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ON THE EXISTENCE OF A SOLUTION OF A VECTOR
PERIODIC BOUNDARY VALUE PROBLEM

VLADIMIR HALUSKA

ABSTRACT. A nonlinear vector periodic boundary value problem for the third order
is studied. By means of the estimates for the derivatives of scalar functions with
respect to the Green function the existence of a solution for that problem is establish-
ed.

In the paper a nonlinear vector periodic boudary value problem for the third
order system is studied. The methods of the papers [5], [6] are used. Existence
theorems for that problem are obtained by means of the estimates for deriva-
tives of scalar functions which are given in the paper [7] and by introducing an
admissible system of functions with respect to the Green function. The obtained
results extend some theorems proved in [7].

In the paper the following vector boudary value problem will be considered

x" +x+ F(t, x, x’, x") = e(?) 1)
2 2 2
O)=x{—|,x0)=x"{—=), x"(0)=x"{—= 2
w-s(B)r0-r (B ro-r(F)
where
FeC(D, R"),eeC(liO,%],R"),ng
and

D=|:O,E]x R? x R x R

V3

The scalar case (d = 1) has been studied in the paper [7).
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Preliminaries

If x = (x,, ..., x;)" is a column vector, then we denote |x| = (|x,], ..., |x;)T. A
partial ordering in R will be introduced by the relation:

Ifx=(x,....x)" y=(,..., y) " belong to R’ then x < yiff x; < y, for
j=1,...,d Further, u,= (1, ..., )T e R“

The set of all real d x d matrices will be denoted as M, ,. Similarly as in the
case of vectors, if L = (/;), then |L| = (|/,]), i, j =1, ..., d. Further, L < L iff
l; <l fori,j=1,..,d and L =(I;), L = (I
U,(0,) will mean the matrix from M, ,, all elements of which are 1(0). £, will
denote the unit matrix. As usual, the spectral radius ¢ (L) of the matrix
Le M,, ,means max | 4|, where | 4;| are all eigenvalues of L.

Denote by G = G (¢, s) the Green function of the corresponding homoge-
neous scalar problem

ym+y=0 ,
(1)

y(0)=y(%),y'<0):y'(j—’g),y”w):y" (%) @)

Then the folowing result holds (Lemma 7 in [7], p. 352)

Lemma 1.
2r
NE)
max J | G(t,s)|ds =K, =1
0§,§H 0
3
21
V3
max f G 45— k, < 1.04- 2% = 377270
O§!§—2—” 0 at \/3
3 3)
2z
Vijaz
ax J OGN gy~ k, < 1.04 - 2E = 3,77270
Ogtég 0 atz \/§

3

Similarly as in [5] we shall use the concept of a generalized norm. Let us
mention the fundamental properties of the generalized normed space. If E is a
real vector space, then the generalized norm for E is a mapping || . ||s: E - R?
denoted by

Ixll=(a(x), ..., a,(x)"

90



such that

a) [xllg=01ie a(x)=0forj=1...d xeE;
b) |x|s=0iff x =0,

©) llex| =c- lIxlg,ceR, xeE;

d) Ix+yle = lIxlg+ Iylg, x, yeE.

Then the couple (E, ||. || ;) is called a generalized normed space. The Banach
fixed point theorem (Lemma 1 in [5], p. 78) has the following formulation in the
generalized Banach space (a complete generalized normed space).

Lemma 2. Let (E, ||.| ;) be a generalized Banach space and let T: E — E be
such that for all x, y € E and for some positive integer p

IT{ =T Llix—ylo,

where L € M, 4 is a nonnegative matrix with o(L) < 1 and T" is the p-th iterate
of T. Then T has a unique fixed point.

Admisible system of functions and associated system of constants

Let G be the Green function of the scalar problem (1°), (2). Then the
functions

2713
ds, 0 <t < 27/3/3,j=0,1,2 )

oG (¢, 5)
or

a0 = |

are continuous in [0, Zn/\/g].

Definition 1. The system of nonnegative continuous scalar functions ¢; in [0,
2n/\/§], j=0,1, 2, is called admissible (with repect to the Green function G: if
there exist positive constants k;, j = 0, 2, 1, such that

D,(1) < kg (), 0 < t < 27\/3,j=0,1,2. (5)

If such a situation arises, then in view of the boudedness of the functions ¢,,
j=0, 1, 2, there exist positive constatns k_,v_,, l,j=0, 1, 2, such that

203 | Aj
f W o(s)ds S ;00,0 <t < 27/3/3,1,j=0,1,2. (6)
0 r
Let k,;=infk,;,1,j=0,1,2.
Denote
%,=max (k[o, k[|,k,2),l=0, ], 2 (7)
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Hence
r”’ﬁ G (t, )
o o

By the definition of s, for a constant %, < »,, the inequality (8) cannot hold for
all 1€[0, 277/\/3], and j =0, 1, 2.

Definition 2. The system of the smallest nonnegative constants »;, j =0, 1, 2,
such that (8) are true for all t€ |0, 27r/f 3, ,j=0, 1, 2, will be called the
associated system of constants to the admissible system ¢;, j =0, 1, 2.

By means of the last two notions we shall prove the following theorem.

Theorem 1. Let ¢;, j = 0, 1, 2, be an admissible system and »;,j = 0, 1, 2, the
associated system of constants to that system. Let the function F satisfy the
Lipschitz condition

o(s)ds = 9,1, 0 < t < 27//3,1,j=0,1,2. (8

2
|F(t, uy, uy, u) — F(, vy, vy, )| £ Z Lylu, — — v &)
K=o

with nonnegative matrices Lye My, 4, k=0, 1, 2. Then there exists a unique
solution to (1), (2) provided the spectral radius

2
e(Z kak) <1 (10)
k=0

Proof. The problem (1), (2) is eqivalent to the equation
271\3 273

x (1) = J G(t, s)e(s)ds — j G (t, s)F[s, x(s), x'(s), x"(s)] ds =
0

0

3
=w(t) — JQ / G (t, $)F[s, x(s), x'(s), x"(s)]ds, 0 =< ¢t < 27:/\/5.
0
Now the define the operator T on S = C*([0, 27/+/3, R9) by
21173
Tx(t) =w(t) — Jw G (t, s)F[s, x(s), ¢'(s), x"(s)]ds, 0 =t < 27[/\/5(11)
0

Clearly T: S — S.
The space S will be provided by the generalized norm

Il = max (| max (@l max 5Ol max 1x")])

whereby max (x,, x,, x3) for x;, x,, x; € ¢ is defined componentwise, i.e.

. T . N
if ;= (xy; .., Xp) ', i =1, 2, 3, then max (x,, x,, x;) =
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T
(max (x1 i ..., mMax x, ,)

i=1,23 i=1,2,3
(S, |.]1) is a generalized Banach space.
Denote
K=j=0f11)‘(2kj, (12)

where k;, j = 0, 1, 2 are arbitrary but fixed numbers satisfying (5).
Let u, ve S and let j € {0, 1, 2}. Then, with respect to (11), (9), (5) and (12)
we obtain the following inequalites. First

2113
)

2
S Ko Y Lllu—v], 05t < 223
k=0

| TO)(®) — TOW)(D)| =

oG (1, G (1, 5)
o

IIA

(Z L1t6) = 001 ds <
k

0

Suppose that for a natural p the inequality

2 p—1 2
90 - @000 S Ko (3 #L) T Liu-ol,
k=0 k=0
0<t< 213, (13)
is true. Then using (11), (9), (13), (6), (7) we obtain the inequalities

[(7?*)P@)(@) — (TP H )| <
213 G (1, s 2 2 p—1 2
S R XE) || A R A PR
0 = k=0 k=0
Hence, by induction, we get that (13) is true for all natural p. The inequality (13)

o
2
implies that

p 2
=K<p,(t)(z kak) S Llu—vl,0< < 2743
k=0

k=0

2 p—1
I T7) — TP) ] < K[/_ max_ ( max (t))] (kgo m) :

2
- Y Lillu—vl.
k=0
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2 p—1
By (10), lim < Y kak> = 0, and hence there exists a p,
pos

* \k=0

such that for all p = p,
2 p—1 2
oK e, mes00) (2, ) 2 ) <1

Lemma 2 then implies that the operator T has a unique fixed point S which gives
the statement of the theorem.

Corollary 1. Let the function f satisfy the Lipschitz condition (9) with non-
negative matrices L,e M, ,, k=0, 1, 2. Let

27\3 | Ak
Kk = max J‘ ———a G(t’ S)
0

ds, k=0,1,2 (14)
0515203 or*

Then there exists a unique solution to (1), (2) provided

=0

KkLk) <1. (15)

Proof. Clearly the functions @;, j = 0, 1, 2, given by (4), form an admiss-
ible system of functions. As
r”? G (1, 5)
0 ot
the associated system of constants %, / = 0, 1, 2, to that admissible system of
functions fulfils the relation

D (s)ds < K1), 0 < 1 < 27/3,4,j=0, 1,2

%/éK[,IZO, 1,2.

5

2
Thus o < > kak> = Q< > KkLk> < 1 and, by Theorem 1, the statement of the
K=0 k=0
corollary follows.

Remark. Corollary 1 extends Theorem 2 in [7], p. 356, to the vector

periodic boudary value problem.

Optimal values of the associated system of constants

We have seen that for each admissible system of functions (¢,, ¢,, ¢,) there
exists a unique associated system of constants (x,, x,, %,). We shall show that
for each k € {0, 1, 2} there exists the smallest value %, . To that aim we consider
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the Banach space E = C ([0, 27[/\/;'], R) with the sup-norm, partially ordered by
the relation x < y iff x(¢) < y(¢) for all 1[0, 27/+/3].
Then (E, £) is an ordered Banach space with positive cone P = {x — E: x() = 0,
0= 271/\/5}. P is normal, i.e. every order interval [x, y] ={ze E: x £ z < y}
is bounded in the norm, and P is generating, i. e. E=P — P.

Let k€{0, 1, 2} and let G = G (¢, s) be the Green function of the scalar
problem (1), (2). Define the operator

A E > E by

271V3

kG (1, 5) (16)

™ x(s)ds, 0<1<27/3.
t

A (e (1) = f

0

A, is a positive and completely continuous operator. If ¢,, ¢,, @, is an

admissible system of functions, then for any x € P, x(¢) + 0 in [0, 27r/\/§] there
exists a constant C = C(x) > 0 such that

20\3 | Ak
%x(s)dsg max - x(1) - & () =
t

0<t< 213

A x(1) =J

0

< (,.max x0) ke = CIn0, 05 1= 2a3.
Hence A4, is ¢, — bounded from above as well as @, — bounded from above
([3], p- 78). Since the operator A, , the space P, satisfy all asumptions of Lemma
2 in [5], pp 83—84, by that lemma we get the following result.

Lemma 3. Let ¢,, ¢,, ¢, be an admissible system of functions for the Green
Sfunction G and let (%,, »,, %) be the associated system of constants to that
admissible system.

Let A, be the operator given by (16). Then

}{/g Q(Al)a J=O, 1,2a
where 0(A)), is the spectral radius of the operator A;, j =0, 1, 2.

With respect to this lema, the values x; = 0(4)), j =0, 1, 2, are optimal,
provided that they are from the associated system of constants. We shall show
that for each k € {0, 1, 2, } there is an admissible system of functions such that
the constant x, from the associated system of constants is equal to o(4,). First
we apply a reslult from [4] p. 72.

Definition 3 ([4], p. 72.) A sequence of points (t,, t,), (t,, t3), ...y (i 1s Lo)s
(t,, 1)), where t,, ... t, are inner points of Q, will be called a path of regularity for
the function H= H(t, s):Q x Q — R in the operator A, defined by

Ax(t) = '[H(t, s)x(s)ds, a7
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where Q is the closure of a bounded region in R', if the kernel H is continuous and
different from zero at each point of that sequence.

E.g. if the kernel H (¢) is continuous and different from 0 at a point (¢,, ¢,) and
I, is an inner point of Q, or if H (¢, s) is continuous and different from 0 at two
inner points (¢,, t,), (s,, o) of Q.

The meaning of the path of regularity is given by the following lemma.
(Theorem 9.9 in [4] p. 72).

Lemma 4. If the operator (17) is completely continuous, if the kernel H (1, s) is
nonnegative and there exists a path of regularity for that kernel, then the operator
A has a nonnegative eigenfunction which corresponds to the positive eigenvalue
o(A).

Lemma 5. Let ke {0, 1, 2}. Then the operator defined by (16) has a path

regularity. More exactly, each point (ty, t,) with0 < t, < 27 is a path of regular-

J3
T T
ity for the operators A,, A, and the points <t0, ty — —) , <t0 -—, to)for each
V3 V3

L 2z

NN

Proof. By Lemma 3 and the calculations on p. 351 in [7],

a« B, P

t, such that <t < form a path of regularity for the operator A,.

G(ty, ty)] =
|G lto, 1) 31—a) 3(1—a) 30+p
\aG(to’to) _ a + B 0
oT 3(1—-a) 3(1+P
aZG<to, t0—£> _l
for0<to<ﬁand \/3 = ! e VG>0,
J3 or? 3(1 — a)

) V
0°Glty——, t ,,
<0 J3 0) a 7 i1 2z
or? 3(1 — @) 3 V3’

2r

since 0 < a=e V' < 1, B=e"" > 0 ([7], p. 346).

In view of the last lemma. Lemma 4 guarantees that for each k € {0, 1, 2} the
operator A4, defined by (16) has a nonnegative eigenfunction ¢, which corres-
ponds to the positive eigenvalue 4, > 0. By Lemma 4 and Lemma 5, we get the
following lemma.
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Lemma 6. Let k € {0, 1, 2}. Then the operator A, defined by (16) has a positive
spectral radius 9(A,) and thus, o(A,) is an eigenvalue of A, with an eigenvector
in P.

In the next lemma we need the following definition.

Definition 3. ([3], p. 77) The position operator A: E — e is called uy— positive
if uye P, uy # and for each x € P there exist positive numbers a(x), B(x) such
that

a(x)uy = Ax = P(x)u,.

Lemma 7. (a) The operator A, given by (16) is @, — positive where @, have been
defined by (4).

(b) There exists a unique, up to a multiplicative positive constant, eigenfunction
@, of A, belonging to P. ¢, corresponds to 9(A,) and A, is @, positive.

© @.(t) > 0 on [0, 27/y/3].

Proof. (a). We have already seen that A, is @, — bounded from above.
To prove that this operator is @, — bounded from below, that is to show that
for each nonzero element x € P there exists a constant a(x) > 0 such that

a(x)P, = Aix, (18)

it suffices to guarantee that for such an element x. A, x(#) > 0in (0, E) This

V3
. .05 G (ty, 5) _ . .
will be, true lf—ak— = 0 does not hold in s on any subinteral [a, b] < [0,
t
27r/\/§] for any ¢, € [a, b].
By Lemma 4 in [7], p. 349, G (¢, 5) > 0 on [0, 27/x/3] x [0, 27/</3]. As to the
function E;—G , we have from the proof of Lemma 6, ([7], p. 351) that for 0 <
t
<1, < s <2m/3.

Z—G(to,s)=Ee“+Fe_;[—cos?(s— t0)+\/§sin—?(s— to)]=)1~(s),
t

—qe " Fe Be?

31-a) 31+ p)

Ifaa—G (ty, $) = 0 on an interval [a, b] < [0, 27/3/3], then the same holds about
t

where E =

the function A (s), which is

g3

A’(s)= Ee*+ 2Fe icos7(s— t),
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and hence
A'(s) — A(s) = Fe_%I:B cos?(s — 1) — ﬁsin?(s — zo)].

The last expression cannot be identically zero on any subinterval in [0, Zn/ﬁ).

Therefore the function 4 has the same property. Similarly we obtain tha %—G (%,
t

s) = 0 has the same property. Similarly we obtain that Z—i (ty, s) = 0 cannot

hold on any subinterval (a, b) < [0, 27r/ﬁ] in the case when 0 < s < f, <
2

< 27[/\/3_. By analogous considerations we get that aa—f (ty,s) = 0does not hold
t

on any subinterval [a, b] of [0, 27[/\/?_»] for any ¢, € [0, 27r/\/§].

This implies that A4, x(¢) > 0 in [0, 27/+/3] for any nonzero element x P and

(18) is true.

b) The first part of this statement follows from Lemma 6 in ([5], p. 85). Hence

there exists a unique, up to a multiplicative positive constant, eigenfunction ¢,
of A,, belonging to P, @, corresponds to o(4,).

k
(c) As 4,6, = o(4,) @, and ¢, (1) % 0 in [0, 27/y/3], by the property °fi>—*G'
t

which has been proved in part (a), 4, @, (t) > 0aswellas @,(£) > 0in|0, 27r/\/§].
Now we prove the following theorem.

Theorem 2. Let k € {0, 1, 2} and let ¢, € P be the eignefunction of the operator
A, defined by (16). Then the function

0 =—| "
i(2) =
KRN A

oG (1, s)
o

G(s)ds 0<t<2m/3,j=0,1,2 (19)

forms an admissible system of functions with respect to G such that for the
associated system of constants #;, j =0, 1, 2,

% = 0(Ay) (20)
is true.

Proof. The functions ¢; determined by (19) are all continouous and pos-
itive in [0, 27[/\/5] and ¢, = ¢, . Now we show that the functions ¢, =0, 2, 1,
form an admissible system of functions with respect to G. In view of (c) in
Lemma 7, there is a C, > 0 such that C, £ ¢,(¢) on [0, 27[/\/3] and hence

1 < (pLC(Q which, on the basis of (16), (19) for each j = 0, 1, 2 implies that
k
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0,0 = 410 < = 430 = 22 90, 0 5 1 < 203,

k k

Finally we prove (20). By Lemma 3, %, = 0(4,). On the other hand, by Defini-
tion 2 and (19), %, < 0(4,), hence (20) is true.

REFERENCE

[1] AMANN, H.: Fixed Point Equations and Nonlinear Eigenvalue Problem in Ordered Banach
Spaces. Siam Review, 18, 1976, 620—709.

[2] KPACHOCEJIbCKUMH, M. A.: [on0XHTeNbHbIE PELIEH!s OTICPATOPHbLIX ypaBHeHHi, [1aBbl
Henuneitnoro ananusa. INoc. uzpat. dusmar, Mocksa 1962.

[3] KPACHOCENBCKUM, M. A—BAWHWKKO, I M.—3ABPENKO, II. I1.—PVT-
HULIKUM, B.—CTELIEHKO, 3. S.: INpu6mikeHHOe pellieHUe ONepaTOPHBIX YPABHCHMUIA.
Hayka, Mocka 1964.

4] KPAHCOCEJIbCKUN, M. A.—JIU®PIIULL, E. A.—COBOJIEB, A. B.: [To3UTHBHbBIE JHHEIi-
HbIE CUCTEMBI, METO/IbI MOJIOXKHUTEILHBIX ONepaTOpHbIX ypaBHeHHiH. Hayka, MockBa 1964.

[5] SEDA, V.: On a Vector Multipoint Boundary Value Problem. Arch. Math. (Brno), 22, 1986, 75

92.

[6] SEDA, V.: A Remark to a Multipoint Boundary Value Problem. Archivum Mathematicum
(Brno), 23, 1987, 121—130.

[7) ZAJACOVA, L.: The Solution of the Two-point Boudary Value Problem for a Nonlinear
Differential Equation of the Third Order. Math. Slovaca, 36, 1986, 344—357.

Received December, 9, 1988 Katedra matematiky
Chemickotechnologickd fakulta SVST
Radlinského 9
812 37 Bratislava

99



		webmaster@dml.cz
	2012-08-01T06:43:15+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




