\0 <\ t S 2n\sh 0 ^ r ^ 2;r/v/3 0 ^ / ^ 2n\4l 

whereby max (x], x2, x3) for * ! , xl9 x3 e * is defined componentwise, i.e. 

if xt = (xU9 ..., xdD
T, i = 1, 2, 3, then max (x,, .x2, x3) = 
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= ( max (.x, ,, ..., max xd ,) 
\f '= 1,2,3 ' i = l , 2 , 3 ' / 

(S, H. H) is a generalized Banach space. 
Denote 

K = max k:, 
7 = 0 , 1 , 2 J 

(12) 

where kj9j = 0, 1, 2 are arbitrary but fixed numbers satisfying (5). 
Let u9veS and let je {0, 1, 2}. Then, with respect to (11), (9), (5) and (12) 

we obtain the following inequalites. First 

| rW( M )(0-r»(0l = 
•2<r/>/3 ЬJG(t, s) 

õtJ £ Lk\v<kKs)-v<kXs)\)dsž 
c = 0 / 

= K<pj(t) £ Lk\\u-v\\,0£t£ IKISJI. 
k = 0 

Suppose that for a natural p the inequality 

\(Tp)"(u)(t) - (Tp)M(v)(t)\ = Kcpj(t) ( £ xkLkX * Z Lk\\u-v\ 
\k = 0 / k = 0 

0 = t = 27T/V3, 

is true. Then using (11), (9), (13), (6), (7) we obtain the inequalities 

| ( F + l)<"(#)-(F + lf(#)IS 

(13) 

= Г " ^ Ş y ^ ( ì LkK<pk(s))\(І xkLk)"~] • І Lk\\u-v\\]ds = 
JO OЃ7 V* = 0 /LЛ* = 0 / * = 0 J 

= K<pj(t) ( £ xkLkY £ Lk ||« - i;|| , 0 = f = 2*/V3. 
V* = o / k = o 

Hence, by induction, we get that (13) is true for all natural/?. The inequality (13) 
implies that 

Tp(u) - T"(v)\\ = A max ( max (t) 
|_> = 0, 1,2 y 0 š / š 2 f f / > / 3 Ci" љ )"' 

Z L*Ци-»l 
* = 0 
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By (10), lim ( X xkLkY 
p->*\k = o J 

such that for all p = p0 

Od and hence there exists a p0 

QІK max max (pXt) 
./=0, 1,2 \0 = t = 2л-/7з 

2 y - l 2 

E d E A | < i . 
.* = 0 / A- = 0 

Lemma 2 then implies that the operator Fhas a unique fixed point S which gives 
the statement of the theorem. 

Corollary 1. Let the function f satisfy the Lipschitz condition (9) with non-
negative matrices Lk e Mdxd, k = 0, 1,2. Let 

ôŕ 
r 

Kk = max 
0 = / = 27T/V3 J 0 

F/zerz r/zere ex/sls a unique solution to (1), (2) provided 

Q(1\ KkLk)< 1. 
u = o / 

ds, fc = 0, 1, 2 (14) 

05) 

Proof. Clearly the functions <Z>, j = 0, 1,2, given by (4), form an admiss
ible system of functions. As 

•2ÏÏSІÌ дjG(t,s) 

Ьť 
0,(s) ds = K,q>j(t), 0 ^ t = 2.T/V3, !,j = 0, 1, 2 

the associated system of constants x;, / = 0, 1, 2, to that admissible system of 
functions fulfils the relation 

x, = K/, / = 0, 1, 2. 

Thus Q ( £ xALA.) = Q[ YJ KkLk) < 1 and, by Theorem 1, the statement of the 

corollary follows. 
Remark. Corollary 1 extends Theorem 2 in [7], p. 356, to the vector 

periodic boudary value problem. 

Optimal values of the associated system of constants 

We have seen that for each admissible system of functions (%, (px, (p2) there 
exists a unique associated system of constants (x0, x], x2). We shall show that 
for each k e {0, 1,2} there exists the smallest value xk. To that aim we consider 
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the Banach space E = C([0, 2/r/\/jf|, R) with the sup-norm, partially ordered by 
the relation x <; y iff x(t) ^ y(t) for all /G[0, 2TU/>/3]. 

Then (E, f̂ ) is an ordered Banach space with positive cone P = {x -> E: x(t) ^ 0, 
0 ^ / ^ 2K/\/3}. P is normal, i.e. every order interval [x9 y] = {z e E: x ^ z —^ y} 
is bounded in the norm, and P is generating, i. e. E = P — P. 

Let k e {0, 1, 2} and let G = G(t9 s) be the Green function of the scalar 
problem (! ') , (2). Define the operator 

Ak: E -» E by 

Mx(t) 
Г2z!sß 

Jo 

дkG(t,s) 

дtk 

г ( 1 6 ) 
x(s)ds, 0 й t й 2ж/VЗ. 

^ is a positive and completely continuous operator. If %9 cpl9 cpl9 is an 

admissible system of functions, then for any x e P, x(t) #= 0 in [0, 2K/\[Z\ there 
exists a constant C = C(x) > 0 such that 

* 2 *^ 8*G(r, s) 

ðł* 
j ф ) ds ^ max x(t) • Фk(t) ^ 

0 ^ / й 2 /̂V 

^ , x ( 0 = 

Jo 

= ( max x(t)).kkQk(t) = C(x)<pk(t)9 0 = t = 2TT/^3 . 
\0 ^t ^ Irtish J 

Hence Ak is (pk — bounded from above as well as <Pk — bounded from above 
([3], p. 78). Since the operator Ak, the space P, satisfy all asumptions of Lemma 
2 in [5], pp 83—84, by that lemma we get the following result. 

Lemma 3. Let (p09 cpX9 (p2 be an admissible system of functions for the Green 
function G and let (x0, x,, x2) be the associated system of constants to that 
admissible system. 
Let Ak be the operator given by (16). Then 

x j = Q(AJ)9 j = 0, 1,2, 

where Q(AJ)9 is the spectral radius of the operator Aj9j = 0, 1,2. 
With respect to this lema, the values Xj = Q(AJ)9 j = 0, 1, 2, are optimal, 

provided that they are from the associated system of constants. We shall show 
that for each k e {0, 1,2,} there is an admissible system of functions such that 
the constant xk from the associated system of constants is equal to Q(Ak). First 
we apply a reslult from [4] p. 72. 

Definition 3 ([4], p. 72.) A sequence of points (/,, t2)9 (tl9 l3), ..., (tn_ x, tn)9 

(tn9 l,), where t]9 ... tn are inner points of Q9 will be called a path of regularity for 
the function H = H(t9 s)\Q x Q -> R in the operator A9 defined by 

Ax(t)= \H(t9s)x(s)ds9 (17) 
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where Q is the closure of a bounded region in R', if the kernel H is continuous and 
different from zero at each point of that sequence. 
E.g. if the kernel H(t) is continuous and different from 0 at a point (l0, /0) and 
t0 is an inner point of Q, or if H(t, s) is continuous and different from 0 at two 
inner points (t0, t0), (s0, s0) of Q. 

The meaning of the path of regularity is given by the following lemma. 
(Theorem 9.9 in [4] p. 72). 

Lemma 4. If the operator (17) is completely continuous, if the kernel H(t, s) is 
nonnegative and there exists a path of regularity for that kernel, then the operator 
A has a nonnegative eigenfunction which corresponds to the positive eigenvalue 
Q(A). 

Lemma 5. Let k e {0, 1, 2}. Then the operator defined by (16) has a path 
2K 

regularity. More exactly, each point (t0, t0) with 0 < t0 < —-= is a path ofregular-

V3 

ity for the operators A0, Ax and the points lt0,t0 -= I, (10 j= > 'o) for each 

to such that —-= < l0 < —^form a path of regularity for the operator A2. 
V3 \ /3 

10 ""*"ulul 7^ ° 
Proof . By Lemma 3 and the calculations on p. 351 in [7], 

a P , P 
lo( to, to)l = 

3(1 - a) 

ðo(t0,to)l 

+ 

дT 

for 0 < ř0 < —— and 

• a) + 3(1 + p) 

+ ^ - 0 

3(1 - a) 3(1 + P) 

3(1 

a 

> 0 , 

n 
д2G(t0,t0--j= 

дŕ 
ì 

3(1 - a) 

V7 > 0 , 

S 2 o ( t 0 - ^ , t o 

дŕ 
^ > 0 for - < i*0 < —-=, 

3(1 - a) 3 VЗ 

.VI 

since 0 < a = e V 3 < 1, /? = e V 3 > 0 ([7], p. 346). 

In view of the last lemma. Lemma 4 guarantees that for each k e {0, 1, 2} the 
operator Ak defined by (16) has a nonnegative eigenfunction cpk which corres
ponds to the positive eigenvalue Xk > 0. By Lemma 4 and Lemma 5, we get the 
following lemma. 
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Lemma 6. Let k e {0, 1, 2}. Then the operator Ak defined by (16) has a positive 
spectral radius g(Ak) and thus, g(Ak) is an eigenvalue of Ak with an eigenvector 
in P. 
In the next lemma we need the following definition. 

Definition 3. ([3], p. 77) The position operator A: E -> e is called u0 — positive 
ifu0 e P, u0 ^ and for each x e P there exist positive numbers a(x), P(x) such 
that 

a(x)u0 = Ax = P(x)u0. 

Lemma 7. (a) The operator Ak given by (16) is <Pk —positive where tf> have been 
defined by (4). 

(b) There exists a unique, up to a multiplicative positive constant, eigenfunction 
<pk of Ak belonging to P. cpk corresponds to g(Ak) and Ak is <pk positive. 

(c) cpk(t) >0on [0, 2K/yj3]. 
Proof , (a). We have already seen that Ak is <Pk — bounded from above. 

To prove that this operator is <Pk — bounded from below, that is to show that 
for each nonzero element x e P there exists a constant a(x) > 0 such that 

a(x)<Pk = Akx, (18) 

it suffices to guarantee that for such an element x. Akx(t) > 0 in I 0, —-=). This 

will be, true if = 0 does not hold in s on any subinteral [a, b] cz [0, 
dtk 

2/r/V3] for any t0 e [a, b]. 
By Lemma 4 in [7], p. 349, G(t, s) > 0 on [0, 2,^/^3] x [0, 2^/V3]. As to the 

c)C 
function — , we have from the proof of Lemma 6, ([7], p. 351) that for 0 = 

dt 
= t0 < S < 2K/yj3. 

— (l0, s) = Ees + Fe~~2 T - c o s vl(s-t0) + y[3 sin ---?• (s - t0)] = A(s), 
dt L 2 2 J 

!o 

, _ - a e " ' ° _ /?e 2 

where E = , F = — . 
3(1 - a ) 3 (1+/? ) 

) = 0 on an intei 

the function A(s), which is 

If— (t0, s) = 0 on an interval [a, b] cz [0, 2K/>J3]9 then the same holds about 
61 

ñ 
Ã'(s) = Ee' + 2Fe 2 cos — ( J - ř 0 ), 

2 
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and hence 

A'(s)-A(s) = Fe~~2 3 cos — (s — t0) — y/3 sin — (s — t0) 
2 2 

The last expression cannot be identically zero on any subinterval in [0, 2/r/v3). 
c)C 

Therefore the function A has the same property. Similarly we obtain tha — (t0, 
6l 

c)C 
s) = 0 has the same property. Similarly we obtain that — (t0, s) = 0 cannot 

67 
hold on any subinterval (a, b) <= [0, 2x/yf3] in the case when 0 < s < t0 = 

r)2C 
= 2n\4l>. By analogous considerations we get that (h,s) = 0 does not hold 

dt2 

on any subinterval [a, b] of [0, 2;r/\/3] for any l0 e [0, 2n/\/3]. 
This implies that Akx(t) > 0 in [0, InjypS] for any nonzero element x e P and 
(18) is true. 

b) The first part of this statement follows from Lemma 6 in ([5], p. 85). Hence 
there exists a unique, up to a multiplicative positive constant, eigenfunction cpk 

of Ak9 belonging to P, q>k corresponds to g(Ak). 

(c) As Ak(pk = g(Ak)(pk and cpk(t) ^ 0 in [0, 2/r/>/3], by the property of 
dtk 

which has been proved in part (a), Ak<pk(t) > Oas well as cpk(t) > 0 in [0, 2/r/>/3]. 
Now we prove the following theorem. 

Theorem 2. Let k e {0, 1,2} and let cpk e P be the eignefunction of the operator 
Ak defined by (16). Then the function 

i 
<pj(t) = 

д{Ak) Jo 

л2л/VJ 

Jo 

ЪjG{t,s) 

дtJ Фк {s)ds 0 ź t й InjsfbJ = 0, 1, 2 (19) 

forms an admissible system of functions with respect to G such that for the 
associated system of constants Xj,j = 0, 1,2, 

*k = Q(Ak) (20) 

is true. 
Proof. The functions cpj determined by (19) are all continouous and pos

itive in [0, 2.tr/V3] and (pk = cpk. Now we show that the functions cpj = 0, 2, 1, 
form an admissible system of functions with respect to G. In view of (c) in 
Lemma 7, there is a Ck > 0 such that Ck = cpk(t) on [0, 2/r/v3] and hence 

1 = -^-2 which, on the basis of (16), (19) for eachj = 0, 1,2 implies that 
Q 
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<Z> (0 = 4 0 X 0 = ^ Aj(<pk)(t) = - 7 7 - Vj(t), 0 = t = 2n/Jl. 

Finally we prove (20). By Lemma 3, xk ^ g(Ak). On the other hand, by Defini
tion 2 and (19), xk ^ g(Ak), hence (20) is true. 
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