Mathematic Slovaca

Jarmila Hedlíková
 Chains in modular ternary latticoids

Mathematica Slovaca, Vol. 27 (1977), No. 3, 249--256

Persistent URL: http://dml.cz/dmlcz/128621

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1977

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

CHAINS IN MODULAR TERNARY LATTICOIDS

JARMILA HEDLÍKOVÁ

In this paper we consider a set M closed under a ternary operation (abc) satisfying the identities
(1) $(a b b)=b$,
(2) $((a b c) d c)=(a c(d c b))$.

We call M a modular ternary latticoid (it is a generalization of the median semilattice from [4]):

Note that in any modular lattice the ternary operation ($a b c$) defined by
(3) $(a b c)=((b \vee c) \wedge a) \vee(b \wedge c)=(b \vee c) \wedge(a \vee(b \wedge c))$
satisfies the identities (1) and (2) (see the introduction in [3]). Thus every modular lattice is a modular ternary latticoid.
[3, Theorem 1] gives a characterization of modular lattices with a least element by means of the ternary operation (3).

In a modular ternary latticoid we introduce the relation between, the notion of the segment (compare [4]), and the notion of the chain (the corresponding notion is the line in lattice, see [2]). We give some results which characterize chains. Moreover, we prove the Jordan-Hölder theorem for chains.

Throughout the paper, M will denote a modular ternary latticoid.

1. Basic concepts and properties

In [3, Lemma] for a modular ternary latticoid the following is shown
(4) $(b a b)=b,(a a b)=a$.
(5) $((a b c) b c)=(a c b)$.
(6) $(a b c)=(a c b)$.
(7) $\quad((a b c) a c)=(a c(a b c))=(a b c)$.
(8) $(a b(c a b))=(a b c)$.
(9) $(b a c)=(c a b) \rightarrow(a b c)=(b a c)$.
(10) $(a b c)=c \rightarrow(b c a)=c=(c a b)$.
(11) $(a(a d e)(b d e))=(a d e)$.

We say that x is between a and b and write $a x b$ if and only if $x=(a x b)$. The segment (a, b) is defined as the set of all elements between a and b, i.e. $(a, b)=\{x \in M: a x b\}$. From (6) and (10) it follows
(12) $a x b \rightarrow x=(b x a)=(x a b)$.

We get $(a, b)=\{(a x b): x \in M\}$ from (6) and (7), $(a, a)=\{a\}$ from (4), and a, $b \in(a, b)=(b, a)$ from (1) and (2).

We will show that a modular ternary latticoid satisfies the following relations
(13) $(a, b) \subseteq(a, c) \rightarrow b \in(a, c)$.
(14) $(a, b)=(a, c) \rightarrow b=c$.
(15) $a b a \rightarrow a=b$.
(16) $a a b, b a a$.
(17) $a b c \rightarrow c b a$.
(18) $a b c \cdot b a c \rightarrow a=b$.
(19) $a b c \cdot a c b \rightarrow b=c$.
(20) $a b c \cdot a c d \rightarrow b c d \cdot a b d$.
(21) abc $\cdot a c d \cdot a d e \rightarrow b d e$.

Let $b \in(a, c)$ and $x \in(a, b)$, these mean $a b c$ and $a x b$. Applying (12) twice, (2), and again (12) we get $x=(b x a)=((c b a) x a)=(c a(x a b))=c a x$, which gives $x \in(a, c)$ by (10). Thus (13) is proved.

From (6) we have (14): $b=(a b c)=(a c b)=c$.
(15) follows immediately from (4), (16) from (1) and (4), (17) and (18) from (12), and (19) from (6).

Now let $a b c$, $a c d$. Applying (6), (12), (2), (12), and (1) we have $(b c d)=(b d c)=((b a c) d c)=(b c(d c a))=(b c c)=c$, which means $b c d$. Further $a b d$ follows from $c \in(a, d)$ and $b \in(a, c)$ by (13), and (20) is proved.
(21) follows immediately from (20).

The notation of betweenness can be extended as follows: abcd denotes $a b c \cdot a b d \cdot a c d \cdot b c d$. Similarly for more than four terms. Thus the implication in (20) can be replaced by the other one $a b c \cdot a c d \rightarrow a b c d$.

The segment (a, b) is called a simple segment if and only if it contains only the elements a, b. Clearly the segment (a, b) is simple if and only if $(a x b) \in\{a, b\}$ for all $\boldsymbol{x} \in \boldsymbol{M}$ (or $(b x a) \in\{a, b\}$ for all $x \in M$).

Two segments $(a, b),(c, d)$ are called transposed segments (or shortly transpos$e s$), when $a, c \in(b, d)$ and $b, d \in(a, c)$ or $a, d \in(b, c)$ and $b, c \in(a, d)$. The relation of transposition is reflexive and symmetric but need not be transitive. This shows the five-element modular ternary latticoid $\{O, I, a, b, c\}$ corresponding to the known five-element modular nondistributive lattice (O, I denote the least and the greatest element, respectively): $(a b c)=(O a I)=a, \quad(b a c)=(O b I)=b$, $(c a b)=(O c I)=c, \quad(a O b)=(a O c)=(b O c)=O, \quad(a I b)=(a I c)=(b I c)=I \quad$ (the number of defining identities is reduced with regard to (1), (6), and (10)). The
segments $(b, I),(a, O)$ and $(a, O),(c, I)$ are transposes but the segments (b, I), (c, I) are not transposed. Therefore we introduce the following definition.

Two segments $(a, b),(c, d)$ are projective if and only if there exist segments $\left(x_{0}, y_{0}\right), \ldots,\left(x_{n}, y_{n}\right), x_{0}=a, y_{0}=b, x_{n}=c, y_{n}=d$ such that the segments $\left(x_{i-1}, y_{i-1}\right)$, $\left(x_{i}, y_{i}\right)$ are transposes for $i=1, \ldots, n$. We call the segments $\left(x_{i}, y_{i}\right), 0<i<n$, the middle members of that projectivity.

Now we prove the following: If $(a, b),(c, d)$ are transposed segments and (a, b) is simple, then (c, d) must be also simple. It is sufficient to consider the case bad, $b c d, a b c, a d c$. Let $c x d$. Then by (20) $c x d \cdot c d a \rightarrow c x d a$ and $d x c \cdot d c b \rightarrow d x c b$. Since (a, b) is simple, $(a x b) \in\{a, b\}$. If $(a x b)=a$, then $x=(a x x)=(a x(d x b))=$ $=((a b x) d x)=(a d x)=d$. If $(a x b)=b$, this means $a b x$, then by (20) $a b x \cdot a x c \rightarrow b x c$, which with $b c x$ gives $x=c$. The segment (c, d) is simple.

The following notions will be needed. The elements $a, b, c, d \in M$ form a cyclic quadruple (a, b, c, d) when they are pairwise different and satisfy $a b c, b c d, c d a$, $d a b$. A nonempty subset $R \subseteq M$ is a chain if and only if it satisfies the following two conditions
(a) For every three elements $a, b, c \in R$ one (at least) of the relations $a b c, b c a$, $c a b$, holds.
(b) R does not contain a cyclic quadruple.

It is clear that a nonempty subset of a chain is a chain. An element $a \in R$ is an end element of a chain R if and only if for all $x, y \in R$ axy or $a y x$ holds. The length of a finite chain R is the number of its elements minus 1 .

2. Chains

In a chain there holds: $a b c \cdot b c d \cdot b \neq c \rightarrow a b d$. To prove it assume $a b c, b c d$ and $b \neq c$. By (20) we have $a d b \cdot a b c \rightarrow d b c$, which together with $d c b$ gives $b=c$, further $d a c \cdot d c b \rightarrow a c b$, which with $a b c$ also gives $b=c$. Thus neither $a d b$ nor $d a c$ is possible. If $a c d$, then by (20) $a b c \cdot a c d \rightarrow a b d$. Let $a d c$ and $d a b$. The elements a, b, c, d cannot be different (because otherwise they would form a cyclic quadruple). Because of $b \neq c$ there must be $a \neq c, a \neq d$, and $b \neq d$. If $a=b$ or $c=d$, then $a b d$ holds trivially.

Note that from the preceding statement there follows: $a b c \cdot b c d \cdot b \neq c \rightarrow a b c d$ in a chain.

Proposition 1. Every chain R has at most two end elements a, b, which are characterized by the following property: for all $x \in R a x b$.

Proof. Let a, b, c be end elements of a chain R and $a c b$. Therefore $c a b$ or $c b a$ must hold. Then $c=a$ or $c=b$.

Let $a \neq b$ be end elements of a chain $R, x \in R$. There are two possibilities: $a x b$ and $a b x$. Let there be $a b x$. One of the relations $b x a$ or $b a x$ must hold. If $b a x$, then $a=b$, which is impossible. Then $b x a$, hence $a x b$.

Let $a, b \in R, a \neq b$, and $a z b$ for all $z \in R$. We shall show that a, b are end elements of R. Take $x, y \in R$. The elements a, b, x, y can be assumed to be pairwise different. Now the case xay ($x b y$ by symmetry) can be eliminated as follows. Let $x a y$. From $y a x, a x b, a \neq x$ there follows that $y a b$, which with $a y b$ gives $y=a$, a contradiction. Therefore $a x y$ or $a y x$ must hold and analogously bxy or byx.

Proposition 2. Let $R \subseteq M$ have more than four elements and let R satisfy condition (a). Then R is a chain.

Proof. It is enough to show that no four elements of R form a cyclic quadruple. Assume that there exist pairwise different elements $x, y, z, t \in R$ for which $x y z, y z t$, $z t x$, and $t x y$. Let $a \in R-\{x, y, z, t\}$. There are three possibilities: 1. $x a y, 2$. $a x y, 3$. $a y x$. The last two relations are symmetric.

In the first case using (20) we obtain $x a y \cdot x y z \rightarrow x a y z$ and $y a x \cdot y x t \rightarrow y a x t$. If $a t z$, then $z t a \cdot z a x \rightarrow t a x$, which contradicts axt. The relation azt does not hold by symmetry. There remains zat. But then $t a z \cdot t z y \rightarrow a z y$, which contradicts $a y z$. Therefore the first relation does not hold.

In the second case there are three possibilities: tya, tay, yta. Let tya, then txy•tya $\rightarrow x y a$, which contradicts axy. From the relation tay it follows that $a=(\operatorname{tay})=(t(\operatorname{tay})(x a y))=(t a x)$, which cannot hold for the same reasons as xay. Then yta must hold. By (20) yxt $y t a \rightarrow x t a$ and $y z t \cdot y t a \rightarrow y z t a$. Now we show that all three possibilities $a x z, a z x$, and $x a z$ lead to a contradiction. Let $a x z$, then $a x z \cdot a z y \rightarrow x z y$, but it does not hold. The possibility $a z x$ is symmetric. Finally, let $x a z$. But then $t=(x a t)=(x(x a z)(t a z))=(x a z)=a$, which is a contradiction. From the preceding it follows that the second relation does not hold and also the third one.

Therefore the assumption was incorrect and the proposition is proved.
Proposition 3. Every finite chain R with at least two elements has two end elements.

Proof. Let $R=\left\{x_{0}, \ldots, x_{n}\right\}$ contain $n+1$ elements. The proposition will be proved by induction on the number of elements of the chain R.

1. If $R=\left\{x_{0}, x_{1}\right\}$, then x_{0}, x_{1} are the end elements, because $x_{0} x_{0} x_{1}$ and $x_{0} x_{1} x_{1}$.
2. Let $n>1$. Assume the proposition to be true for all $k<n$. Let a, b be end elements of a chain $\left\{x_{0}, \ldots, x_{n-1}\right\}$. There are three possibilities: $a x_{n} b, a b x_{n}, b a x_{n}$. The last two are sym metric. If $a x_{n} b$, then R has the end elements a, b. If $a b x_{n}$, then for all $k<n$ by (20) $a x_{k} b \cdot a b x_{n} \rightarrow a x_{k} x_{n}$. Clearly $a x_{n} x_{n}$. Then the chain R has the end elements a, x_{n}.

Proposition 4. Let $n>1 . R=\left\{y_{0}, \ldots, y_{n}\right\}$ is a chain if and only if $R=\left\{x_{0}, \ldots, x_{n}\right\}$, where $x_{0} x_{1} \ldots x_{n}$ (this means $x_{i} x_{j} x_{k}$ for all $i, j, k \in\{0, \ldots, n\}, i \leqslant j \leqslant k$).

Proof. Let $R=\left\{y_{0}, \ldots, y_{n}\right\}$ be a chain of a length n. The first implication will be proved by induction on n.

1. The proof is clear for $n=2$.
2. Let $n>2$ and let the proposition be true for all $k<n$. Let us denote the end elements of the chain R by x_{0}, x_{n}. From the induction assumption it follows that $R-\left\{x_{n}\right\}=\left\{x_{0}, \ldots, x_{n-1}\right\}$, where $x_{0} x_{1} \ldots x_{n-1}$. It is sufficient to show $x_{i} x_{i} x_{n}$ for all i, $j \in\{0, \ldots, n-1\}, i \leqslant j$. Indeed by (20) $x_{0} x_{i} x_{j} \cdot x_{0} x_{j} x_{n} \rightarrow x_{i} x_{j} x_{n}$.

It is easy to see that $R=\left\{x_{O}, \ldots, x_{n}\right\}$, where $x_{0} x_{1} \ldots x_{n}$ does not contain a cyclic quadruple, which proves the second implication.

The chain R will be denoted by $R=x_{0} x_{1} \ldots x_{n}$.
Proposition 5. Let $x_{0} x_{1} \ldots x_{n}$ and $x_{i-1} x x_{i}$ for some $i \in\{1, \ldots, n\}$. Then $x_{1} x_{1} \ldots x_{i-1} x x_{i} \ldots x_{n}$.

Proof. It is sufficient to show that $x_{k} x x_{m}$ and $x_{\mu} x_{k} x$ for all $j, k, m \in\{0, \ldots, n\}$, $j \leqslant k<i \leqslant m$. Clearly $x_{i} x_{i-1} x_{k}, x_{k} x_{1} x_{m}$, and $x_{i} x_{k} x_{j}$. Using (20) we obtain
$x_{k} x x_{i-1} \cdot x_{k} x_{i-1} x_{k} \rightarrow x_{k} x x_{t}$, further $x_{k} x x_{i} \cdot x_{k} x_{k} x_{m} \rightarrow x_{k} x x_{m}$, and finally $x_{i} x x_{k}$. $\cdot x_{i} x_{k} x_{j} \rightarrow x_{k} x_{k} x$.

Corollary. If $x_{0} x_{1} \ldots x_{n}$ is a maximal chain between the elements x_{0}, x_{n}, then $\left(x_{i-1}, x_{i}\right)(i=1, \ldots, n)$ are simple segments.

Remark 1. A chain R is maximal if and only if there exists no chain $S \supseteq R$, $S \neq R$.

Using Zorn's lemma we obtain the proposition: Every chain is contained in a maximal chain.

Similarly: Every chain between the elements a, b is contained in a maximal chain between the elements a, b.

Proposition 6. Let R be a chain, $a \in R$. Then $R=S \cup T$, where S, T are chains with the end element $a, S \cap T=\{a\}$, and sat for all $s \in S, t \in T$.
. Conversely: Let S, T be chains with the end element $a, S \cap T=\{a\}$, and sat for all $s \in S, t \in T$. Then $R=S \cup T$ is a chain.

Proof. If a is an end element of R, it is sufficient to put $S=R$ and $T=\{a\}$. If a is not an end element of R, then there exist $x, y \in R$ such that xay and x, a, y are pairwise different. Put $S=\{s \in R$: axs or asx $\}$ and $T=\{t \in R$: ayt or aty $\}$. Evidently $x \in S, y \in T$, and $a \in S \cap T$. If $v \in S \cap T$, then $a v x$ and $a v y$, which with $x a y$ gives $v=a$, hence $S \cap T=\{a\}$. Let $v \in R$. Then in each of the possibilities vxay, $x v a y, x a v y$, and xayv it follows that $v \in S \cup T$. Hence $R=S \cup T$. Now let z, $v \in S-\{a\}$ and $z a v$. Each of the possibilities $x z a v, z x a v, z a x v$, and $z a v x$ leads to a contradiction. Thus $a z v$ or $a v z$ must hold and a is the end element of the chain S and similarly of the chain T. Let $s \in S, t \in T$. Then we get sat for all four possibilities xsaty, xsayt, sxaty, and sxayt. Thus the first part of the proposition is proved.

To prove that R satisfy the condition (a) it is sufficient to consider the case x, $y \in S, z \in T$, and axy. Then $y x a \cdot y a z \rightarrow y x a z$. With respect to this fact and Proposition $2 R$ is a chain.

Remark 2. The chain as in Proposition 6 will be denoted by $R=S a T$. Evidently the length of the chain R (R finite) is the sum of the lengths of the chains S, T.

Corollary. If R is a chain between the elements a, b and $a b c$ holds, then $R b\{b, c\}$.

It follows from the fact that for all $t \in R \cdot a t b \cdot a b c \rightarrow t b c$ holds.
Proposition 7. A nonempty subset $R \subseteq M$ is a chain if and only if $R=\left\{x_{i}\right\}_{1 \in I}$, where I is an ordered set so that $x_{i} x_{j} x_{k}$ for all $i, j, k \in I, i \leqslant j \leqslant k$.

Proof. Let R be a chain, $a \in R$. Let S, T be chains as in Proposition 6. Now the ordering on the set R will be given. For $x, y \in R$ let $x \leqslant y$ hold if and only if one of the following conditions holds
(i) $x, y \in S$ and $x y a$,
(ii) $x, y \in T-\{a\}$ and $a x y$,
(iii) $x \in S$ and $y \in T-\{a\}$.

We immediately obtain that $x \leqslant x$. If $x \leqslant y$ and $y \leqslant x$, then one of the following possibilities is true: $x, y \in S, x y a, y x a$ or $x, y \in T-\{a\}$, $a x y$, $a y x$. In both cases $x=y$ holds. Let $x \leqslant y$ and $y \leqslant z$. If $x \in S$ and $z \in T-\{a\}$, then $x \leqslant z$. Let $x \in T-\{a\}$. Then $y, z \in T-\{a\}$ and $a x y, a y z$, hence $a x z$, which means $x \leqslant z$. If $z \in S$, then $x, y \in S$ and $x y a, y z a$, hence $x z a$, and hence $x \leqslant z$. Note that in all three cases $x y z$ holds. It is easy to see that $x \leqslant y$ or $y \leqslant x$ for the arbitrary elements x, $y \in R$. From these considerations it follows that R can be written in a desirable form.

Clearly $R=\left\{x_{i}\right\}_{i \in I}$ (where I has the meaning as above) is a chain, which proves the second implication.

Proposition 8. Let R be a maximal chain between the elements a, b and $x, y \in R$. Then $S=R \cap(x, y)=\{z \in R: x z y\}$ is a maximal chain between the elements x, y.

Proof. With respect to the symmetry we may assume the case $a x y b$. Let $S_{0}=S \cup\{t\}$ be a chain between the elements x, y, hence $x t y$ and further axtyb. The chains S_{0} and $R_{1}=R \cap(a, x)$ fulfil the assumptions of the second part of Proposition 6, hence $S_{0} \cup R_{1}$ is a chain. $R \cup\{t\}=\left(S_{0} \cup R_{1}\right) \cup R_{2}$, where $R_{2}=R \cap(y, b)$ is a chain for the same reasons as $S_{0} \cup R_{1}$. Hence $t \in R$, which with $x t y$ gives $t \in S$ and thus S is maximal.

Remark 3. Proposition 8 is true for an arbitrary maximal chain R. It can be proved similarly.

3. The Jordan-Hölder theorem for chains

Now we can prove the basic result.
Proposition 9. (Jordan-Hölder theorem for chains in modular ternary latticoid-
s.) Let R, S be maximal chains with end elements a, b in a modular ternary latticoid. Let the chain R be finite. Then there holds:

1. The chain S is finite and of the same length as R.
2. There exists a bijective mapping of the set of all simple segments of the chain R to the set of all simple segments of the chain S such that the corresponding simple segments are projective and for the middle members (p, q) of that projectivity $a p b, a q b$ holds.

Proof. Let R be of the length n. The proof will be given by induction on n.
For $n=0,1$ the proposition is clear.
Let $n>1, R=x_{0} x_{1} \ldots x_{n}, a=x_{0}, b=x_{n}$, and let the proposition be true for all $k<n$. From this it follows that $S-\{a, b\} \neq \emptyset$. Denote $R_{0}=\left\{a, x_{1}\right\}$ and $R_{1}=R \cap\left(x_{1}, b\right)$. If $x, y \in(a, b)$, then $(x y a)=((b x a) y a)=(b a(y a x))=(y a x)$ and similarly $(x y b)=(y b x)$. There are two possibilities (with respect to the fact that the segment $\left(a, x_{1}\right)$ is simple): 1. $a x_{1} y$ for all $y \in S-\{a, b\}$, 2. $x_{1} a y$ for some $y \in S-\{a, b\}$.

In the first case $x_{1} \in S$, because $S \cup\left\{x_{1}\right\}$ is a chain and S is maximal (if y_{1}, $y_{2} \in S-\{a\}$ and $a y_{1} y_{2}$, then $a x_{1} y_{1} \cdot a y_{1} y_{2} \rightarrow a x_{1} y_{1} y_{2}$). The chain R_{1} has the length $n-1$. From the induction assumption there follows the validity of the proposition for the chains R_{1} and $S_{1}=S \cap\left(x_{1}, b\right)$. Since $S=R_{0} x_{1} S_{1}$, the proposition is true for the chains R, S.

In the second case denote $z=\left(x_{1} y b\right)=\left(y b x_{1}\right)$, hence $x_{1} z y, a x_{1} z b$, and $a y z b$. Therefore the segments $\left(a, x_{1}\right)$ and (y, z) are transposes. Since $\left(a, x_{1}\right)$ is simple, (y, z) is simple. First of all, assume that $z=b$. If (a, y) is not a simple segment, the case is symmetric to $z \neq b$ (there exists $y^{\prime} \in S-\{a, y, b\}$ such that $a y^{\prime} y b$, hence $x_{1} a y^{\prime}$ and $z^{\prime} \neq b$, where $z^{\prime}=\left(x_{1} y^{\prime} b\right)=\left(y^{\prime} b x_{1}\right)$). Let (a, y) be simple (the chain S is of the length 2). The segments (a, y) and $\left(x_{1}, b\right)$ are transposes, hence $\left(x_{1}, b\right)$ is simple, $n=2$, and the proposition is true. Now let the elements z, b be different. The proposition is true for the chains R_{1} and a maximal chain $R_{2} \supseteq x_{1} z b$ between the elements $x_{1}, b . R_{2} \cap(z, b)$ has the length $k \geqslant 1(z \neq b)$, the length of $R_{2} \cap\left(x_{1}, z\right)$ is $n-1-k$. Denote $S_{0}=\{y, z\}$. The proposition is true for the chains $S_{0} z\left(R_{2} \cap(z, b)\right), S \cap(y, b)$ (they have the length $k+1<n$, because $z \neq x_{1}$; in the case $x_{1}=z$ there holds $a y x_{1}$, which with $x_{1} a y$ gives $a=y$, a contradiction) and for the chains $R_{0} x_{1}\left(R_{2} \cap\left(x_{1}, z\right)\right),(S \cap(a, y)) y S_{0}$ (they have the length $\left.n-k<n\right)$. We may summarize : the chain S is finite and has the length $(n-k-1)+(k+1)=n$.

The second part of the proposition follows from the induction assumption and from the fact that the segments $\left(a, x_{1}\right),(y, z)$ are transposes.

REFERENCES

[1] BIRKHOFF, G.: Lattice theory. 3rd. Providence 1967.
[2] KOLIBIAR, M.: Linien in Verbänden. Anal. Stiint. Univ. Iasi, 1, 1965, 90-98.
[3] KOLIBIAR,. M. and MARCISOVÁ, T.: On a question of J. Hashimoto. Mat. Čas. 24, 1974, 179-185.
[4] SHOLANDER, M.: Medians and betweenness. Proc. Amer. Math. Soc. 5, 1954, 801-807.
Received December 3, 1975

Matematický ústav SAV
Obrancov mieru 49
88625 Bratislava

ЦЕПИ В МОДУЛЯРНЫХ ТЕРНАРНЫХ СТРУКТУРОИДАХ

Ярмила Хедликова
Резюме
В статье рассматрıвается множество M с тернарной операцией ($a b c$) удовлетворяющей тождествам $(a b b)=b$ п $((a b c) d c)=(a c(d c b))$. M называется модулярный тернарный структуроид. Всякая модулярная структура с подходящей тернарной операцией $(a b c)=$ $=((b \vee c) \wedge a) \vee(b \wedge c)=(b \vee c) \wedge(a \vee(b \wedge c))$ есть модулярный тернарный структуроид. В M вво дятся - тернарное отношение между, понятие интервала и понятие цепи (соответствующее понятие в структуре - линия). В работе приведено несколько результатов характеризующих цепи в $М$ и доказана теорема Жордана-Гельдера для цепей в M.

