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Math.Slov., 26, 1976, No. 1, 3—18 

ON SOME PBOPERTIES OF THIRD-ORDER LINEAR 
DIFFERENTIAL EQUATION 

JAN REGENDA 

Tne present paper is a study ot the oscillation and other properties of 
solutions of the differential equation 

y"' + p(x)y" + q(x)y' + r(x)y = 0, 

where p(x), q'(x), r(x) are continuous for x e <a, oo), (—oo < a). This differen­
tial equation will be considered in the form 

(R) y'" + p(x)y" + 2A(x)y' + (A'(x) + b(x))y = 0, 

whero 2A(x) = q(x), A'(x) + b(x) = r(x). We shall assume throughout tha t 
p(x), A(x), A'(x) + b(x) and b(x) — A(x)p(x) do not change the sign on the 
interval <a, oo). A solution of (R) will be said to be oscillatory if it changes 
the sign for arbitrarily large values of x. 

In the present paper we shall generalize some results of the second and 
third part of A. C. L a z e r [1] which concern the existence, uniqueness (with 
the exception of constant multiples) and asymptotic behaviour of nontriviol, 
nonoscillatory solutions, and criteria for the existence of oscillatory solutions 
in terms of the behaviour of nonoscillatory solutions. This generalization is 
not only in tha t p(x) -JE. 0 in (a, oo), but r.lso in the- following: 

1. Generally the differential equation (R) cannot bo transformed into the 
differential equation of the form 

(L) y'" + P(x)y'+ Q(x)y = 0 

(for cx.i nple, if p(x) is not differentiate in. any number 'x e (a, oo)). 
2. If the differential equation (R) can be transformed into the differential 

equation (L), the coefficients P(x), Q(x) need not have the properties as in [1] 
(for example, the same sign is not necessary). 

For example, the differential equation 

1 + sin e* / 1 \ 
(*) y"' 4 9 y" + 2sm*xy'+ 1 + , » = <>, 

x2 \ x2 / 



x e (1, GO), by Theorem 2.1 of this paper is oscillator}'. By transformation 

y = z exp 
1 1 + sin eP 

- dt 
3 ł2 

X > l 

we obtain tKe oscillatory equation of the form (L) 

(**) z'" + P(x)z' + Q(x)z = 0, x > 1, 

where 

e' cos e r 2 sin ex 2 
7>(a?) • 2 sin2 .£ — + + 

l 2 2 sin2 x(\ + sin er) 2(l + sin e r ) 3 

«(*) = I + - - -v + 
x*. x* 3.x2 27x-6 

e* cos ea"(4 — x) sin eT / 6 
+ , 2 + 2 e 2 - -

OiX- *j<X \ X~" 

I t is easy to see that P(x), Q(x), 2Q(x) — P'(x) are not of the same sign in any 
(T, co); T > I; Therefore it cannot be determined whether the differential 
equation (**) is oscillatory or not according to Theorem 3.1 in [l] . 

This paper is divided into three parts in which we will apply the identity 

(I) F[y(x);cf= (y'*(x) - 2y(x)y"(x) - 2A(x)if(x)) exp ( | p(n) d>y) 
. ' • > . ' • • : . . ' - . < * 

., , + , _ " " = F[y(c), c] + J p(t)y'Ht) exp (J p(V) dtj) dt + 
c c 

- • -• •• - + 2 J* (6(0 - A(t)p(t))if-(t) exp (J p(V) dr/) dt, 
C C 

which holds for any solution y(x) of (R) and for every c ^ a. I t may be verified 
through differentiation. 

A similar problem was studied among others by L. M o r a v s k y in [6|. 

I. Xemma.l.l. If. A(x) ^ 0, A'(x) + b(x) ^ 0 and y(x) is any solution 
of (R) satisfying the initial conditions 

y(x0) ^ 0, y'(x0) ^ 0, y"(x0) > 0 

(X0G (a, co) arbitrary), then 

?/(#) > 0 , ?/'(#) > 0 , y"(x) > 0 /or a; > x0 



and 

and furthermore if 

fhen also 

lim y(x) = + oo 
Í T - Ң - C O 

/ exp ( - j j»(ч) drç) dř = + oo, 

lim y'(x) = + 0 0 . 

Proof . We assert that y"(x) > 0 for x > # 0 . 
If y"(a?) vanished for some value of x greater than x09 there would be 

a smallest number x\ > x0 such that y"(x{) = 0. Since y(x0) = 0, y'(x0) = 0, 
y"(x0) > 0, we would have y(x) > 0, y'(.z) > 0 for x e (x0, xi). Moreover, since 
A(x) = 0, A'(x) + b(x) = 0 it would follow that 

X X 

(y"(x) exp ( J p(rj) dr]))' = —2A(x)y'(x) exp ( J -pfo) diy) — 
XO xo 

X 

— (A'(x) + b(x))y(x) exp (J p(rj) dr]) > 0 

for x e (x0, x{). However, by integrating the above inequality between x9 

and x\ we would obtain the impossible inequality 
xx t l ! t * 

0 = l/'K) + J [~2A(t)y'(t) - (A'(t) + 6(0)»(0] exp (J p(n) dr]) dt > 0. 
XO xo 

Thusy"(x) > 0 f o r x = x0 and since y(x0) = 0,2/'(a;0) = 0, we see that y(x) > 0, 
y'(x) > 0 and */"(#) > 0 for x >x0. From the above inequalities it follows 
easily that 

lim y(x) = + o o . 
X-++O0 

Furthermore, since 

y"(x) exp (J pfo) dij) - y"(x0) - 2 J ,4(%'(0 ° X P ( J pfo) d>,) d* -
XO ' ^'o ^° 

- f (-4'(f) + 6(0)2/(0 exp (J p(rj) dr]) dt > 0 

it follows t h a t ' ... 
x , • 

y"(a?) exp ( \ p(rj) dr]) = y"(xQ) , 



and 

Hence 

y'(x) ^ y'(x0) + y"(x0) \ exp ( - | p(r]) drj) dt. 

lim y'(x) = -f- oo if [ exp (— f ^)(^) dry) dl = + GO 
a o .TO 

and the proof is complete. 

Lemma 1.1'. If A(x) ^ 0, A'(x) -\- b(x) ^ 0 and u(x) E£ 0 is any nonoscil-
latory solution of (R), then there exists a number c e (a, oo) such that either 

u(x)u'(x) > 0 for x ^ c, 
or 

u(x)u'(x) ^ 0 for x ^ c. 

Proof . If u(x) is any nontrivial, nonoscillatory solution of (R), then b \ 
Lemma 1.1 it follows that u(x) can have at most one double-zero. Without 
loss of generality we may suppose that u(x) > 0 for x ^ b. To prove the lemma 
it is sufficient to show that u'(x) can change from negative to positive values 
at most once in the interval (b, oo). In fact, then there exists a point c such 
that u(c) > 0, u'(c) > 0 and u"(c) > 0. By Lemma 1.1, u(x) > 0 and u'(x) > 0 
for x > c and the proof is complete. 

oo t 

Theorem 1.1. If A(x) ^ 0, A'(x) + b(x) ^ 0 and \ exp (— \ p(n) drj) dt = 
d a 

= + o o , then a necessary and sufficient condition for (R) lO have oscillatory 
solutions is that for every ntncscillattiy scluticn u(x) ^ 0, there exists a number 
c e (a, oo) such that 

(2) sgn u(x) = sgn u'(x) = sgn u"(x) -^ 0 

for x ^ c, and 

(3) lim \u(x)\ = lim \u'(x)\ = 4-00. 

P r o o f . If u(x) =fr. 0 is any nonoscillatory solution, then by Lemma 1.1' 
there exists a number b e (a, 00) such that either u(x)u'(x) > 0, or u(x)u'(x) ^ 
g 0, for x ^ b. Thus, lim u(x) exists as finite or infinite. Let v(x) be an oscil-

#->+oo 

latory solution of (R) and consider the Wronskian W(v(x), u(x)) = v(x)u'(x) 
— v'(x)u(x) . W(v(x), u(x)) must certainly vanish for some values of x in 
the interval (a, 00), otherwise the zeros of v(x) and u(x) would separate and 
u(x) would be oscillatory. 
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If d is a zero of W(v(x), u(x)), there exists constants ci, and c2, c\ + c:> 7^ 0, 
such that 

C\v(d) + c2u(d) = 0 

c\v'(d) + c2u'(d) = 0 

and civ"(d) + c2u"(d) > 0 . 

We now consider the solution 

z(x) = C\v(x) + c2w(#). 

Since z(d) = z'(d) = 0, and z"(d) > 0, it follows from Lemma 1.1 that 

(4) lim z(x) = lim z'(x) = + o o . 
.r-> co .r->+oo 

If lim u(x) were finite, we would have 
r -> oo 

lim c\v(x) = lim (z(x) — c2u(x)) = + oo 
&->+oo rr->+oo 

and z;(̂ ) could not be oscillatory. Thus lim u(x) = +oo and from Lemma 1.1 
.r->+oo 

we see that there must exist a number c e (a, oo) such that u(x)u'(x) > 0 
for x ^ c. Without loss of generality let us suppose that u(x) > 0 and u'(x) > 0 
for x ^ c. 

We will now show that u"(x) > 0 for x ^ a7. I t is sufficient to show tha t 
V u" (x) can change from negative to positive values at most once in the 

interval <c, oo). In fact, if d ^ c is a point such that u(d) > 0, u'(d) > 0, 
u"(d) > 0, then by Lemma 1.1 u(x) > 0, u'(x) > 0, u"(x) > 0 for x ^ d. 

2. If ^"(.r) ^ 0 for x ^ d, then since ^'(x) > 0 for x ^ d ^ c lim ^^(a;) 
.*•->+« 

would be finite and by (4) 

lim c\v'(x) = lim (z'(x) — c2u'(x)) = + o o 
.<•->+co .i;->+oo 

and v(#) could not oscillate. 

Hence 

sgn u(x) = sgn u'(x) = sgn u"(x) ^ 0 

for a; ^ c, and 

lim \u(x)\ = lim |w'(#)| = + oo 
a?H»-i-oo .c->+oo 

by Lemma 1.1. 



The proof of the sufficient condition is similar to that of Theorem 1 in [2] 
and will be omitted . 

Lemma 1.2. If p(x) ^ 0, A(x) ^ 0, b(x) — A(x)p(x) ^ 0 and 

00 

I p(rj) drj > — oo, 
a 

then the derivative of any oscillatory solution of (R) is bounded on (a, oo). 
Proof . Let us suppose that y(x) is an oscillatory solution of (R) and tha t 

c e (a, oo) is a zero of y"(x). Since the function F[y(x), a] is nonincreasing and 
A(x) ^ 0, we see that 

c r 

y'\c) exp (jp(rj) dr\) ^ (tj'2(c) - 2A(c)y2(c)) exp (j p(rj) dry) = 
a a 

= F[y(c),a] ^F[y(a),a\, 

hence 

c 

tj'*(c) ^ exp( — jp(r])dn)F[y(a), a]. 
a 

Thus the values of the function y'(x) are bounded at its relative maxima and 
minima and furthermore, since y(x) is oscillatory, y'(x) vanishes for arbitraly 
large values of x. From these two conditions we see at once that y'(x) is bounded 
on (a, oo). 

Theorem 1.3. If p(x) S 0, A(x) S 0, A'(x) + b(x) ^ 0, b(x) — A(x)p(x) ^ 0 
and 

00 

J p(r])dr] > - c o , 
a 

then the zeros of any two linearly independent oscillatory solutions of (R) separate 
on (a, oo). 
£*-

Proof . I t is sufficient to show that if u(x) and v(x) are any two linearly 
independent oscillatory solutions of (R), then their Wronskian W(u(x), v(x)) 
does not vanish for any x e (a, oo). If we assumed on the contrary that 
TV(^(c), v(c)) = u(c)v'(c) — u'(c)v(c) = 0 for some c €<a,co), then there would 
exist constants c± and c2, c\ -f cZ 7^ 0, such that 

c\u(c) -f c2v(c) = 0, 

c\u'(c) -f c2i/(c) = 0 

and C\u"(c) + c^v"(c) > 0. 
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We consider the solution z(x) = c±u(x) + C2v(x). I t would follow from Lemma 
1.1 that 

lim z(x) = lim z'(x) = -f- oo. 
#-H-oo £ -H-oo 

On the other hand, since u(x) and v(x) are oscillatory, it would imply, by 
Lemma 1.2, that both u'(x) and v'(x) and hence z'(x)=ciu'(x)+C2v'(x) are bounded 
as x tends to infinity. From this contradiction it follows that W(u(x), v(x))^ 0 
for all x e <a, oo). 

Theorem 1.4, [2]. If p(x) ^ 0, A(x) ^ 0, A'(x) + b(x) ^ 0 and there exists 
one oscillatory solution of (R), then there exist two linearly independent oscillatory 
solutions u and v of (R) such that any nontrivial linear combination of u and v is 
also oscillatory and the zeros of u and v separate, i.e. between every two consecutive 
zeros of u there is precisely one zero of v. 

Theorem 1.4'. Ifp(x) ^ 0, A(x) ^ 0,A'(x) + b(x) ^ 0,b(x) — A(x)p(x) ^ 0, 
OO 

\ p(r]) drj > —oofor x e <a, oo) and (R) has an oscillatory solution, then there 
a 

exist two linearly independent oscillatory solutions u and v whose zeros separate 
and such that a solution of (R) is oscillatory if and only if it is a nontrivial linear 
combination of u and v. If w is a nontrivial solution of (R) which is not a linear 
combination of u and v, then 

lim \w(x)\ = lim |w'(#)| = -f-oo. 
rc->-+oo a;->+oo 

Proof . Since the conditions of Theorem 1.4 are satisfied, there exist two 
linearly independent oscillatory solutions u and v of (R) such that the zeros 
of u and v separate and any nontrivial linear combination of u and v is also 
oscillatory. Moreover, since the assumptions of Lemma 1.2 are satisfied, 
u' and v' are bounded on (a, oo). 

Let z be a solution of (R) which satisfies the initial conditions z(a) = z'(a) = 
= 0, z"(a) = 1. By Lemma 1.1, z(x) > 0, z'(x) > 0, z"(x) > 0 and 

(5) lim z(x) = lim z'(x) = -f-oo. 
£ - > + oo X-*-\- 00 

Since z is nonoscillatory, z is not a linear combination of u and v which implies 
that u, v and z are linearly independent. Hence any solution of (R) is a linear 
combination of u, v and z. If w is a solution such tha t w = c±u + C2V + c$z, 
at which c$ ^ 0, then by (5) and from the boundedness of u', v' it follows 

lim \w(x)\ = lim |w'(#)| = + 0 0 , 
i f -»+oo #-»+oo 

i. e. w is nonoscillatory. 



Theorem 1.5. If p(x) g 0, A(x) ^ 0, A'(x) + b(x) ^ 0, (A(x)p(x) 

— b(x)) exp ( f p(rj) d?]) ^ m > 0, f p(rj) dr] > — cc and u(x) is any oscillatory 
a a 

solution of (R), then u(x) e L2 (a, oo) and lim u(x) = 0. 
.r->+oo 

Proof . Since u(x) is an oscillatory solution, the function F[u(x), a] is non-
negative for arbitrarily large values of x, i. e., those values of x for which u(x) 
vanishes. Since the conditions of this theorem include those of Lemma 1.2, 
it follows that u'(x) is bounded. Thus, 

.<• 
0 ^ F[u(a), a] + M(exp( \ p(n) drj) — 1) + 

a 
.r / 

+ 2 f (b(t) - A(t)p(t))u2(t) exp (fp(V) dn) dt, 
(l a' 

where u'2(x) ^ M for all x e (a, oo), and hence we obtain 

X 

1 
u2(t) dt й (Җt)p(t) — b(t))u2(t) xp 

m 
p(r\) dr] \ dt < 

1 
< {F[u{a), a] + Ж(exp ( | p(v) drj) - 1)} 

im 

for all x e <a, oo). 
Hence 

CO 

f u2(t)dt < +oo. 
a 

Thorefore, since u(x) e L2 < a, oo), it is easyr to see that 

lim u(x) = 0. 
.*'->+oo 

Lemma 1.6. If A'(x) + b(x) eC2«a, oo)), A'(x) + b(x) > 0 ( < 0) and 

±A(x) 

A'(x) + b(x) dx2 

d2 d / p(x) \ 
+ (A'(x) + b(x))-i- t / I ž O ( H ) , 

d^2 dx \ A'(x) + b(x) ) 

then the absolute values of a solution at its successive maxima and minima form 
a nondecreasing (nonincreasing) sequence. 

Proof. If u(x) is any solution of (R), then as can be verified through differen­
tiation, we have the identity 

2u'(x)u"(x) (A'(x)+b(x))'u'2(x) p(x)u'2(x) 
G[u(x), a] = u2(x) + — + -j 

A'(x) + b(x) (A'(x) + b(x))2 A'(x) + b(x) 
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G[u(a), a] + 2 
u"Цt) 

— dt-
A'(t) + b(t) 

4A(t) 

A'(t) + b(t) 

d 2 d / p(t) \ 
+ (A'(t) + b(t))~i - i 

dt* dt \A'(t) + b(t) 

u'Цt)dt. 

By the conditions of the theorem G[u(x), a] is a nondecreasing (nonincreasing) 
function of x. At a maximum or minimum point of u(x), where u'(x) = 0, 
G[u(x), a] = u2(x); hence the squares of the maxima and minima of u(x), 
and hence the corresponding values of \u(x)\ form a nondecreasing (non-
increasing) sequence. 

Theorem 1.6. If A'(x) + b(x) £ C*((a, oo)), A'(x) + b(x) < 0, 

A(x) d2 d i p (x) \ 
4 + (A'(x) + b(x))-i- — l - — ^ 0, 

A'(x) + b(x) dx2 dx \ A'(x) + b(x) ) 

then the zeros of any two linearly independent oscillatory solutions of (R) separate. 
Proof. If u(x) and v(x) are two linearly independent oscillatory solutions 

of (R), then by the above conditions and Lemma 1.6 the absolute values of 
u(x) and v(x) at their successive maxima and minima points form nonincreasing 
sequences. Since u(x) and v(x) vanish for arbitrarily large values of x, it is easy 
to see that both w(#).and v(x) are bounded on (a, oo). If the Wronskian 
W(u(x), v(x)) vanished at a point b e <a, oo), then by the same argument as 
used in the proof of Theorem 1.3, there would exist constants c\ and c% such 
that 

lim (c\u(x) + C2v(x)) = + oo. 
.r-> J 00 

But this is impossible if both u(x) and v(x) are bounded . This contradiction 
shows that W(u(x), v(x)) ^ 0 for all x e (a, oo), and hence, the zeros of u(x) 
and v(x) separate. 

2. Lemma 2.1. If p(x) ^ 0, A(x) ^ 0, A'(x) + b(x) ^ 0, and b(x) — 
OO 

A(x)p(x) ^ 0 and not identically zero in any subinterval of (a, oo), \ p(rj) drj < 

<r\+oo and y(x) -^ 0 is a nonoscillatory solution of (R), which is eventually 
nonnegative with 

0 ^ F[y(c), c] = y'2(c) - 2y(c)y"(c) - 2A(c)y2(c) 

(c e <a, oo) arbitrary), then there exists a number d ^ c such that 

y(x) > 0, y'(x) > 0, y"(x) ^ 0 and y'"(x) ^ 0 , for x ^ d. 

LI 



Proof . Since F[y(x), c] is positive and increasing function in (c, oo), 
lim F[y(x),c] exists and is positive and every nontrivial solution of (R) has 
at most one double-zero. Let y(x) ^ O b e a solution of (R). Then there exists 
a number c\ ^ c such that y(x) ^ 0 in <ci, oo). Without loss of generality, 
we may suppose y(x) > 0 for x ^ c\. We will now show that there exists 
a number C2 ^ c± such that y'(x) ^ 0 for x ^ C2. 

Since A(x) ^ 0 and F[y(x), c] > 0 for x > c i } it follows that 

0 < y'*(x) — 2y(xYf(x) — 2A(x)y2(x) ^ y'2(x) — 2y(xty"(x) ^ 

^ 2{y'2(x)-y(x)y"(x)) 

and hence 

y(x)y"(x) — y'2(x) < 0 for x > c\. 

FVom the last inequality it follows t h a t 

' y'(x) 

гj(x) 
< 0 for x > ci. 

Hence there exists a number C2 > C\ such that y'(x) ^ 0 for x ^ C2. We will 
now show that y'(x) > 0 for x ^ C2. Suppose on the contrary that y'(x) < 0 
for x ^ C2. There are three possibilities for y"(x): 

1. If ^J"(x) ^ 0 for x ^ b ^ c 2, then #'(s) ^ y'(6) < 0 for x ^ b so that y(x) 
would eventually become negative in <b, oo), which is a contradiction. 

2. liy"(x) ;> Oiorx ^ b ^ C2, then since ?/'(:£) < 0 for x ^ b, wTe would have 
lim y'(x) = 0, and consequently 
.t;->+oo 

X 

lim K[^/(^)5 c] = lim (y'2(x) — 2y(xty"(x) — 2J.(x)?/2(a;)) exp (jI>(^) d?]) 
.r-^+co .*;->+co c 

ru 

lim (—2y(xyj'(x) — 2^1(^)i/2(x)) exp (jp(rj) drj) ^ 0 
rc-»+oo r 

for x ^ b, which would contradict the fact that limF[H(o;), c] > 0. Finally, 
rEH>+oo 

suppose that 
3. y"(x) changed signs for arbitrarily large values of x. Then there would 
exist an increasing sequence of points {xn}, c% ^ x±, with the following pro­
perties : 

lim xn = GO, —e< y'(xn) < 0, y"(xn) == 0, 
At-»0O 

where e > 0 is arbitrary . 
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The existence of such a sequence {xn} is clear since y'(x) < 0 and 
lim sup y'(x) = 0. 
.r->4 00 

We would then have 

Xn 00 

F[y(xn), c] ^ (e2 - 2A(xn)yHxn)) exp ( J pfr) di?) £ -2 exp ( J pfo) cb?) £ -2£ , 
c r 

where 

00 

exp (j _p(̂ ) drj) ^ K < + 00, 
c 

for arbitrarily large values of xn, which would imply that 

lim F[y(xn), c] ^ 0. 
?i->00 

This, as in the above, would be a contradiction. Thus, since the three mutually 
exclusive and exhaiistive cases all lead to a contradiction when we assvime 
y'(x) < 0 for x ^ C2, we must have y'(x) > 0 for x ^ C2. 

We will now show that y"(x) ^ 0 for x ^ c. Suppose on the contrary: Let there 
exist a number d ^ c, such that y"(d) < 0, since y is a solution of (R) 

X X 

(y"(x) exp (\p(rj) drj))' = —2A(x)tj'(x) exp (\p(rj) drj) — 
d . d 

x 

— (A'(x) + b(x))y(x) exp (\p(rj) drj) 
d 

so that we have 

(y"(x) exp (\p(rj) drj)' ^ 0. 

By integrating the above inequality from d to x, we have 
X 

y"(x) exp ( \p(rj) drj) ^ y"(d) for x ^ d, 

hence 

and 

y'(x) й У'(d) + y"(rf) | exp ( - |> tø) drç) dŁ 

lim ?/'(#) = — co. 
ÍГ->+00 
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This is a contradiction to the assumption that y'(x) > 0. Hence there exists 
a number d ^ c, such that y(x) > 0, y'(x) > 0, y"(x) ;> 0 for x ^ d. From 
this it follows that y"'(x) == —p(x)y"(x) — 2A(x)y'(x) — (^'(^) + b(x))y(x) <, 0 
for x ^ d. 

Lemma 2.1', fl], / / y(x) e C3((a, OD)), and y(x) > 0, y'(x) > 0, y'"(x) < 0. 
/Or x ^ a, then 

y(x) 1 
Jim inf — ^ 

/•->+<» xy'(x) 2 

By means of the two preceding lemmas and the classical Sturm comparison 
theorem we shall derive an oscillation condition for (R). 

00 

Theorem 2.1. / / p(x) ^ 0, j p(rj) d?? < +oo , A(x) ^ 0, A'(x) + b(x) ^ 0, 

and b(x) — A(x)p(x) ^ 0 and not identically zero in any interval, and then 
exists a number m < 1/2 such that the second-order differential equcAion 

w" + pw* + [2 A (x) + (A'(x) + b(x))mv]w = 0 

is oscillatory, then (R) ha* oscillatory solutions. In fanl if y(x) is any nonzero 
solution of (R) with 

0 < F[y(c), a] = (y'*(c) - 2y(c)y*(c) - 2^(c)y2(c)) exp (jp(rj) dV) 
(i 

c e <«, CJO), 

l/zew ?/(x) is oscillatory. 

Proof . Suppose that u(x) ^p 0 were a nonoscillatoiy solution of (R) vith 
F[w(c), «] ^ 0. Without loss of generality, we could assume u(x) to be eventually 
nonnegative. By Lemma 2.1, there would exist a number d ^ c such that 

u(x) > 0, u'(x) > 0, u"(x) ^ 0 and u'"(x) <, 0 

for x f> d. Hence by Lemma 2.V 

u(x) 1 
lim inf g 

x->+oo .m'(.r) 2 

Thus, since m < 1/2, there would exist a number d\ ^ d, such that u(x) u'(x) ^ 
> mx for x g rfi. By writing (R) in the form of a system 

(6) u' = w 

w" + p(x)w' + 2.4(;r)H; + (^'(ar) + b(x))u = 0, 
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we could write the second equation in the form 

2A(x) + (A'(x) + b(x)) 
u 

W 

(exp ( J p(rj) drj)w')' + exp ( J p(rj) drj) 

aK a 

Since by the above 

u(x) u(x) 
2A(x) + (A'(x) + b(x)) = 2A(x) + (A'(x) -f- b(x)) > 

iv(x) u'(x) 

> 2A(x) + (A'(x) + b(x))mx 

for x ^ di, hence also 
X 

exp ( J p(rj) drj) 

w = 0 . 

2A(x) + (A'(x) + b(x) 
u(x) 

u'(x) 
> 

> exp ( ] p(rj) drj) \2A(x) + (A'(x) + b(x))mx]. 
a 

It would follow from the Sturm comparison theorem that since the differential 
equation 

r r 

(exp ( | p(rj) drj)w')' + exp ( j p(r])drj)[2A(x) + (A'(x) + b(x))mx]w = 0 
(i a 

is oscillatory, all nonzero solutions of 

.r x 

(1) (exp ( J p(rj) drj)y')' + exp ( J p(rj) drj) x 
a 

u(x) 
X 2A(x) + (A'(x) \- b(x)) 

w(x) 
У = 0, 

defined for x ^ d\, would oscillate. But this contradicts the fact that the 
particular solution w(x) — u'(x) is the solution of (7). Thus, the assumption 
that u(x) is nonoscillatory leads to a contradiction. 

3. Lemma 3.1. If p(x) ;> 0 and b(x) — A(x)p(x) ^ 0 and not identically 
zero in any interval, and (R) has one oscillatory solution v(x), then any nontrivial 
solution u(x) of (R) such that 

u(c) = v(c) = 0 

(c arbitrary) is oscillatory. 

Proof . We will apply the identity (I). We consider the solution 

z(x) = c\u(x) + c2v(x), z(c) = 0. 
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Then 

(8) F[z(c), c] = z't(c) ^ 0 

and F[z(x), c] > 0 for x > c. We consider the Wronskian 

W(u(x), v(x)) = u(x)v'(x) — u'(x)v(x). 

If W(u(x), v(x)) vanished at a point d > c, then there would exist constants ci 
and C2 such that 

C\u(d) + C2v(d) = 0 

C\u'(d) + C2v'(d) = 0 

c j + c | # 0 . 

Then F[z(cZ), c] = 0 and by (8) F[z(c), c] ^ 0. But 

F[z(d)/c] >F[z(c),c] > 0. 

This contradiction shows that W(u(x), v(x)) --£ 0 for x > c. Hence since v(x) 
is oscillatory, u(x) is oscillatory. 

Lemma 3.2. / / p(x) ^ 0 and b(x) — ^4(#)p(a;) ^ 0 and not identically zero 
in any interval, and (R) has one oscillatory solution, then any solution which 
vanishes is oscillatory. 

Proof . Let v(x) be an oscillatory solution of (R) which vanishes at xi and 
let u(x) be a nontrivial solution of (R) such that u(x0) = 0. Construct a solution 
z(x) of (R) such that z(x0) = z(x{) = 0, z(x) ^k 0. Applying Lemma 3.1 first 
to the solution v(x) and z(x) at the point x±, we see that z(x) is oscillatory. 
Next applying Lemma 3.1 to the solutions z(x) and u(x) at the point x0, we 
see that u(x) is oscillatory and the proof is complete. 

Theorem 3.2. i / p(x) ^ 0 and b(x) — A(x)p(x) >, 0 and not identically zero 
in any interval, and (R) has one oscillatory solution, then a necessary and sufficient 
condition for a solution u(x) ÊE 0 to be nonoscillatory is that F[u(x), a] -" 0 
for all x e {a, oo). 

Proof . The sufficiency is trivial. Indeed, if F[u(x), a] is negative for all 
x e (a, oo), it is clear that u(x) ^ 0 for all x e (a, oo). To prove the necessity-
we will show that if (R) has one oscillatory solution and u(x) EEEE 0, F[u(c), a] ^ 
>, 0, c e <a, oo) arbitrary, then u(x) is oscillatory. If u(c) — 0, the assertion 
follows from Lemma 3.2. If u(c) ^ 0, we consider a second solution defined 
by the initial conditions 

v(c) = 0, v'(c) = u(c), v"(c) = u'(c). 

16 



Since v(x) is not identically zero and vanishes at c, we see from Lemma 3.2 
that v(x) is oscillatory. Furthermore, for any constants C\ and c2 both not zero 

(9) F[(c\u(c) + c2v(c)), a] = {c\F[u(c), a] + c\F[v(c), a]} exp (jp(rj) drj) = 
a 

c c 

= {c\F[u(c), a] + ciu2(c) exp (Jp(rj) d?j)} exp ( \ p(rj) drj) ^ 0 . 
a a 

Consider the Wronskian W(u(x), v(x)) = u(x)v'(x) — u'(x)v(x). If W(u(x), v(x)) 
vanished at a*point d > c, then there w^ould exist constants C\ and c2 such that 

c\tt(d) + c2v(d) = 0 

c\u'(d) + C2v'(d) = 0 

and c\ + el ^ 0. 

If z(x) were the solution c\u(x) + c2v(x), then F[z(d), a] = 0 and by (9) 
F[z(c), a] ^ 0. 

But 
F[z(d),a] >F[z(c), a] ^ 0. 

This contradiction shows that W(u(x), v(x)) ^ o for x > c. Hence, since v(x) 
is oscillatory, u(x) is oscillatory too. 

The next theorem shows that solutions satisfying the conditions of Theorem 
3.2 actually exist. Since the method of construction has already been given 
by M. G r e g u s [4], we will only outline the proof. 

Theorem 3.3. If p(x) ^ 0 and b(x) — A(x)p(x) ^ 0, and not identically zero 
in any interval, then (R) has a solution y(x) for which F[y(x), a] is ahvays 
negative. Consequently y(x) is nonoscillatory. 

Proof . For each integer n > a, we consider the solution yn(x) defined by 
the initial conditions 

yn(n) = ij'n(n) = 0, y"n(n) ^ 0, 

and the normalization 

yn(x) = C\nZ\(x) + C2nZ2(x) + CsnZ3(x), 
with 

(iO) c\n + c\n + c\tl = I, 

where z\(x), z2(x), z%(x) is the fundamental system of solutions of (R). Since 
the three sequences {c^}, i = 1, 2, 3 are bounded, there exists a sequence 
of integers {nf} such that the subsequences {Cinj} converge to numbers Ci, 
i = 1, 2, 3. From (10) we see that 



q + ci — rr3=l. 

The sequences {yn.(x)}, {y'hi(x)}, {y"}.(x)} converge uniformly on any finite 
subinterval of ^ , 0 0 ) to the functions y(x), y'(x) and y"(x), where y(x) is 
a nontrivial solution of (R). 

Let c be an arbitrary point in the interval a, co). Since F[yri.(nj), a] 0 
and F[yn.(x), a] is strictly increasing, F[yn.(c), a] < 0 for c < tij. Since 
F[y(c), a] = lim F[yn.(c), a], therefore F[y(c),a\ ^ 0. If c is arbi trary. 

F[y(x), a] ^ 0 for all a.- e a, 00). But the equality cannot hold at any point d. 
since this would imply that F[y(x), a] > 0 for x > c, as F\y(x), a] is strictly 
increasing. 
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