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ON THE |E, q| SUMMATION OF THE FOURIER SERIES

VIKRAMADITYA SINGH

1. Definition If
>(@+1)"b. =S,
[}

where

b= 3 (i) 4" e (@=0),
k=0 k

we say that the series Y a. is summable (E, q) to S.
[}
If
;(q +1)""b,

is an absolutely convergent series, then the series is said to be summable |E, q ll)-

It is easy to see that an absolutely convergent series is summable |E, q|.
2. Let f(¢) be integrable L in (—x, ), periodic with period 2z, and let
1 < .
2.1) f(t)~5 ao+ D.(an cos nt + b, sin nt).
1
The allied series of (2.1) at t=x is

(2.2) (b cos nx —ay, sin nx).
1

We write

@) =3 [f(x +0)+f(x =)
h(t)=®(t) log logl?(, k>r.

In 1968 Mohanty and Mohapatra® proved the following Theorems.

Y Hardy [1])
» Mohanty and Mohapatra [3]



Theorem MM. If g (t) is of bounded variation in (0, §), where 0<6 <1, then the
series (2.1) is summable |E, q| (0<é<1) at t=x

Our object in this paper is to generalize the above Theorem MM by using a less
strict condition. In fact we prove

Theorem. If h(t) is of bounded variation in (0, §), where 0<d <1, then the
series (2.1) is summable |E, q| (0<gq<1) att=x
~ Notation.

-1

' k 2 2 sinu
P(n,t)= log log — 1+q°+2 " —_— ,
(n,t) Jo (og og u) (1+gq q cosu) cosn (arctg p +cosu> du

8 1 .
k
Q(n,t)= J <10g log —) (1+q°+2q cosu)"? cosn (arctg Sk ) du
‘ u q +cosu
3. For the proof of our Theorem we need the following Lemma.

Lemma.

;(q +1)7|P(n, 8)| <.

Proof of the Lemma. It can be proved that the series > M., where M, =
[V
2] -1

k
=J (log log ;) cos nu du, is summable |E, q|.
0

Integrating by parts we have for n=1

-1

L.}
f (log log S) cos nu du =
0
k -1 . 1 k k\" ! sin nu
= <log log 5) n sinnd - <log log ;) <log ;) u du=
0
-1

= <log log %) n~'sin nd +[O{n"" (logn)™" (log log n)*}].

-1 -2

’i"hus

-1

(sin nd)(n +1)7" (log log g) +0{n"" (logn)™" (loglogn)™*} =
=M,1.+O{n_1 (cosn)™" (log logn)~*}.

To prove that = M, is summable |E, q|, we need only to show that

S@+17 ; (Z) q" ™ (sinkd)(k + 1) | <o |

» Haslam Jones (2]

14



Now

i(q + 1)“"|:2 (2) q" ™" (sin k&) (k + 1)“|=

= (Z(q +1)™

q +cosd
4)

+q""! siné} <D@@+1)"(n+1)"'(1+q°+2q cosd)"* +
o

+ i(q +1)7¢"(n+ 1) =

= i(n +1)7" [l —a%—? sin g]nl2+q2 (E%)"(n +1)7 <o,

Hence >'M, is summable |E, q|, i.e.
0

L] k -
L (log log ;)

sinu - —n
: SR ) qu|=S(g+1)"|P(n, 8)| <o,
(arctg a+ cosu) dul ;(q DT|P(n,d8)| <

1

(1+q*+2q cosu)"*cosn -

g(q +1)™

which proves the Lemma.

(n+1)" {(1 +q°+2q cosd)” sinn [(arctg —ﬂ6—> —5] +

4. It will be helpful in proving the Theorem to use the following inequalities,
satisfied by the function defined in § 2. These can be obtained easily by applying

the Second Mean Value Theorem:

-1

4.1) P(n,t)=0 {(q+l)" <log log’f) n_l}

4.2) Q(n,t)=0{n"'(1+q*+2q cos t)"}.
S. Proof of the Theorem.

We have

A,.(x)=%-[) @ (t) cos nt dt

S 7T
=£J @ (t) cos nt dt+zf @D (t) cosn dt
T Jo T Js
=R, +S., say.

>'S. is summable |E, q| if
0

* Mohanty and Mohapatra [3]

15



(5.1) ;(q +1)™

) 2 n/2 sinu
_— <,
L @(t)(1+q°+2q cost)"” cos (arctg p +cosu> du' ©

The expression on the left-hand side of (5.1)

Si(q + 1)_"L"|d§(t)|(1+q2+2q cost-.)"/zdt
) S - n 4q . "2
=L |@ (1)) dt;(q +1) "(g+1) [l—m sin t—2]
= f[|<p(;)| dfi [1 ‘Lz sin’ t/zilnl2
s 5 (1+q)
= L n]di(t)l dti[l —sin’7/2]"?,

h T 2\/5
w eresxnz—(1+q)

T )
52) :L |¢(tr)|df

sin t/2

Thus S'S. is summable |E, 4|
3]

2 )
R"=-—f @(t) cos nt dt.
JT Jo

-1

]
=£Jh(t) <loglogl—<> cos nt dt
7w Jo t

=72_t- [h(f)J.; (log logS)

5 t
__z,fdh(t)f (log log E) cos nu du
T Jo 0 u

5

cosnu du] —
0

-1

-1

S
=Eh(a)f (log log E) cos nu du —
T 0 u

5 t k -1
_,ZJ th(t)f (log log --) cos nu du
T 0 o u
_2 4(®)R:-R}.
JT

® Singh [4]
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R, is summable |E, q| by the Lemma above. R,' is summable |E, q| if

<< 0o

j dh (OP(n, t)

I=;(q+1)_"

o 5
<@+ [ el 1P 0
(1) 0
S oo
= [ 1an @] Zta + 17 1P 0.
0 [9)
]
Since f |dh ()] is finite, it is enough to show that
0
Z(q +1)7|P(n, t)| <
1 ..
Let m= [?] writing

Sa+1071P(, 0l = S (@+ D7 IP@, 0+ S+ D7, 0.

We have using (4.1)

S+ 1IPe.0l=0 (Sarv @riyn (osiost) |

=0 {(log log 17(>_1 m;-! %}
=0(1).

Again

S@+ 17" IPe, 0l< S + IR, )]+ Sa + 1710 o)
<S@+ 107 IPe, &)+ Sa + )10, ).
Since é‘,(q +1)7"|P(n, 8)| <, by the Lemma above and using (4.2)
2(4 +t17Qm, <A g(q +1)"n"'(1+q" +2q cost)™”

> n/2
Am_I%:(q + 1)"(q + 1)_" [1 —(li—qq)f sin t/2]
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oo

» 4q o, ]n/Z
Am 2[1 ———(1+q)zsm t/2

4]

=Am™' [ —sin’7/2]"
0

. 2Vq .
where sin /2 =—-—=sin¢/2
(1+4q)

__Am~
" 1—cos t/2

=0(1).

This proves the Theorem,
The author takes this opportunity to express his deep gratitude to Dr. S.R.Sinha
for his kind advice and encouragement during the preparation of this paper.
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OB |E, q| CYMMHWPOBAHUM PSIA ®YPHLE
Bukpamanutus CuHT
Pesome

B paGoTe [0Ka3aHO JOCTATOYHOE YCIOBHMeE st Toro 4tobel (2.1) 6bu1 |E, 4| cymmupyembiii.
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