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ON SOME PBOPERTIES OF THIRD-ORDER LINEAR
DIFFERENTIAL E QUATION

JAN REGENDA

Tne present paper is a study ot the oscillation and other properties of
solutions of the differential equation

¥y 4 p@)y” + q@)y 4 r@@)y =0,

where p(x), ¢'(x), r(x) are continuous for x € {a, 00), (—o0 < @). This differen-
tial equation will be considered in the form

(R) Y+ pley” + 24y + (d'(x) + b))y = 0,

whero 24(x) = gq(x), 4'(x) 4 b(x) = r(x). We shall assumc throughout that
p(x), A(x), 4'(x) 4+ b(x) and b(x) — A(x)p(x) do not change the sign on the
interval (@, c0). A solution of (R) will be said to be oscillatory if it ehanges
the sign for arbitrarily large values of z.

In the present paper we shall generalize some results of the seeond and
third part of A. C. Lazer [I] which concern the cxistence, uniqueness (with
the exception of constant multiples) and asymptotic behaviour ot nontrivial,
nonoscillatory solutions, and criteria for the existence of oscillatory solutions
in terms of the behaviour of nonoscillatory solutions. This generalization is
not only in that p(x) =£ 0 in {a, ), but &lso in the following:

1. Generally the differential cquation (R) cannot be transformed into the
differential equation of the form

(L) Y + Py + QEy =0

(for cxanple, if p(x) is not differentiable in any number 2 € {a, 0)).

2. It the differential equation (R) can be transformed into the differential
equation (L), the coefficients P(x), @(x) need not have the properties as in |1]
(for example, the same sign is not necessary).

For example, the differential equation

1 + sin e®

(*) "4

<

1
y' + 2sin% y' -+ (l -+ 2)y= 0,

x X



x € (1, w0), by Theorem 2.1 of this paper is oscillatory. By transformation
£
1 {1+ sinet
Y = zexp Ty -dt), x>1
. 2

we obtain’the oscillétbr_{;j equation of the form (L)

(%) 2" 4 Pr)e + Q)z=0, & >1,
where
. e"coset  2siner 2
P(x) " 2sin2x — + ,
x2 x3 a3
1 2 2sin2 x(1 + sine?) 2(1 + sine?)3
Q) =14 — — +
: . x2 ot 32 . 2728
e cos e¥(4 — x) sin e” 6
+ e2r — .
P g2 222 22

It is easy to see that P(x), Q(x), 2Q(x) — P’(x) are not of the same sign in any
(r, ©); 7->> 1. Therefore it cannot be determined whether the differential
equation (*¥) is oscillatory or not according to Theorem 3.1 in [1].

This paper is divided into three parts in which we will apply the identity

(d)  Fly@); ot = y2@) — 2y(x)y" (%) — 24 (@)y(x)) exp ([ pln) o)

0

t

= Fly(e), el + | pOy2) exp ([ pln) dy) de +

P

T

2 [ (b(t) — A@)p() )y2(t) exp (| pln) dy) dt,

c

which holds for any solution y(x) of (R) and for every ¢ =2 @. It may be verified
through differentiation.
A similar problem. was studied among others by L. Moravsky in [6].
1. ‘.Lemma.l.l.. ‘I.f.:_AA(x) < 0,A'(x) + b(x) £ 0 and y(x) is any solution
of (R) satisfying the initial conditions

Y@g) 2 0, y'(xy) 20, Y'(x) >0
(zo € (@, ©) arbitrary), then
i

@) >0, y(@) >0, '@ >0 for x>z



and

lim y(x) = 4 oo

>+

and furthermore if

[ exp (= [ p() dn) dt = 4 oo,
then also

lim y'(x) = +o0.
>+
Proof. We assert that y"(x) >0 for z > x,.
If y"(x) vanished for some value of x greater than z,, there would be
a smallest number x; > x, such that y"(x1) = 0. Since y(z,) = 0, ¥'(x,) = 0,
y"(x,) > 0, we would have y(x) >0, y'(x) > 0 for x € (x,, x1). Moreover, since
A(x) £ 0, A'(z) + b(x) £ 0 it would follow that

x

(0" (@) exp ( [ pr) dn)) = —24()y/(@) exp ( | ply) dn) —

— (A'(@) + b(@) )y (@) oxp (| pln) dy) =

for xz € {x,, x1>. However, by integrating the above inequality between xz,
and z; we would obtain the impossible inequality

t (1) {

0 = y"(wy) + [ [—24(0)y'(1) — (A'() + b(t))y(®)] exp ([ p(n) dy) dt > 0.
Thus y"(x) > 0 for x = x,and since y(x,) = 0, ¥'(®,) = 0, we see that y(z) >0,
y'(x) >0 and y"(x) > 0 for x > z,. From the above inequalities it follows
easily that

lim y(x) = +c0.
Z->400
Furthermore, since

t

y(@) exp (| pln) dn) = o (zg) — 2 | AOW'€) exp ( | plr) dn) At —

) zo

x t
_f( )+bt) exp fp dn dt>0

it follows that Vo
y'(@) exp ( [ ply) dy) Z ¥"(x0)

;‘



and

Iy t.
Y'(@) 2 y' () - y'(xo) [ exp (— [ pln) dy) dr.

Jo o

Hence

lim y'(x) = +oo if f fp )dy) dt = + o0

and the proof is complete.

Lemma 1.1'. If A(z) < 0, A'(x) + b(x) £ 0 and u(x) == 0 ts any nonoscil-
latory solution of (R), then there exists a number ¢ € {a, c©) such that either

w(x)u'(x) >0 for x = c,
or
u(x)u'(x) £ 0 for x

v

c.

Proof. If u(x) is any nontrivial, nonoscillatory solution of (R), then by
Lemma 1.1 it follows that u(x) can have at most one double-zero. Without
loss of generality we may suppose that u(x) > 0 for 2 =z b. To prove the lemma
it is sufficient to show that u’(x) can change from negative to positive values
at most once in the interval <b, c0). In fact, then there exists a goint ¢ such
that u(c) > 0, ’'(c) > 0 and u"(c) > 0. By Lemma 1.1, u(x) > 0 and «'(x) > 0
for x > ¢ and the proof is complete.

® t
Theorem 1.1. If A(x) < 0, A'(z) + b(z) £ 0 and [exp (— fp(n) dn) dt =

(l

= -+ 00, then a mnecessary and sufficient condition for (R) to have oscillatory
solutions is that for every ncncscillatcry scluticn u(a) == 0, there caists a number
¢ € {a, o) such that

(2) sgn u(x) = sgn o'(x) = sgn u”(x) %% 0
for x = ¢, and

(3) lim |u(z)| = lim |u'(x)| = 4 0.
£>+ x>+
Proof. If u(x)=~0 is any nonoscillatory solution, then by Lemma 1.1’
there exists a numker b € (@, o) such that either u(x)u'(x) > 0, or u(x)u'(x) =

= 0, for x = b. Thus, lim u(x) exists as finite or infinite. Let v(x) be an oscil-
x>+

latory solution of (R) and consider the Wronskian TV (v(x), u(x)) = v(z)u'(x)

— v'(x)u(x) . W(v(x), w(x)) must certainly vanish for some values of « in
the interval {a, ), otherwise the zeros of v(x) and u(x) would separate and
u(x) would be oscillatory.

6



1f d is a zero of W (v(x), u(x)), there exists constants ¢;, and ¢z, ¢} + ¢ # 0,
such that

cw(d) —+ 62’u(d) =0
v’ (d) + cou'(d) =0
and c1v"(d) + cou”(d) > 0.

We now consider the solution

z(x) = cv(x) + coulx).

Since z(d) = 2'(d) = 0, and z"(d) > 0, it follows from Lemma 1.1 that

(4) lim z(z) = lim 2'(x) = 4 c0.
> +r=>+00
1f lim u(x) were finite, we would have

lim ¢io(x) = lim (2(x) — cau(x)) = + o0

>+ >+

and v(x) could not be oscillatory. Thus lim u(x) = 40 and from Lemma 1.1’

X—>+4 0

we see that there must exist a number ¢ € {(a, c0) such that u(x)u'(x) >0

for x = c¢. Without loss of generality let us suppose that u(z) > 0 and %'(z) >0
for x = c.

We will now show that «»”(x) > 0 for = d. It is sufficient to show that
1. u”(x) can change from negative to positive values at most once in the
interval {c, ). In fact, if d = ¢ is a point such that wu(d) > 0, u'(d) >0,
u”(d) >0, then by Lemma 1.1 u(z) >0, «'(x) >0, u"(x) >0 for z = d.

2. If w’(x) £ 0 for > d, then since u'(x) >0 for x > d = ¢ lim %'(x)
r>+oc
would be finite and by (4)

lim ¢v'(x) = lim (2'(x) — e’ (x)) = 40

&>+ T>+00

and v(x) could not oscillate.
Hence

sgn u(x) = sgn u'(x) = sgn u"(x) % 0

for x = ¢, and

lim ju(x)] = lim |#'(z)] = 4+ o0

>0 Xr—>+00

by Lemma 1.1.



The proof of the sufficient condition is similar to that of Theorem 1 in [2]
and will be omitted.

Lemma 1.2. If p(x) £ 0, 4(x) £ 0, b(x) — A@@)p(x) < 0 and

rp(n)dn > —o0,

then the derivative of any oscillatory solution of (R) is bounded on {a, o).

Proof. Let us suppose that y(x) is an oscillatory solution of (R) and that
¢ €<{a, ) is a zero of y"(x). Since the function F[y(x), @] is nonincreasing and
A(z) £ 0, we see that

e

y'2(c) exp ([ pl) dn) < (4'2(e) — 24(e)y2(0)) exp ([ p(y) dy) =

= Flylc), a] = Fly(a), a],

hence
y'2(c) £ exp (—[p(n) dy)F[y(a), a].

Thus the values of the function y'(z) are bounded at its relative maxima and
minima and furthermore, since y(x) is oscillatory, #'(x) vanishes for arbitraiy
large values of z. From these two conditions we see at once that y'(z) is bounded
on {o, o).

Theorem 1.3. If p(x) < 0, A(x) £ 0, A'(x) + b(x) = 0, b(») — A(z)p(x) £ 0
and

e o]

| pn)dnp > —o0,

a
then the zeros of any two linearly independent oscillatory solutions of (R) separate
on {a, ).
o

Proof. It is sufficient to show that if w(z) and v(x) are any two linearly

independent oscillatory solutions of (R), then their Wronskian TW(u(z), v(z))
does not vanish for any x €<a, ). If we assumed on the contrary that
W(u(c), v(c)) = u(c)v'(c) — w'(c)v(c) = 0 for some ¢ €< @,00), then there would
exist constants ¢; and ¢z, ¢ + ¢ # 0, such that

ciu(c) =+ cov(c) =0,
au'(c) + cw'(c) = 0

and au’(c) + c20"(c) > 0.



We consider the solution z(x) = ciu(x) + cav(x). It would follow from Lemma,
1.1 that

lim z(x) = lim 2'(x) = 4 0.

T>+00 Z->+0
On the other hand, since u(x) and v(x) are oscillatory, it would imply, by
Lemma, 1.2, that both %’ (x) and v’ (x) and hence 2’ (x)=ciu’(x) 4 c2v’(x) are bounded
as z tends to infinity. From this contradiction it follows that W(u(x), v(x))## 0
for all x € <a, o).

Theorem 1.4, [2]. If p(x) < 0, A(x) < 0, A’(x) + b(x) < 0 and there exists
one oscillatory solution of (R), then there exist two linearly independent oscillatory
solutions u and v of (R) such that any nontrivial linear combination of u and v is
also oscillatory and the zeros of w and v separate, i.e. between every two consecutive
zeros of u there is precisely one zero of v.

Theorem 1.4". If p(x) = 0, A(x) < 0,4’ (z) + b(z) £ 0,b(x) — A(x)p(x) £ 0,

0

f pn)dn > — oo for x € <a, ) and (R) has an oscillatory solution, then there

a
exist two linearly independent oscillatory solutions w and v whose zeros separate

and such that a solution of (R) is oscillatory if and only if it is & nontrivial linear
combination of w and v. If w is @ nontrivial solution of (R) which is not ¢ linear
combination of u and v, then ’
lim |w(x)| = lim |w'(x)] = 4 0.
>+ >+
Proof. Since the conditions of Theorem 1.4 are satisfied, there exist two
linearly independent oscillatory solutions # and » of (R) such that the zeros
of v and v separate and any nontrivial linear combination of % and v is also
oscillatory. Moreover, since the assumptions of Lemma 1.2 are satisfied,
' and v’ are bounded on {a, o).
Let z be a solution of (R) which satisfies the initial conditions z(a) = 2'(¢) =
= 0, 2"(a¢) = 1. By Lemma 1.1, z(z) > 0, 2'(x) >0, 2"(x) > 0 and
(5) lim z(x) = lim 2'(z) = 4 c0.
Z=>+ 00 T—>+ 0
Since z is nonoscillatory, z is not a linear combination of » and v which implies
that %, v and z are linearly independent. Hence any solution of (R) is a linear
combination of u, » and z. If w is a solution such that w = ciu 4 cav + c3z,
at which ¢z % 0, then by (5) and from the boundedness of ', v" it follows
lim |w(z)] = lim |w'(x)| = + o0,

a->+0 T>+00

i. e. w is nonoscillatory.



Theorem 1.5. If px) <0, A(x) =0, A'(x)+ bx) 0, (Ax)p(r)
— b(x)) exp ( fp(n) dy) =2 m >0, fp(n) dn > —co and u(x)is any oscillatory

solution of (R), then u(z) € L2 (@, o) and lim u(x) = 0.

r>+00

Proof. Since u(z) is an oscillatory solution, the function F[u(x), @] is non-

negative for arbitrarily large values of z, i. e., those values of x for which u(x)

vanishes. Since the conditions of this theorem include those of Lemma 1.2,
it follows that u’(x) is bounded. Thus,

£

0 < Flu(a), a] + M(exp( [ p(n) dy) — 1) +
4

+ 2 [ (b(t) — A(O)p(t) Jux(t) exp ( [ p(y) dn) dt,
where w'2(x) < M for all x € {a, o), and hence we obtain

J w2(t) dt < !
m

o
a «

(AB)p(t) — b(t) yu2(t) exp( ’ p(n)drz) dt <

1 ,
<, Fhia) e+ Mexp (| p(n) dn) — 1)}

a

for all x € <a, ).

Hence
2]

[ w2ty dt < +c0.

u
Thorefore, since u(x) € L2 < @, o0), it is easy to sec that

lim u(x) = 0.
Xr>+00

Lemma 1.6. If A'(z) + b(z) € C%(<a, w©0)), A'(x) + b(x) >0 (< 0) and

44 (x) d2 d (@)
+ (A'@) + b))t — <0(20)),
A'(z) + b(x) da? de \ 4’ (x) + b(x)
then the absolute values of a solution ut its successive maxima and minima form
@ nondecreasing (nonincreasing) sequence.
Proof. If u(x) is any solution of (R), then as can be verified through differen-
tiation, we have the identity
'@y’ (x) | (A'@) o) w3 (z) | pl)uE(x)

Glu(w), 6] = ux(x) + — '
L A=t ey b T @@ b)) A + b

10



X T

= o |
= Glu(a), a] + JA’(t)—{—b(t) o

« a

az i
S0 + b)) (( rll) )]u’2(t)df.

4A(t)
A(t) + b()

e oAt \ Ay + b

By the conditions of the theorem G[u(x), a] is a nundecreasing (nonincreasing)
function of x. At a maximum or minimum point of wu(x), where '(z) = 0,
Glu(x), @] = u2(z); hence the squares of the maxima and minima of u(z),
and hence the corresponding values of |u(x)| form a nondecreasing (non-
increasing) sequence.

Theorem 1.6. If A'(x) + b(x) € C%(a, ©0)), A'(x) + b(x) < O,
A(z) i dz d ( p (%) ) > 0,

A'(z) + bla)

then the zeros of any two linearly independent oscillatory solutions of (R) separate.

Proof. If u(x) and v(x) are two linearly independent oscillatory solutions
of (R), then by the above conditions and Lemma 1.6 the absolute values of
u(z) and v(x) at their successive maxima and minima points form nonincreasing
sequences. Since u(x) and v(x) vanish for arbitrarily large values of z, it is easy
to see that both u(x) and v(x) are bounded on (@, c0). It the Wronskian
W (u(x), v(x)) vanished at a point b € {a, ), then by the same argument as
used in the proof of Theorem 1.3, there would exist constants ¢; and ¢z such
that

)+ b)) e 4@ @)=

lim (ciu(x) + cov(x)) = + 0.

£> 10

But this is impossible if both u(x) and v(x) are bounded. This contradiction
shows that W (u(x), v(x)) £ 0 for all x € {(a, o©), and hence, the zeros of w(x)
and v(x) separate.

2. Lemma 2.1. If px) =20, A(x) 20, A'(x)+ bx) 2 0, and b(x) —
A@)p(x) = 0and not identically zero in any subinterval of (@, o), f p(n)dn <

a

< —}—oo'and Y(®) £ 0 is a nonoscillatory solution of (R), which is eventually
nonnegative with

0 = Fly(e), c] = y"3(c) — 2y(c)y"(c) — 2A4(c)y*(c)
(c € (a, ©) arbitrary), then there exists @ number d 2 ¢ such that

yx) >0,y (x) >0,y"(x) 2 0 and y''(x) <0, for z=d.

11



Proof. Since F[y(x),c] is positive and increasing function in (c, 00),
lim F[y(x), c] exists and is positive and every nontrivial solution of (R) has
at most one double-zero. Let y(x) == 0 be a solution of (R). Then there exists
a number ¢; = ¢ such that y(x) # 0 in {¢;, o). Without loss of generality,
we may suppose y(x) >0 for x = ¢;. We will now show that there exists
a number ¢z = ¢; such that y'(z) # 0 for x = cs.

Since 4(x) = 0 and F[y(z), ¢] > 0 for x > ¢;, it follows that
0 < y2(x) — 2y(@)y" () — 24@)y%(x) = y2(x) — 2y(x)y"(x) =
< 2y 3(x) — y@)y'(2))

and hence
y@)y'(@) — y'3x) <0 for x >c.
From the last inequality it follows that

(3_/'_@)'<0 for x >c1.
y(x)

Hence there exists a number ¢z > ¢; such that y'(x) £ 0 for x = ¢. We will

now show that y'(x) > 0 for ¥ = cz. Suppose on the contrary that y'(x) < 0
for x = ¢z. There are three possibilities for y"(z):

1. If y"(x) £ 0 for x Z b = ¢z, then y'(x) £ y'(b) < 0 for x = b so that y(x)

would eventually become negative in ¢b, co0), which is a contradiction.

2. Ify"(x) 2 0foraz 2 b 2 c2, then since y'(x) < Oforx = b, we would have

lim #'(x) = 0, and consequently
£—>+00

T

lim Fly(z), ¢] = lim (y%(x) — 2y(@)y"(z) — 24(2)y>(@)) exp (| p(n) dn)

>+ L>+ 00 c

.’b’

lim (—2y(@)y"(@) — 24 (2)y2(x)) exp (| p(n) dn) < 0

T—>+00 e

for x = b, which would contradict the fact that lim F[y(x), ¢] > 0. Finally,
Z>+ 0

suppose that
3. y"(x) changed signs for arbitrarily large values of x. Then there would
exist an increasing sequence of points {x,}, ¢c2 < a1, with the following pro-
perties:

limx, = 0, —e<y'(xy) <0, y'(ry) =0,

h—>00

where ¢ > 0 is arbitrary.

12



The existence of such a sequence {w,} is clear since y'(z) < 0 and
lim sup y'(x) = 0.

L4 0

We would then have

Tn

Fly(xn), c] = (e2 — 24(xn)y2(xy,)) exp (f p(n)dn) £ e2exp ( pr (n)dn) £ 2K,

c

where

0

exp ([ p(n)dn) £ K < + 0,

c

for arbitrarily large values of x,, which would imply that

lim Fly(xa), c] £ 0.
This, as in the above, would be a contradiction. Thus, since the three mutually
exclusive and exhaustive cases all lead to a contradiction when we assume
¥ (r) < 0 for x = ¢z, we must have y'(x) > 0 for x = cs.

We will now show that y"(z) 2 0 for « > ¢. Suppose on the cofltrary: Let there
exist a pumber d 2 ¢, such that y"(d) < 0, since y-is a solution of (R)

x

(y"(x) exp(_[p(n) dn)) = —2A(x)y< ) exp ([p(n) dy) —

d
— (A"(x) + b(x))y(@) exp ( f p(n) dn)
d

so that we have

2

(y"(x) exp (| p(n) dny)” < 0

[U—

By integrating the above inequality from d to x, we have

y" (@) exp ([p(n) dn) < y'(d) for =z 2d,
d

hence
3 t
y'(x) < y'(d) + y'(d) [ exp (— [ p(n) dn) e
d d
and
lim y'(z) = —o0.
I->+00

13



This is a contradiction to the assumption that y'(z) > 0. Hence there exists
a number d = ¢, such that y(z) >0, y'(z) >0, y"(x) = 0 for » = d. From
this it follows that """ (x) = —p(x)y"(x) — 2d(x)y’(x) — (4'(x) + b(x))y(x) £ 0
for x = d.

Lemma 2.1, [1]. If y(x) € (3({a», ©)), and y(z) >0, y'(x) >0, y'"'(x) < 0.
Jor x z a, then

(x 1
lim inf y~) > .
r>4+oo xy,(.’l/') 2

By means of the two preceding lemmas and the classical Sturm comparison
theorem we shall derive an oscillation condition for (R).

Theorem 2.1. If p(x) = 0, ’ pn)dy < 400, A(x) 2 0, A'(x) + b(zx) = 0,
and b(x) — A(x)p(x) = 0 and not identically zero in any interval, and therc
exists @ number m << 1/2 such that the second-order differential equation

w” + pw' + [24(z) 4+ (d'(x) + b(x))mr]o = O
is oscillatory, then (R) has oscillatory solutions. In fa-t if y(x) is eny nonzcro

solution of (R) with

0 2 Fly(e), a] = (y'(c) — 2y(c)y"(c) — 2A(e)y>(c)) exp ([p(n) dn)

¢ €<a, 00),
then y(x) is oscillatory.

Proof. Supposc that u(z) == 0 were a noncscillatory solution of (R) with
Flu(c), @] 2 0. Without loss of gencrality, we could assume u(z) to be eventually
nonnegative. By Lemma 2.1, there would exist a number d 2 ¢ such that

u(x) >0, u'(xr) >0,u"(xz) 20 and u''(x) £0

for @ =z d. Hence by Lemma 2.1’

u(x) - 1

lim inf — = .
r>400 XU (.l,) 2

Thus, since m < 1/2, there would exist a number d; = d, such that u(x) u'(x) ~
> ma for x = di. By writing (R) in the form of a system

(6) u = w

w” 4 plejw’ + 24(x)w + (A'(x) + b(x))uw = 0,

14



we could write the second equation in the form

.-" x u
(exp (| p(y) dn)w') + exp ( | p(n) dn) |24 (@) + (A'(x) + b(x)) w |0
Since by the above

u(x) u(x)
= 2d(x) + (d'(x) + b)) - — >

w(x) u'(x)

> 24(x) 4 (4'(x) + b(x) yma

2A(x) + (A'(x) + b(x))

for x = d;, hence also

- u(x)
exp ( } p(n) dn) |24 (z) + (A'(x) + b(z)) u’(x)] >

> exp ( [ p(n) dn) [24(2) + ('(@) + b(x))ma].

1t would follow from the Sturm comparison theorem that since the differential
equation

(exp (] () )’ + exp ([ DM(2AG) + (4'(@) + blo) pmafo = 0

is oscillatory, all nonzero solutions of

(7) (exp (| p(n) dn)y')’ + exp ( | p() di)
u(x

X124 (x) + (A'(x) - bx))— y=20,
w(x)

defined for r = d;, would oscillate. But this contradicts the fact that the
particular solution w(x) = w’(z) is the solution of (7). Thus, the assumption
that wu(x) is nonoscillatory leads to a contradiction.

3. Lemma 3.1. Jf p(x) 2 0 and bx) — A(x)p(x) = 0 and not identically

Z€ro in an J interval, and (R) has one oscillatory solutwn v(x), then any nontrivial
solution u(x) of (R) such that

(c arbitrary) is oscillatory.
Proof. We will apply the identity (I). We consider the solution

2(x) = cru(x) + cov(x), 2(c) = 0.



Then
(8) Flz(e), €] = 2'%(c) 2 0
and F[z(x), ¢] > 0 for x > c. We consider the Wronskian

W(u(z), v(z)) = u(@)v'(x) — ' (x)v(x).

If IV (u(x), v(x)) vanished at a point d > ¢, then there would exist constants ¢;
and ¢2 such that

cu(d) + caw(d) =0
' (d) + c2v'(d) = 0
ci + ¢ # 0.
Then F[z(d), c] = 0 and by (8) F[z(c), c] = 0. But
Flz(d), €] > F[z(c), c] = 0.

This contradiction shows that W (u(z), v(z)) # 0 for x > ¢. Hence since v(x)
is oscillatory, u(x) is oscillatory.

Lemma 3.2. If p(x) = 0 and b(x) — A(x)p(x) = 0 and not identically zero
m any interval, and (R) has one oscillatory solution, then any solution which
vanishes is oscillatory.

Proof. Let v(x) be an oscillatory solution of (R) which vanishes at x; and
let u(x) be a nontrivial solution of (R) such that u(x,) = 0. Construct a solution
z(x) of (R) such that z(x,) = z(x1) = 0, 2(x) =£ 0. Applying Lemma 3.1 first
to the solution v(x) and z(x) at the point x;, we see that z(z) is oscillatory.
Next applying L.emma 3.1 to the solutions z(x) and u(x) at the point z,, we
see that u(x) is oscillatory and the proof is complete.

Theorem 3.2. If p(x) = 0 and b(x) — A(x)p(x) = 0 and not identically zero
in eny interval, and (R) has one oscillatory solution, then & necessary and sufficient
condition for a solution w(x)==0 to be monoscillatory is that Flu(x),a] — 0
for all x € {a, o0).

Proof. The sufficiency is trivial. Indeed, if F[u(x), @] is negative for all
z € {@, ), it is clear that u(x) 7 0 for all x € {(a, o). To prove the necessity
we will show that if (R) has one oscillatory solution and u(zx) == 0, F[u(c), a] =
2 0, ¢ € {a, o) arbitrary, then u(x) is oscillatory. If u(c) — 0, the assertion
follows from Lemma 3.2. If u(c) 4 0, we consider a second solution defined
by the initial conditions

v(c) = 0, v'(c) = u(c), v"(c) = u'(c).

16



Since v(x) is not identically zero and vanishes at ¢, we see from Lemma 3.2
that v(z) is oscillatory. Furthermore, for any constants ¢; and ¢z both not zero

[4

(9) Fl(eru(e) + cov(c)), 6] = {iF[u(e), 6] + c3F[v(c), a]} exp ([p(n) dy) =

«

= {¢{F[u(c), 6] + c5u(c) exp ([ p(n) dn)} exp ([ p(n) dn) = 0.
(Consider the Wronskian W(u(x), v(z)) = u(z)’(z) — w'(x)v(x). If W(u(z), v(x))
vanished at a'point d > ¢, then there would. exist constants ¢; and ¢z such that

cau(d) + cow(d) = 0
au'(d) 4 cov'(d) = 0
and ¢ + ¢ #0.

If z(x) were the solution ciu(x) + cov(x), then F[z(d),a] = 0 and by (9)
Flz(c),a] = 0.
But
Flz(d), a] > F[z(c), @] = 0.

This contradiction shows that IV(u(x), v(x)) # 0 for x > ¢. Hence, since v(x)
is oscillatory, u(x) is oscillatory too. .

The next theorem shows that solutions satisfying the conditions of Theorem
3.2 actually exist. Since the method of construction has already been given
by M. Gregus [4], we will only outline the proof.

Theorem 3.3. If p(x) = 0 and b(x) — A(x)p(x) = 0, and not identically zero
in any interval, then (R) has a solution y(x) for which Fly(x), a] is always
negative. Consequently y(x) is nonoscillatory.

Proof. For each integer n > @&, we consider the solution y,(x) defined by
the initial conditions

Yn(n) = y,(n) = 0, y,(n) # 0,
and the normalization

Yn() = c1a21(x) 4 C2n22(2) + c3n23(),
with

(10) Cf" _l— 6311 + an = 1’

where z1(x), 22(x), 23(x) is the fundamental system of solutions of (R). Since
the three sequences {cin}, ¢ = 1, 2, 3 are bounded, there exists a sequence
of integers {n;} such that the subsequences {cis,} converge to numbers c;,
2 =1,2,3. From (10) we see that



24 24 -
g+, —c3=1.

The sequences {y.(®)}, {y,, (2)}, {y, ()} converge uniformly on any finite
subinterval of ‘a, o) to the functions y(x), y'(xr) and y”(x), where y(a) is
a nontrivial solution of (R).

Let ¢ be an arbitrary point in the interval «a, o). Since Fly, (n;), ] 0
and Fly, (), @] is strictly increasing, Fly,(c), @] < 0 for ¢ << mn;. Since
Fly(c), @] = lim Flyy (c), @], therefore Fly(c),«] < 0. If ¢ is arbitrary.

nj—>00
Fly(x), @] £ 0 for all x € @, c0). But the equality cannot hold at any point .
since this would imply that Fly(x), a] > 0 for x > ¢, as Fly(x), a] is strictly
increasing.
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