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CHAINS IN MODULAR TERNARY LATTICOIDS 

JARMILA HEDLIKOVA 

In this paper we consider a set M closed under a ternary operation (abc) 
satisfying the identities 

(1) (abb) = b, 
(2) ((abc)dc) = (ac(dcb)). 

We call M a modular ternary latticoid (it is a generalization of the median 
semilattice from [4]): 

Note that in any modular lattice the ternary operation (abc) defined by 
(3) (abc) = ((b v c) Aa)v (b AC) = (bv c) A(av (b A c)) 

satisfies the identities (1) and (2) (see the introduction in [3]). Thus every modular 
lattice is a modular ternary latticoid. 

[3, Theorem 1] gives a characterization of modular lattices with a least element 
by means of the ternary operation (3). 

In a modular ternary latticoid we introduce the relation between, the notion of 
the segment (compare [4]), and the notion of the chain (the corresponding notion is 
the line in lattice, see [2]). We give some results which characterize chains. 
Moreover, we prove the Jordan-Holder theorem for chains. 

Throughout the paper, M will denote a modular ternary latticoid. 

1. Basic concepts and properties 

In [3, Lemma] for a modular ternary latticoid the following is shown 
(4) (bab) = b, (aab) = a. 
(5) ((abc)bc) = (acb). 
(6) (abc) = (acb). 
(1) ((abc)ac) = (ac(abc)) = (abc). 
(8) (ab(cab)) = (abc). 
(9) (bac) = (cab)-*(abc) = (bac). 

(10) (abc) = c->(bca) = c = (cab). 
(11) (a(ade)(bde)) = (ade). 
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We say that x is between a and b and write axb if and only if x = (axb). The 
segment (a, b) is defined as the set of all elements between a and b, i.e. 
(a, b) = {x eM: axb}. From (6) and (10) it follows 

(12) axb-^x = (bxa) = (xab). 
We get (a, b) = {(axb):xeM} from (6) and (7), (a, a) = {a} from (4), and a, 

be(a,b) = (b,a) from (1) and (2). 
We will show that a modular ternary latticoid satisfies the following relations 

(13) (a, b)^(a, c)->b e(a, c). 
(14) (a, b) = (a, c)-+b = c. 
(15) aba-+a = b. 
(16) aab, baa. 
(17) abc—>cba. 
(18) abc bac-^a = b. 
(19) abc acb-^b = c. 
(20) abc - acd-^> bcd • abd. 
(21) abc • acd • ade—>bde. 

Let b e (a, c) and x e (a, b), these mean abc and axb. Applying (12) twice, (2), 
and again (12) we get x = (bxa) = ((cba)xa) = (ca(xab))=cax, which gives 
xe(a, c) by (10). Thus (13) is proved. 

From (6) we have (14): b = (abc) = (acb) = c. 
(15) follows immediately from (4), (16) from (1) and (4), (17) and (18) from 

(12), and (19) from (6). 
Now let abc, acd. Applying (6), (12), (2), (12), and (1) we have 

(bed) = (bde) = ((bac)dc) = (bc(dca)) = (bec) = c, which means bed. Further abd 
follows from ce(a, d) and be(a, c) by (13), and (20) is proved. 

(21) follows immediately from (20). 
The notation of betweenness can be extended as follows: abed denotes 

abc • abd • acd • bed. Similarly for more than four terms. Thus the implication in (20) 
can be replaced by the other one abc-acd—>abed. 

The segment (a, b) is called a simple segment if and only if it contains only the 
elements a, b. Clearly the segment (a, b) is simple if and only if (axb) e {a, b} for 
all xeM (or (bxa)e{a, b} for all xeM). 

Two segments (a, b), (c, d) are called transposed segments (or shortly transpos
es), when a, ce(b,d) and b, de(a,c) or a, de(b,c) and b, ce(a,d). The 
relation of transposition is reflexive and symmetric but need not be transitive. This 
shows the five-element modular ternary latticoid {O, I, a, b, c} corresponding to 
the known five-element modular nondistributive lattice (O, I denote the least and 
the greatest element, respectively): (abc) = (OaI) = a, (bac) = (Obi) = b, 
(cab) = (Ocl) = c, (aOb) = (aOc) = (bOc) = O, (alb) = (ale) = (blc) = I (the 
number of defining identities is reduced with regard to (1), (6), and (10)). The 
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segments (b, I), (a, O) and (a, O), (c, I) are transposes but the segments (b, I), 
(c, I) are not transposed. Therefore we introduce the following definition. 

Two segments (a, b), (c, d) are projective if and only if there exist segments 
(x(), y()), ..., (xn, yn),x{) = a,y{) = b,xn = c,yn = d such that the segments (*,_„ y,_i), 
(Xi, y{) are transposes for / = 1, ..., n. We call the segments (xt, yt), 0<i<n, the 
middle members of that projectivity. 

Now we prove the following: If (a, b), (c, d) are transposed segments and (a, b) 
is simple, then (c, d) must be also simple. It is sufficient to consider the case bad, 
bed, abc, adc. Let cxd. Then by (20) cxdcda-^cxda and dxc • deb —> dxcb. Since 
(a, b) is simple, (axb)e {a, b). If (axb) = a, then x = (axx) = (ax(dxb)) = 
= ((abx)dx) = (adx) = d. If (axb) = b, this means abx, then by (20) 
abxaxc^>bxc, which with bcx gives x = c. The segment (c, d) is simple. 

The following notions will be needed. The elements a, b, c, deMform a cyclic 
quadruple (a, b, c, d) when they are pairwise different and satisfy abc, bed, cda, 
dab. A nonempty subset / v c M i s a chain if and only if it satisfies the following two 
conditions 

(a) For every three elements a, b, ceR one (at least) of the relations abc, bca, 
cab, holds. 

(b) R does not contain a cyclic quadruple. 
It is clear that a nonempty subset of a chain is a chain. An element a e R is an end 
element of a chain R if and only if for all x, y e R axy or ayx holds. The length of 
a finite chain R is the number of its elements minus 1. 

2. Chains 

In a chain there holds: abebedb^c-^abd. To prove it assume abc, bed and 
b^c. By (20) we have adbabc-^dbc, which together with deb gives b = c, 
further dac • deb-^acb, which with abc also gives b = c. Thus neither adb nor dac 
is possible. If acd, then by (20) abcacd-*abd. Let adc and dab. The elements a, 
b,c,d cannot be different (because otherwise they would form a cyclic quadruple). 
Because of b + c there must be a£c, a±d, and b£ d.If a = b or c = d, then abd 
holds trivially. 

Note that from the preceding statement there follows: abc • bed• b =£ c—>abcd in 
a chain. 

Proposition 1. Every chain R has at most two end elements a, b, which are 
characterized by the following property: for all xeR oxb. 

Proof. Let a, b, cbe end elements of a chain R and acb. Therefore cab or cba 
must hold. Then c = a or c = b. 
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Let a±b be end elements of a chain R, xeR. There are two possibilities: axb 
and abx. Let there be abx. One of the relations bxa or bax must hold. If bax, then 
a = b, which is impossible. Then bxa, hence axb. 

Let a, 6e /? , a=£&, and azb for all ze i? . We shall show that a, b are end 
elements of R. Take x, yeR. The elements a, b, x, y can be assumed to be 
pairwise different. Now the case xay (xby by symmetry) can be eliminated as 
follows. Let xay. From yax, axb, a + x there follows that yab, which with ayb gives 
y = a, a contradiction. Therefore axy or ayx must hold and analogously bxy or 6yr. 

Proposition 2. Let / ? c M Aave more t/?an /our elements and let R satisfy 
condition (a). Then R is a chain. 

Proof. It is enough to show that no four elements of R form a cyclic quadruple. 
Assume that there exist pairwise different elements x,y,z,te R for which xyz, yzt, 
ztx, and txy. Let a e R — {x, y, z, t}. There are three possibilities: l.xay, 2. axy, 3. 
ayx. The last two relations are symmetric. 

In the first case using (20) we obtain xay • xyz-*xayz and yax yxt-*yaxt. If atz, 
then zta-zax^>tax, which contradicts axt. The relation azt does not hold by 
symmetry. There remains zat. But then taz - tzy-* azy, which contradicts ayz. 
Therefore the first relation does not hold. 

In the second case there are three possibilities: tya, tay, yta. Let tya, then 
txy tya—>xya, which contradicts axy. From the relation tay it follows that 
a = (tay) = (t(tay)(xay)) = (tax), which cannot hold for the same reasons as xay. 
Then yta must hold. By (20) yxtyta-+xta and yztyta-*yzta. Now we show that 
all three possibilities axz, azx, and xaz lead to a contradiction. Let axz, then 
axz-azy-*xzy, but it does not hold. The possibility azx is symmetric. Finally, let 
xaz. But then t = (xat) = (x(xaz)(taz))=z(xaz) = a, which is a contradiction. From 
the preceding it follows that the second relation does not hold and also the third 
one. 

Therefore the assumption was incorrect and the proposition is proved. 

Proposition 3. Every finite chain R with at least two elements has two end 
elements. 

Proof. Let R = {x0, ..., xn} contain /z + 1 elements. The proposition will be 
proved by induction on the number of elements of the chain R. 

1. If R = {xo, xx}, then x0, xx are the end elements, because .ToX^ and Jto^i^i. 
2. Let n> 1. Assume the proposition to be true for all k<n. Let a, b be end 

elements of a chain {jt̂ , ..., xn-x}. There are three possibilities: axnb, abxn, baxn. 
The last two are syir metric. If axnb, then R has the end elements a,b.lf abxn, then 
for all k<n by (20) axkbabxn-*axkxn. Clearly axnxn. Then the chain R has the 
end elements a, xn. 

Proposition 4. Let n > 1 . R = {y0, ...,y„} is a chain ifand only ifR = {x0, ..., xn}, 
where XoXx...xn (this means xpcpc,, for all i, j , ke {0,..., n}, i^j^k). 
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Proof. Let R = {y0,..., yn} be a chain of a length n. The first implication will be 
proved by induction on n. 

1. The proof is clear for n = 2. 
2. Let n>2 and let the proposition be true for all k<n. Let us denote the end 

elements of the chain R by x0, xn. From the induction assumption it follows that 
R-{xn} = {x{ , .*„_,}, where Xo*i...*„-,. It is sufficient to show XiXpcn for all i, 
;e{0, ..., n-\}, i^j. Indeed by (20) x0xixi-x0xixn-+xixixn. 

It is easy to see that R = {x0, ..., xn}, where x0xl...xn does not contain a cyclic 
quadruple, which proves the second implication. 

The chain R will be denoted by R =x0xx...xn. 

Proposition 5. Let xl)xl...xn and jr,_,x*, for some ie{l, ..., n}. Then 
X{\X\...Xj-iXXj...xn. 

Proof. It is sufficient to show that XkXxm and xpc*x for all j , k, me {0, ..., n}, 
j^k<i^m. Clearly x^^x*, xa^, and x^. Using (20) we obtain 

x,xx{ _, • jcjc, _ i jr* —> .r*xr,, further x^xXi • JC*Jt,ji;m -»jc*ju:m, and finally xpcxk • 
* XjXkXj > X^fcx . 

Corollary. If XoXx...xH is a maximal chain between the elements x0, xn, then 
(JC,_,, Xj) (/= 1, ..., n) are simple segments. 

Remark 1. A chain R is maximal if and only if there exists no chain S^R, 
S±R. 

Using Zorn's lemma we obtain the proposition: Every chain is contained in 
a maximal chain. 

Similarly: Every chain between the elements a, b is contained in a maximal 
chain between the elements a, b. 

Proposition 6. Let R be a chain, aeR. Then R = SuT, where 5, Tare chains 
with the end element a, SnT= {a}, and sat for all seS, te T. 
m Conversely: Let S, T be chains with the end element a, SnT={a}, and sat for 

allseS,teT. Then R = SuTis a chain. 
Proof. If a is an end element of R, it is sufficient to put 5 = R and T= {a}. If a 

is not an end element of R, then there exist x, y e R such that xay and x, a, y are 
pairwise different. Put S={seR: axs or asx} and T={teR: ayt or aty}. 
Evidently x e S, y e T, and a e Sn T. If v e Sn T, then avx and avy, which with xay 
gives v = a, hence SnT= {a}. Let veR. Then in each of the possibilities vxay, 
xvay, xavy, and xayv it follows that veSuT. Hence R = SuT. Now let z, 
v e S — {a} and zav. Each of the possibilities xzav, zxav, zaxv, and zavx leads to 
a contradiction. Thus azv or avz must hold and a is the end element of the chain 5 
and similarly of the chain T. Let seS, teT. Then we get sat for all four 
possibilities xsaty, xsayt, sxaty, and sxayt. Thus the first part of the proposition is 
proved. 
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To prove that R satisfy the condition (a) it is sufficient to consider the case x, 
yeS, zeT, and axy. Then yxayaz-*yxaz. With respect to this fact and 
Proposition 2 R is a chain. 

Remark 2. The chain as in Proposition 6 will be denoted by R = SaT. Evidently 
the length of the chain R (R finite) is the sum of the lengths of the chains S, T. 

Corollary. If R is a chain between the elements a, b and abc holds, then 
Rb{b,c}. 

It follows from the fact that for all teR atb-abc-*tbc holds. 

Proposition 7. A nonempty subset R^M is a chain if and only if R = {Xi}ie „ 
where I is an ordered set so that xtXjXk for all /, y, k e I, i^j^ k. 

Proof. Let R be a chain, a eR. Let S, Foe chains as in Proposition 6. Now the 
ordering on the set R will be given. For x, y e R let x ^y hold if and only if one of 
the following conditions holds 

(i) x, y eS and xya, 
(ii) x, y e T— {a} and axy, 
(iii) xeS and y e T- {a}. 

We immediately obtain that JC^JC. If x^y and y^x, then one of the following 
possibilities is true: x, yeS, xya, yxa or x, ye T- {a}, axy, ayx. In both cases 
x = y holds. Let x^y and y ^ z . If xeS and zeT—{a}, then x^z. Let 
xe T— {a}. Then y, ze T- {a} and axy, ayz, hence axz, which means x^z. If 
zeS, then x, y e S and xya, yza, hence xza, and hence x ^ z. Note that in all three 
cases xyz holds. It is easy to see that x^y or y^x for the arbitrary elements x, 
yeR. From these considerations it follows that R can be written in a desirable 
form. 

Clearly R = {.*,}, G 7 (where I has the meaning as above) is a chain, which proves 
the second implication. 

Proposition 8. Let Rbea maximal chain between the elements a, b andx, yeR. 
Then S = Rn(x, y) = {zeR: xzy} is a maximal chain between the elements x, y. 

Proof. With respect to the symmetry we may assume the case axyb. Let 
So = Su{/} be a chain between the elements x, y, hence xty and further axtyb. The 
chains S0 and Rx = Rn(a, x) fulfil the assumptions of the second part of Prop
osition 6, hence S0u^! is a chain. Ru{t} = (S0uRl)uR2, where R2 = Rn(y, b) is 
a chain for the same reasons as S0vRi. Hence teR, which with jcty gives teS and 
thus S is maximal. 

Remark 3. Proposition 8 is true for an arbitrary maximal chain R. It can be 
proved similarly. 

3. The Jordan—Holder theorem for chains 

Now we can prove the basic result. 
Proposition 9. (Jordan—Holder theorem for chains in modular ternary latticoid-
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s.) Let R, S be maximal chains with end elements a, b in a modular ternary 
latticoid. Let the chain R be finite. Then there holds: 

1. The chain S is finite and of the same length as R. 
2. There exists a bijective mapping of the set of all simple segments of the chain 

R to the set of all simple segments of the chain S such that the corresponding simple 
segments are projective and for the middle members (p, q) of that projectivity 
apb, aqb holds. 

Proof. Let R be of the length n. The proof will be given by induction on n. 
For n = 0,1 the proposition is clear. 
Let n>\, R=x0xl...xn, a=x0, b=xn, and let the proposition be true for all 

k<n. From this it follows that S—{a, b} + 0. Denote R0={a,xx} and 
Rx = Rn(xi, b). If x, ye(a,b), then (xya) = ((bxa)ya) = (ba(yax)) = (yax) and 
similarly (xyb) = (ybx). There are two possibilities (with respect to the fact that the 
segment (a,xx) is simple): 1. axxy for all yeS— {a, b}, 2. xxay for some 
yeS-{a,b}. 

In the first case xxeS, because Su{xx} is a chain and S is maximal (if yx, 
y2eS — {a} and ayxy2, then axxyxayxy2-+axxyxy2). The chain Rx has the length 
n - 1. From the induction assumption there follows the validity of the proposition 
for the chains Rx and Sx = Sn(xx, b). Since S = RoXxSx, the proposition is true for 
the chains R, S. 

In the second case denote z = (xxyb) = (ybxx), hence xxzy, axxzb, and ayzb. 
Therefore the segments (a, xx) and (y, z) are transposes. Since (a, xx) is simple, 
(y, z) is simple. First of all, assume that z = b. If (a, y) is not a simple segment, the 
case is symmetric to z+b (there exists y' eS— {a, y, b} such that ay'yb, hence 
xxay' and z' ± b, where z' = (xxy'b) = (y'bxx)). Let (a, y) be simple (the chain S is 
of the length 2). The segments (a, y) and (xx, b) are transposes, hence (xx, b) is 
simple, n = 2, and the proposition is true. Now let the elements z, b be different. 
The proposition is true for the chains Rx and a maximal chain R2^xxzb between 
the elements xx, b. R2n(z, b) has the length k^\ (z4 b), the length of R2n(xx, z) 
is n — \ — k. Denote S0={y, z}. The proposition is true for the chains 
S0z(R2n(Zy b)), Sn(y, b) (they have the length k+ 1 <n, because z4xx; in the 
case xx = z there holds ayxx, which with xxay gives a = y, a contradiction) and for 
the chains R0xx(R2n(xx, z)), (Sn(a, y))yS0 (they have the length n- k<n). We 
may summarize: the chain 5 is finite and has the length (n — k— \) + (k+\) = n. 

The second part of the proposition follows from the induction assumption and 
from the fact that the segments (a, xx), (y, z) are transposes. 
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ЦЕПИ В МОДУЛЯРНЫХ ТЕРНАРНЫХ СТРУКТУРОИДАХ 

ЯрмилаХедликова 

Резюме 

В статье рассматривается множество М с тернарной операцией (аЬс) удовлетворяющей 
тождествам (аЬЬ) = Ьи ((аЬс)а'с) = (ас(а'сЬ)). Мназывается модулярный тернарный структуроид. 
Всякая модулярная структура с подходящей тернарной операцией (аЬс) = 
= ((ЬVс)ла)V(Ьлс) = (ЬVс)л(аV(Ьлс)) есть модулярный тернарный структуроид. В М вво 
дятся - тернарное отношение между, понятие интервала и понятие цепи (соответствующее 
понятие в структуре - линия). В работе приведено несколько результатов характеризующих цепи 
в М и доказана теорема Жордана-Гельдера для цепей в М. 
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