Mathematic Slovaca

Olga Krupková
Variational metrics on $\mathbf{R} \times T M$ and the geometry of nonconservative mechanics

Mathematica Slovaca, Vol. 44 (1994), No. 3, 315--335

Persistent URL: http://dml.cz/dmlcz/128660

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1994

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

VARIATIONAL METRICS ON $\mathbb{R} \times T M$ AND THE GEOMETRY OF NONCONSERVATIVE MECHANICS

OLGA KRUPKOVÁ
(Communicated by Július Korbaš)

Abstract

We introduce a variational metric on $\mathbb{R} \times T M$ which is a generalization of Riemannian and Finslerian metrics and is suitable for a geometric description of time-dependent mechanical systems. We show that a manifold endowed with a variational metric carries a canonical metric semispray connection. Connections associated with a variational metric are shown to be a global counterpart of the nonconservative Euler-Lagrange equations, and they can be viewed as a generalization of the Levi-Civita connection for a Riemannian structure, of the Cartan connection for a Finslerian structure, and of the Grifone connection for a generalized Finslerian structure. We also investigate metrizability and variationality of general semispray connections on $\mathbb{R} \times T M$, and obtain a generalization of Krupka-Sattarov's theorem on variationality of a Finslerian structure.

1. Introduction

The aim of this paper is to propose a generalization of the concept of Finslerian manifold, suitable for a geometric description of time-dependent nonconservative mechanical systems.

The dynamics of a regular time-dependent mechanical system on a manifold M is described by a semispray (a "second order vector field") on the fibered manifold $\mathbb{R} \times M \rightarrow \mathbb{R}$, or equivalently, by a semispray connection which is an Ehresmann comnection on $\mathbb{R} \times T M$ (i.e. a section $\mathbb{R} \times T M \rightarrow \mathbb{R} \times T^{2} M$, where $T^{2} M I$ denotes the tangent bundle of order 2 of M). Locally it is represented by a regular system of second order differential equations for sections of the fibered manifold $\mathbb{R} \times M \rightarrow \mathbb{R}$. In case that the manifold M is endowed

AMS Subject Classification (1991): Primary 53B40, 53B50, 53C05, 58B20. Secondary 70 H 35 .

Key words: Semispray connection, Locally variational form, Helmholtz conditions, Time and velocity dependent metric, Finslerian structure, Nonconservative time-dependent mechanical sistem, Kinetic energy, (Nonconservative) Force.
with a Riemannian metric g, it carries a canonical semispray connection Γ such that the geodesics of Γ coincide with the graphs of geodesics of the Levi-Civita connection ∇ of g; a similar situation occurs in the case of a Finslerian manifold. Moreover, we know that both in Riemannian and Finslerian geometries the equations for geodesics are variational (i.e. they are the Euler-Lagrange equations of a lagrangian called the "kinetic energy" of Riemannian and Finslerian structures, respectively). Hence, the geodesics in Riemannian and Finslerian geometries can be viewed as geodesics (paths) of semispray connections describing the dynamics of a Riemannian and Finslerian free particle, respectively. These two important particular cases of mechanical systems suggest us an idea to investigate the structure of semispray connections on $\mathbb{R} \times T M$, and to search for all (semispray) connections describing the dynamics of "free particles". Naturally, we will require these connections be variational.

In classical Finslerian geometry, a Finslerian manifold is a manifold M endowed with a Finslerian metric g on $T M$ which is a regular symmetric fibered morphism $g: T M \rightarrow T_{2}^{0} M$ over id_{M} (where $T_{2}^{0} \dot{M}$ denotes the bundle of all tensors of type $(0,2)$ over M), satisfying the following two conditions:

$$
\begin{equation*}
\frac{\partial g_{i j}}{\partial \dot{x}^{k}}=\frac{\partial g_{i k}}{\partial \dot{x}^{j}} \quad\left(\text { "integrability") }, \quad \frac{\partial g_{i j}}{\partial \dot{x}^{k}} \dot{x}^{k}=0 \quad\right. \text { ("homogeneity") } \tag{1.1}
\end{equation*}
$$

Omitting the "integrability" condition one obtains a class of metrics which is studied in a generalized Finslerian geometry (cf. e.g. [13] and the references therein).

In this paper, we consider regular symmetric fibered morphisms $g: \mathbb{R} \times T M \rightarrow$ $T_{2}^{0} M$ over id_{M} (time-dependent metrics on $T M$) which satisfy the "integrability" condition, but not necessarily the "homogeneity" condition; we call these metrics variational metrics on $\mathbb{R} \times T M$. A manifold M endowed with a variational metric is then called a semi-finslerian manifold. Using the results of [7] we show in Sec. 4 that every semi-finslerian manifold (M, g) carries a canonical (semispray) connection Γ_{g}. The property of variationality of the canonical connection enables us to introduce naturally the concept of a kinetic energy λ_{g} associated with the variational metric g. Since any semispray connection on a semi-finslerian manifold (M, g) is uniquely determined by the fundamental connection and a soldering form, the equations for geodesics of a connection on a semi-finslerian manifold take the form of the Euler-Lagrange equations for a general nonconservative mechanical system,

$$
\begin{equation*}
\frac{\partial T}{\partial x^{i}}-\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial T}{\partial \dot{x}^{i}}=F_{i}, \quad 1 \leq i \leq \operatorname{dim} M \tag{1.2}
\end{equation*}
$$

In comparison to [2], where certain connections determined by a lagrangian defined on $\mathbb{R} \times T M$ are constructed, we are interested in semispray connec-
tions, since they naturally arise as a geometric counterpart of the "equations of motion".

In Sec. 5 , we study the structure of semispray connections on $\mathbb{R} \times T M$. We propose a concept of metrizability of such connections, and we get a classification of metrizable semispray connections. We study conditions of variationality [6] of a semispray connection (the so called "inverse variational problem" for connections), and investigate the relation between variationality and metrizability. We obtain a generalization (to metrizable semispray connections) of a theorem by Krupka and Sattarov [5].

In Sec. 6, we show on a few easy examples from geometry and physics that our concepts of semi-finslerian manifold and mechanical system are a general background for mechanical systems connected with Riemannian and Finslerian geometries and/or described by Grifone's connections [1]. Finally, we show that applying our theorem on variationality of semispray connections to linear connections on M and on $T M$ one gets the results known in Riemannian and Finslerian geometries (cf. [5]).

We use some results on Ehresmann's connections, semispray connections (see e.g. [6], [10], [11], [12], [14], [15]), and the calculus of variations on fibered manifolds ([3], [4], [9] and references therein); notations and the main concepts are briefly explained in Sec. 2 and Sec. 3.

The present paper is an enlarged version of the Preprint [8].

2. Semispray connections and regular second order equations

Throughout the paper, all manifolds and mappings are supposed to be smooth, and the summation convention is used. We denote by ${ }^{*}$ the pull-back, T the tangent functor, and ∂ the Lie derivative. \mathcal{F} denotes the ring of smooth functions on $\mathbb{R} \times T M$.

We shall consider a fibered manifold $\pi: \mathbb{R} \times M \rightarrow \mathbb{R}$, where M is an m-dimensional manifold, and π is the first canonical projection. The first (resp. second) jet prolongation of π will be denoted by $\pi_{1}: J^{1}(\mathbb{R} \times M) \rightarrow \mathbb{R}$ (resp. $\left.\pi_{2}: J^{2}(\mathbb{R} \times M) \rightarrow \mathbb{R}\right)$. Note that $J^{1}(\mathbb{R} \times M)\left(\operatorname{resp} . J^{2}(\mathbb{R} \times M)\right)$ is canonically identified with $\mathbb{R} \times T M$ (resp. $\mathbb{R} \times T^{2} M$, where $T^{2} M \subset T(T M)$ is the tangent bundle of M of order 2).

The global coordinate on \mathbb{R} will be denoted by t. If $\left(x^{i}\right), 1 \leq i \leq m$, are coordinates on an open subset of M, we obtain a fiber chart $(V, \psi), \psi=\left(t, x^{i}\right)$ on $\mathbb{R} \times M$. The associated fiber chart on $\mathbb{R} \times T M$ (resp. on $\mathbb{R} \times T^{2} M$) will be denoted by $\left(V_{1}, \psi_{1}\right), \psi_{1}=\left(t, x^{i}, \dot{x}^{i}\right)$ (resp. $\left(V_{2}, \psi_{2}\right), \psi_{2}=\left(t, x^{i}, \dot{x}^{i}, \ddot{x}^{i}\right)$). Obviously, for any two fiber charts $(V, \psi), \psi=\left(t, x^{i}\right)$ and $(\bar{V}, \bar{\psi}), \bar{\psi}=\left(t, \bar{x}^{i}\right)$

OLGA KRUPKOVÁ

such that $V \cap \bar{V} \neq 0$, the overlap mapping is defined by

$$
\begin{equation*}
\bar{x}^{i}=\bar{x}^{i}\left(x^{k}\right), \quad \dot{\bar{x}}^{i}=\frac{\partial \bar{x}^{i}}{\partial x^{k}} \dot{x}^{k} \cdot \quad \quad \ddot{\bar{x}}^{i}=\frac{\partial^{2} \bar{x}^{i}}{\partial x^{j} \partial x^{k}} \dot{x}^{j} \dot{x}^{k}+\frac{\partial \bar{x}^{i}}{\partial x^{k}} \ddot{x}^{k}, \quad 1 \leq i \leq m \tag{2.1}
\end{equation*}
$$

If $\gamma: \mathbb{R} \rightarrow \mathbb{R} \times M$ is a section, then the first (resp. second) jet prolongation of γ is denoted by $J^{1} \gamma$ (resp. $\left.J^{2} \gamma\right) ; J^{1} \gamma$ (resp. $J^{2} \gamma$) is a section of the fibered manifold $\pi_{1}: J^{1}(\mathbb{R} \times M) \rightarrow \mathbb{R}\left(\right.$ resp. $\left.\pi_{2}: J^{2}(\mathbb{R} \times M) \rightarrow \mathbb{R}\right)$. Since $\gamma(t)=$ $(t, c(t))$, where $c(t)$ is a curve in M defined on an open subset of \mathbb{R}. we have $J^{1} \gamma(t)=(t, c(t), \mathrm{d} c / \mathrm{d} t)$ and $J^{2} \gamma=\left(t, c(t), \mathrm{d} c / \mathrm{d} t, \mathrm{~d}^{2} c / \mathrm{d} t^{2}\right)$.

Recall that a (Ehresmann) connection on $\mathbb{R} \times M$ is a section of the fibered manifold $\mathbb{R} \times T^{2} M \rightarrow \mathbb{R} \times M$. In fibered coordinates, a connection Γ is represented by means of its components $\Gamma^{i}, 1 \leq i \leq \operatorname{dim} M$, defined by $\left(t, x^{i}\right) \circ \Gamma=$ $\left(t, \Gamma^{i}\right)$. A connection can be identified with the so called horizontal form h_{1}. or with the vertical form v_{Γ}, or with a horizontal distribution H_{Γ} on $\mathbb{R} \times M$. which, in fibered coordinates, are expressed as follows:

$$
\begin{gathered}
h_{\Gamma}=\left(\frac{\partial}{\partial t}+\Gamma^{i} \frac{\partial}{\partial x^{i}}\right) \otimes \mathrm{d} t, \quad v_{\Gamma}=\frac{\partial}{\partial x^{i}} \otimes\left(\mathrm{~d} x^{i}-\Gamma^{i} \mathrm{~d} t\right) \\
H_{\Gamma}=\operatorname{span}\left\{\frac{\partial}{\partial t}+\Gamma^{i} \frac{\partial}{\partial x^{i}}\right\}
\end{gathered}
$$

A (local) section γ of $\mathbb{R} \times M \rightarrow \mathbb{R}$ is called a geodesic (a path, or an integral section) of a connection I if $\Gamma \circ \gamma==J^{1} \gamma$; this equation, when expressed in fibered coordinates, gives a system of m first order ordinary differential equations: for γ.

The dynamics of a time-dependent mechanical system on M is described by a semispray connection on $\mathbb{R} \times T M$, which is a section $\Gamma: \mathbb{A} \times T M \rightarrow \mathbb{R} \times T^{2}, 1 /$ (hence, it is a kind of Ehresmann's connection on $\mathbb{R} \times T M$). In a fiber char? $(V, \psi), \psi=\left(t, x^{i}\right)$ on $\mathbb{R} \times M, \Gamma$ is expressed by

$$
\begin{equation*}
\left(t, x^{i}, \dot{x}^{i}, \ddot{x}^{i}\right) \circ \Gamma=\left(t, x^{i}, \dot{x}^{i}, \Gamma^{i}\right) \tag{2.2}
\end{equation*}
$$

where Γ^{i} are functions on V_{1}, called the components of Γ. Obviously: Γ^{\prime}. $1 \leq i \leq m$, transform like the coordinates \ddot{x}^{i} under transformations of fibered coordinates (cf. (2.1)). A semispray connection Γ on $\mathbb{R} \times T M$ is identified with the horizontal form h_{Γ} of Γ, or the vertical form v_{r} of Γ,

$$
\begin{aligned}
& h_{\mathrm{\Gamma}}=\left(\frac{\partial}{\partial t}+\dot{x}^{i} \frac{\partial}{\partial x^{i}}+\Gamma^{i} \frac{\partial}{\partial \dot{x}^{i}}\right) \mathrm{d} t \\
& v_{\Gamma}=\frac{\partial}{\partial x^{i}} \otimes\left(\mathrm{~d} x^{i}-\dot{x}^{i} \mathrm{~d} t\right)+\frac{\partial}{\partial \dot{x}^{i}} \otimes\left(\mathrm{~d} \dot{x}^{i}-\Gamma^{i} \mathrm{~d} t\right),
\end{aligned}
$$

or the π_{1}-horizontal distribution $H_{\Gamma}=\operatorname{Im} h_{\Gamma} \subset T(\mathbb{R} \times T M)$ spanned by the vector field

$$
\zeta=\frac{\partial}{\partial t}+\dot{x}^{i} \frac{\partial}{\partial x^{i}}+\Gamma^{i} \frac{\partial}{\partial \dot{x}^{i}},
$$

called a semispray.
A (local) section γ of π is called a path or an integral section or a geodesic of a semispray connection Γ if

$$
\begin{equation*}
\Gamma \circ J^{1} \gamma=J^{2} \gamma \tag{2.3}
\end{equation*}
$$

If $\gamma(t)=(t, c(t))$, where c is a curve defined on an open subset of \mathbb{R}, we obtain that γ is a geodesic of Γ if and only if

$$
\begin{equation*}
\frac{\mathrm{d}^{2} c^{i}}{\mathrm{~d} t^{2}}=\Gamma^{i}\left(t, c(t), \frac{\mathrm{d} c}{\mathrm{~d} t}\right), \quad 1 \leq i \leq m \tag{2.4}
\end{equation*}
$$

in each fiber chart $(V, \psi), \psi=\left(t, x^{i}\right)$ on $\mathbb{R} \times M$. It is clear that integral sections of a connection Γ and of its horizontal distribution H_{Γ} coincide.

Every $\pi_{1,0}$-vertical valued π_{1}-horizontal one-form on $\mathbb{R} \times T M$ is called a soldering form. Soldering forms on $\mathbb{R} \times T M$ can be roughly characterized as "differences of semispray connections". More precisely, if Γ, Γ^{\prime} are two semispray connections on $\mathbb{R} \times T M$, then the vector valued one-form s defined by

$$
\begin{equation*}
s=h_{\Gamma}-h_{\Gamma^{\prime}} \tag{2.5}
\end{equation*}
$$

is a soldering form; conversely, if s is a soldering form on $\mathbb{R} \times T M$, then there exist semispray connections Γ, Γ^{\prime} such that $s=h_{\Gamma}-h_{\Gamma}^{\prime}$. We shall denote by $\mathcal{S}(\mathbb{R} \times T M)$ the \mathcal{F}-module of all soldering forms on $\mathbb{R} \times T M$.

For more details on connections and semispray connections on fibered manifolds we refer e.g. to [10], [11], [12], [14] and [15].

A semispray connection describes the motion of a mechanical system but does not represent the mechanical system itself. It is easy to find different mechanical systems represented by the same semispray connection (i.e. possessing the same "trajectories"): this situation occurs if the corresponding equations of motion differ from the equations for geodesics by a so called "regular integrating factor", i.e. if they are of the form

$$
\left[g_{j i}^{1}\left(\ddot{x}^{i}-\Gamma^{i}\right)\right] \circ J^{2} \gamma=0 \quad \text { and } \quad\left[g_{j i}^{2}\left(\ddot{x}^{i}-\Gamma^{i}\right)\right] \circ J^{2} \gamma=0,
$$

where $\left(g_{i j}^{1}\right)$ and $\left(g_{i j}^{2}\right)$ are regular matrices (at each point of $\mathbb{R} \times T M$). As an example, let us consider a damped harmonic oscillator of mass m, frequency
ω and damping constant k, and a harmonic oscillator of frequency whome when mass-accretion is ruled by $m e^{k t}$. The corresponding equations of motion are $m \ddot{x}+m k \dot{x}+m \omega^{2} x=0$ and $m e^{k t}\left(\ddot{x}+k \dot{x}+\omega^{2} x\right)=0$. which means that the motion of both these physical systems is described by the same semispray connection $\ddot{x} \circ \Gamma=-k \dot{x}-\omega^{2} x$. Examples from classical mechanics show that the "integrating factor" carries an important physical information. since it in related to the "kinetic energy" of the system. Therefore, to avoid confusion. it is bette" to work with the equations of motion in their "covariant form". Within the range of the theory of second (resp. first) order ordinary differential equationi: on a fibered manifold $\mathbb{R} \times M \rightarrow \mathbb{R}$ this means that we have to consider the \mathcal{F}-module of one-contact 2 -forms on $\mathbb{R} \times T^{2} M$ (resp. on $\mathbb{R} \times T M$). which ar: horizontal with respect to the projection $\pi_{2,0}: \mathbb{R} \times T^{2} M \rightarrow \mathbb{R} \times M$ (see e.g. 3 . [4], [6] $)$; this module is denoted by $\Omega_{\mathbb{R} \times M}^{1.1}\left(\mathbb{R} \times T^{2} M\right)$ (resp. $\Omega_{\mathbb{M}}^{1.1}(\mathbb{S} \times T M)$. For our purpose it is sufficient to recall that this module consists of 2 -forms. which in each fiber chart $(V, \psi), \psi=\left(t, x^{i}\right)$ on $\mathbb{R} \times M$ are expressed in the form

$$
\begin{equation*}
E=E_{i} \mathrm{~d} x^{i} \wedge \mathrm{~d} t \tag{2.6}
\end{equation*}
$$

where E_{i} are functions on V_{2} (resp. on V_{1}), i.e. $E_{i}=E_{i}\left(t, x^{k} . \dot{x}^{k} . \ddot{x}^{k}\right)$ (resp). $\left.E_{i}=E_{i}\left(t, x^{k}, \dot{x}^{k}\right)\right), 1 \leq i \leq \operatorname{dim} M$. A (local) section γ of $\pi: \mathbb{R} \times M-\Omega$ is called a solution of such a form E on $\mathbb{R} \times T^{2} M$ (resp. on $\mathbb{R} \times T M$) if $E \circ J^{2} \gamma=0$ (resp. $E \circ J^{1} \gamma=0$). Clearly, a section $\gamma(t, c(t))$ of π is a solution of $E \in \Omega_{\mathbb{R} \times M}^{1,1}\left(\mathbb{R} \times T^{2} M\right)$ (resp. of $E \in \Omega_{\mathbb{R} \times M}^{1,1}(\mathbb{R} \times T M)$) if and only if it satisfies the system of $m=\operatorname{dim} M$ second (resp. first) order ordinary differential equations

$$
E_{i}\left(t, c(t), \mathrm{d} c / \mathrm{d} t, \mathrm{~d}^{2} c / \mathrm{d} t^{2}\right)=0, \quad \text { resp. } \quad E_{i}(t, c(t) \cdot \mathrm{d} c / \mathrm{d} t)=0 . \quad
$$

In this paper, we shall consider a submodule $\Omega^{\text {lin }}\left(\mathbb{R} \times T^{2} M\right)$ (resp). $\Omega^{\operatorname{lin}}(\mathbb{R} \times T M)$) of the module $\Omega_{\mathbb{R} \times M}^{1,1}\left(\mathbb{R} \times T^{2} M\right)$ (resp. $\Omega_{\mathbb{R} \times M}^{1.1}(\mathbb{E} \times T M / 1$. which is defined as a module of 2 -forms on $\mathbb{R} \times T^{2} M$ (resp. $\mathbb{R} \times T M$) satinfuins in each fiber chart the condition

$$
E=E_{i} \mathrm{~d} x^{i} \wedge \mathrm{~d} t, \quad E_{i}=A_{i}+B_{i k} \ddot{.}^{k}
$$

resp.

$$
E=E_{i} \mathrm{~d} x^{i} \wedge \mathrm{~d} t, \quad E_{i}=A_{i}+B_{i k} x^{k}
$$

where $A_{i}, B_{i k}, 1 \leq i, k \leq m$ are functions of t. (resp) of t.r. r^{\prime}. $1 \leq j \leq m$.

A form $E \in \Omega^{\operatorname{lin}}\left(\mathbb{R} \times T^{2} M\right)$ (resp. $E \in \Omega^{\operatorname{lin}}(\mathbb{R} \times T M)$) is called regulur. if

$$
\operatorname{det}\left(B_{i k}\right) \neq 0
$$

It is easy to see (cf. [6], [14], [15]) the following:

Proposition 1. Let $E \in \Omega^{\operatorname{lin}}\left(\mathbb{R} \times T^{2} M\right)$ (resp. $E \in \Omega^{\operatorname{lin}}(\mathbb{R} \times T M)$) be a rgular form. Then there exists a unique semispray connection Γ on $\mathbb{R} \times T M$ (rsp. an Ehresmann connection Γ on $\mathbb{R} \times M$) such that the geodesics of Γ coincide with the solutions of E. The connection Γ is obtained as the solution of the equation $\Gamma^{*} E=0$.

The connection Γ satisfying the equation $\Gamma^{*} E=0$ is called associated to E.

Regular forms $E_{1}, E_{2} \in \Omega^{\operatorname{lin}}\left(\mathbb{R} \times T^{2} M\right)$ (resp. in $\left.\Omega^{\text {lin }}(\mathbb{R} \times T M)\right)$ are called cquicalent if the semispray connections (resp. Ehresmann's connections) associated to E_{1} and E_{2} coincide. This means that equivalent forms have the same solutions. Hence, we can say that a semispray connection on $\mathbb{R} \times T M$ (resp. a comnection on $\mathbb{R} \times M$) represents an equivalence class of regular forms in $\Omega^{\operatorname{lin}}\left(\mathbb{R} \times T^{2} M\right)\left(\right.$ resp. in $\left.\Omega^{\operatorname{lin}}(\mathbb{K} \times T M)\right)$.

3. Locally variational forms and variational connections

We shal! need a few concepts from the calculus of variations on fibered manifolds. Our exposition is adapted to the case of second (and first) order ordinary differemtial equations on a fibered manifold $\mathbb{R} \times M \rightarrow \mathbb{R}$; for more complete information we refer e.g. to [3]. [4], [6], [9] and references therein.

Recall that a first order lagrangian on a fibered manifold $\pi: \mathbb{R} \times M \rightarrow \mathbb{P}$ is detined as a π_{1}-horizontal one-form λ on $\mathbb{R} \times T M$; in fibered coordinates it is expressed by $\lambda=L \mathrm{~d} t$, where L is a function of t, x^{i} and \dot{x}^{i}. If λ is a tirst order lagrangian, we denote by E_{λ} the Euler-Lagrange form of λ; we have $E_{\lambda}=E_{i} \mathrm{~d} x^{i} \wedge \mathrm{~d} t$, where

$$
E_{i}=\frac{\partial L}{\partial x^{i}}-\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial L}{\partial \dot{x}^{i}}, \quad 1 \leq i \leq m
$$

are called the Euler-Lagrange expressions of the lagrangian λ. It is easy to see that $E_{\lambda} \in \Omega^{\operatorname{lin}}\left(\mathbb{R} \times T^{2} M\right)$.

Let $E \in \Omega^{\operatorname{lin}}\left(\mathbb{R} \times T^{2} M\right)$ be a form. E is called globally variational if there exists a lagrangian λ defined on $\mathbb{R} \times T M$ such that $E=E_{\lambda}$. E is called locally cariational if $\mathbb{R} \times T M$ can be covered by open sets such that the restriction of E to each of these sets is variational. Recall that E is locally variational if and only if in each fiber chart $(V, \psi), \psi=\left(t, x^{i}\right)$ on $\mathbb{R} \times M$ the functions E_{i}, $1 \leq i \leq m$, satisfy the Helmholtz conditions

$$
\begin{gather*}
\frac{\partial E_{i}}{\partial \ddot{x}^{k}}-\frac{\partial E_{k}}{\partial \dot{x}^{i}}=0, \quad \frac{\partial E_{i}}{\partial \dot{x}^{k}}+\frac{\partial E_{k}}{\partial \dot{x}^{i}}-2 \frac{\mathrm{~d}}{\mathrm{~d} t} \frac{\partial E_{k}}{\partial \ddot{x}^{i}}=0, \\
\frac{\partial E_{i}}{\partial x^{k}}-\frac{\partial E_{k}}{\partial x^{i}}+\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial E_{k}}{\partial \dot{x}^{2}}-\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}} \frac{\partial E_{k}}{\partial \ddot{x}^{i}}=0 . \tag{3.1}
\end{gather*}
$$

OLGA KRUPKOVÁ

If E is projectable onto $\mathbb{R} \times M$, then the Helmholtz conditions are obviously reduced to

$$
\begin{equation*}
\frac{\partial E_{i}}{\partial \dot{x}^{k}}+\frac{\partial E_{k}}{\partial \dot{x}^{i}}=0, \quad \frac{\partial E_{i}}{\partial x^{k}}-\frac{\partial E_{k}}{\partial x^{i}}+\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial E_{k}}{\partial \dot{x}^{i}}=0 \tag{3.2}
\end{equation*}
$$

We note that the existence of local lagrangians in general does not imply the existence of a global lagrangian.

Solutions of a locally variational form are called extremals, and the correspoding equations for extremals are called the Euler-Lagrange equations.

A semispray connection Γ on $\mathbb{R} \times T M$ (resp. an Ehresmann connection on $\mathbb{R} \times M)$ is called variational [6] if there exists a locally variational form E such that

$$
\begin{equation*}
\Gamma^{*} E=0 \tag{3.3}
\end{equation*}
$$

4. Variational metrics, semi-finslerian manifolds

Denote by $T_{2}^{0} M$ the bundle of all tensors of type $(0,2)$ over M. Let g : $\mathbb{R} \times T M \rightarrow T_{2}^{0} M$ be a fibered morphism over $\operatorname{id}_{M} ; g$ will be called a metric on $\mathbb{R} \times T M$ if it is regular and symmetric (i.e. if in every fiber chart (V. \mathbf{L}°). $\psi=\left(t, x^{i}\right)$ on $\mathbb{R} \times M$ the matrix $\left(g_{i j}\right)$, built from the components of g. is regular and symmetric).

We shall say that a metric g on $\mathbb{R} \times T M$ is variational if there exists a regular locally variational form E on $\mathbb{R} \times T^{2} M$ such that

$$
\begin{equation*}
g_{i j}=-\frac{\partial E_{i}}{\partial \ddot{x}^{j}}, \quad 1 \leq i, j \leq m \tag{4.1}
\end{equation*}
$$

in each fiber chart on $\mathbb{R} \times M$. Every (local) lagrangian λ such that the form E is the Euler-Lagrange form of λ will be called a dynamical lagrangian for the metric g. Every 2 -form $E \in \Omega^{\operatorname{lin}}\left(\mathbb{R} \times T^{2} M\right.$) satisfying (4.1) will be called a dynamical 2 -form associated with the variational metric g.

Proposition 2. A metric g on $\mathbb{R} \times T M$ is variational if and only if the components of g satisfy in each fiber chart $(V, \psi), \psi=\left(t, x^{i}\right)$ on $\mathbb{R} \times M$ the conditions

$$
\begin{equation*}
\frac{\partial g_{i j}}{\partial \dot{x}^{k}}=\frac{\partial g_{i k}}{\partial \dot{x}^{j}}, \quad 1 \leq i, j, k \leq m \tag{4.2}
\end{equation*}
$$

Proof. Let g be variational. Then the relations (4.2) follow from the Helmholtz conditions (3.1).

We shall prove the converse. Consider an open ball $W \subset \mathbb{R}^{\prime \prime \prime}$ with the center at the origin, and denote by $\left(x^{i}\right)$ the canonical coordinates on W. Let g be a
metric on $\mathbb{R} \times T W$ satisfying (4.2). Define a mapping $\bar{\chi}:[0,1] \times(\mathbb{R} \times T W) \rightarrow$ $\mathbb{R} \times T W$ setting

$$
\begin{equation*}
\bar{\chi}\left(v,\left(t, x^{i}, \dot{x}^{i}\right)\right)=\left(t, x^{i}, v \dot{x}^{i}\right) \tag{4.3}
\end{equation*}
$$

and put

$$
\begin{equation*}
T=\dot{x}^{i} \dot{x}^{j} \int_{0}^{1}\left(\int_{0}^{1}\left(g_{i j} \circ \bar{\chi}\right) \mathrm{d} v\right) \circ \bar{\chi} v \mathrm{~d} v . \tag{4.4}
\end{equation*}
$$

Then $T \mathrm{~d} t$ is a lagrangian on the fibered manifold $\pi: \mathbb{R} \times W \rightarrow \mathbb{R}$ satisfying

$$
g_{i j}=\frac{\partial^{2} T}{\partial \dot{x}^{i} \partial \dot{x}^{j}}=-\frac{\partial E_{i}(T)}{\partial \ddot{x}^{j}}
$$

where $E_{i}(T)$ are the Euler-Lagrange expressions of $T \mathrm{~d} t$.
Now, let $\pi: \mathbb{R} \times M \rightarrow \mathbb{R}$ be a fibered manifold, g a metric on $\mathbb{R} \times T M$, satisfying the conditions (4.2). Then there exists an open covering \mathcal{O} of $\mathbb{R} \times T M$ such that on every open set of \mathcal{O} the lagrangian $T \mathrm{~d} t$ (4.4) is defined. From the transformation properties of the components $g_{i j}, 1 \leq i, j \leq m$, of g and of the coordinates $\dot{x}^{i}, 1 \leq i \leq m$, it is easy to see that the local lagrangians $T \mathrm{~d} t$ define a (global) lagrangian λ_{g} on $\mathbb{R} \times T M$ such that for each $U \in \mathcal{O}$, $\lambda_{\left.g\right|_{\ell^{\prime}}}=T \mathrm{~d} t$. For the Euler-Lagrange form E_{g} of the lagrangian λ_{g} we have (4.1), i.e. the metric g is variational.

This completes the proof.
If g is a variational metric on $\mathbb{R} \times T M$, then the (global) dynamical lagrangian λ_{g} of g defined in the proof of Proposition 2 will be called kinetic energy of the metric g. The Euler-Lagrange form E_{g} of the kinetic energy λ_{g} will be called a canonical dynamical 2-form of the metric g.

By Proposition 1, there exists a unique semispray connection $\Gamma_{g}: \mathbb{R} \times T M \rightarrow$ $\mathbb{R} \times T^{2} M I$ such that the geodesics of Γ_{g} coincide with the extremals of the kinetic energy λ_{g}, i.e. they coincide with the solutions of the Euler-Lagrange equations

$$
\frac{\partial T}{\partial x^{i}}-\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial T}{\partial \dot{x}^{i}}=0
$$

This connection is defined by the relation

$$
\begin{equation*}
\Gamma_{g}^{*} E_{g}=0 \tag{4.5}
\end{equation*}
$$

and will be called a canonical connection associated with the metric g. Expressing the relation (4.5) in a fiber chart $\left(t, x^{i}\right)$ on $\mathbb{R} \times M$ one obtains for the components $\Gamma^{i}(g), 1 \leq i \leq m$ of Γ_{g} the following formulas:

$$
\begin{equation*}
\ddot{x}^{i} \circ \Gamma_{g}=\Gamma^{i}(g)=g^{i p} \Gamma_{p}(g) \tag{4.6}
\end{equation*}
$$

where $\left(g^{i p}\right)$ is the inverse matrix to $\left(g_{i p}\right)$, and the functions $\Gamma_{p}(g), 1 \leq p \leq m$, are given by

$$
\begin{equation*}
-\Gamma_{p}(g)=\Gamma_{p q r}(g) \dot{x}^{q} \dot{x}^{r}+\dot{x}^{q} \int_{0}^{1}\left(\frac{\partial g_{p q}}{\partial t} \circ \bar{\chi}\right) \mathrm{d} v \tag{4.7}
\end{equation*}
$$

where

$$
\begin{equation*}
\Gamma_{p q r}(g)=\frac{1}{2} \int_{0}^{1}\left(\frac{\partial g_{p q}}{\partial x^{r}}+\frac{\partial g_{p r}}{\partial x^{q}}-2 \frac{\partial g_{q r}}{\partial x^{p}}\right) \circ \bar{\chi} \mathrm{d} v+\int_{0}^{1}\left(\frac{\partial g_{q r}}{\partial x^{p}} \circ \bar{\chi}\right) v \mathrm{~d} v \tag{4.8}
\end{equation*}
$$

A manifold M endowed with a variational metric g will be called a semifinslerian manifold. According to Propositions 2 and 1 , on every semi-finslerian manifold (M, g) there exists a unique canonical dynamical 2 -form E_{g} and a unique canonical semispray connection Γ_{g}.

Let (M, g) be a semi-finslerian manifold, E_{1}, E_{2} dynamical 2 -forms on $\mathbb{R} \times T^{2} M$ associated with g. Then obviously $E_{1}-E_{2} \in \Omega_{\mathbb{R} \times M}^{1,1}(\mathbb{R} \times T M)$. Conversely, if E_{1} is a dynamical 2 -form associated to g, and F is an element of $\Omega_{\mathbb{R} \times M}^{1,1}(\mathbb{R} \times T M)$, then $E_{2}=E_{1}+F$ is another dynamical 2-form of g. This leads us to the following definition: A triple (M, g, F) will be called a mechanical system in the force field F if (M, g) is a semi-finslerian manifold and $F \in \Omega_{\mathbb{R} \times M}^{1,1}(\mathbb{R} \times T M)$; we shall also say that F is a force on a semifinslerian manifold (M, g). A mechanical system (M, g, F) is characterized by the dynamical 2 -form $E=E_{g}+F$. Hence, its motion is described by sections γ of $\mathbb{R} \times M \rightarrow \mathbb{R}$ which are solutions to the "Euler-Lagrange equations for a nonconservative mechanical system"

$$
\left[\frac{\partial T}{\partial x^{i}}-\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial T}{\partial \dot{x}^{i}}-F_{i}\right] \circ J^{2} \gamma=0
$$

where T and F_{i} are the components of the kinetic energy λ_{g} and the force F, respectively. A mechanical system $(M, g, 0)$ will be also called a free particle, and will be identified with the semi-finslerian manifold (M, g).

Let (M, g) be a semi-finslerian manifold. Then there arises a canonical isomorphism

$$
\begin{equation*}
\tilde{g}: \mathcal{S}(\mathbb{R} \times T M) \ni s \rightarrow \tilde{g}(s)=E \in \Omega_{\mathbb{R} \times M}^{1,1}(\mathbb{R} \times T M) \tag{4.9}
\end{equation*}
$$

of \mathcal{F}-modules. It is defined in each fiber chart $(V, \psi), \psi=\left(t, x^{i}\right)$ on $\mathbb{R} \times M$, where

$$
s=s^{i} \frac{\partial}{\partial \dot{x}^{i}} \otimes \mathrm{~d} t, \quad E=E_{i} \mathrm{~d} x^{i} \wedge \mathrm{~d} t
$$

by the formula

$$
E_{i}=g_{i j} s^{j} .
$$

By this isomorphism, on a semi-finslerian manifold, forces can be identified with soldering forms. This means, however, that a mechanical system (M, g, F) can be equivalently represented by the semispray connection Γ such that $h_{\Gamma}=h_{\Gamma_{g}}+s$. where $s=\tilde{g}^{-1}(F)$.

Let Γ be a semispray connection on a fibered manifold $\mathbb{R} \times M \rightarrow \mathbb{R}$. Note that if it is chosen a variational metric g on $\mathbb{R} \times T M$, then Γ represents a unique mechanical system (M, g, F) : it holds $F=\tilde{g}(s)$, where $s=h_{\mathrm{\Gamma}}-h_{\mathrm{C}_{!g}}$.

5. Metrizable semispray connections

In this section, we shall define the concept of a metrizable semispray conneclion. and we shall study the conditions of metrizability. We shall be interested in the relation between variationality and metrizability of a semispray connection, and we shall obtain a classification of metrizable and variational connections.

Let us denote by $\mathcal{M}_{2}^{0}(\mathbb{R} \times T M)$ the set of all fibered morphisms $\mathbb{R} \times T M I \rightarrow$ $T_{2}^{0} M$ over id_{M}.

Proposition 3. Let $\Gamma: \mathbb{R} \times T M \rightarrow \mathbb{R} \times T^{2} M$ be a semispray connection. The formula

$$
\begin{equation*}
\left(\Gamma_{1 \cdot g}\right)_{i j}=\frac{\partial g_{i j}}{\partial t}+\frac{\partial g_{i j}}{\partial x^{k}} \dot{x}^{k}+\frac{\partial g_{i j}}{\partial \dot{x}^{k}} \Gamma^{k}+\frac{1}{2}\left(g_{i k} \frac{\partial \Gamma^{k}}{\partial \dot{x}^{j}}+g_{j k} \frac{\partial \Gamma^{k}}{\partial \dot{x}^{i}}\right), \quad 1 \leq i, j \leq m \tag{5.1}
\end{equation*}
$$

defines a mapping $\mathcal{D}_{\Gamma}: \mathcal{M}_{2}^{0}(\mathbb{R} \times T M) \ni g \rightarrow \mathcal{D}_{\Gamma} g \in \mathcal{M}_{2}^{0}(\mathbb{R} \times T M)$.
Proof. Let $g \in \mathcal{M}_{2}^{0}(\mathbb{R} \times T M)$. We have to check the transformation properties of $\mathcal{D}_{1} g$ under transformations of fibered coordinates. Let (V, ψ). $\because=\left(t, x^{i}\right)$ and $(\bar{V}, \bar{\psi}), \bar{\psi}=\left(t, \bar{x}^{i}\right)$ be two fiber charts on $\mathbb{R} \times M$, and denote by $g_{i, j}$ (resp. $\bar{g}_{i j}$) and Γ^{i} (resp. $\bar{\Gamma}^{i}$) the components of g and Γ in the chart $(1 \cdot \iota)($ resp.$(\bar{V}, \bar{\psi}))$. Then

$$
\bar{g}_{i j}=\frac{\partial x^{r}}{\partial \bar{x}^{i}} \frac{\partial x^{s}}{\partial \bar{x}^{j}} g_{r, s}, \quad \bar{\Gamma}^{k}=\frac{\partial^{2} \bar{x}^{k}}{\partial x^{r} \partial x^{s}} \dot{x}^{r} \dot{x}^{s}+\frac{\partial \bar{x}^{k}}{\partial x^{r}} \Gamma^{r}, \quad 1 \leq i, j, k \leq m
$$

(omputing the components of $\mathcal{D}_{\Gamma} g$ in the chart $(\bar{V}, \bar{\psi})$ and using the relation

$$
\frac{\partial^{2} x^{i}}{\partial \bar{x}^{p} \partial \bar{x}^{q}} \frac{\partial \bar{x}^{\prime}}{\partial x^{j}} \frac{\partial \bar{x}^{q}}{\partial x^{k}}+\frac{\partial x^{i}}{\partial \bar{x}^{p}} \frac{\partial^{2} \bar{x}^{p}}{\partial x^{j} \partial x^{k}}=0,
$$

OLGA KRUPKOVÁ

we obtain the transformation formula

$$
\left(\overline{\mathcal{D}_{\Gamma} g}\right)_{i j}=\frac{\partial x^{r}}{\partial \bar{x}^{i}} \frac{\partial x^{s}}{\partial \bar{x}^{j}}\left(\mathcal{D}_{\Gamma} g\right)_{r s},
$$

proving our assertion.
The mapping \mathcal{D}_{Γ} will be called a derivative along Γ or a Γ-derivative. A semispray connection Γ on $\mathbb{R} \times T M$ is called metrizable if there exists a variational metric g on $\mathbb{R} \times T M$ such that the derivative of g along Γ vanishes, i.e.

$$
\begin{equation*}
\mathcal{D}_{\Gamma} g=0 \tag{5.2}
\end{equation*}
$$

The following proposition is a classification of metric connections on $\mathbb{R} \times T M I$.
PROPOSITION 4. Let Γ be a semispray connection on $\mathbb{R} \times T M$. The following two conditions are equivalent:
(1) Γ is a metrizable connection.
(2) There exists a variational metric g on $\mathbb{R} \times T M$ such that

$$
h_{\Gamma}=h_{\Gamma_{g}}+s,
$$

where Γ_{g} is the canonical connection of g, and $\tilde{g}(s)$ is an element of $\Omega^{\operatorname{lin}}(\mathbb{R} \times T M)$ such that (in the notation of (2.9)) $B_{i j}=-B_{j i}$.

Proof.
Suppose (1). Let $g \in \mathcal{M}_{2}^{0}(\mathbb{R} \times T M)$ be a variational metric on $\mathbb{R} \times T M$ such that $\mathcal{D}_{\Gamma} g=0$. Put in every fiber chart on $\mathbb{R} \times M$

$$
\Gamma_{i}=g_{i j} \Gamma^{j}
$$

Then the relation $\mathcal{D}_{\Gamma} g=0$ reads

$$
\begin{equation*}
\frac{\partial g_{i j}}{\partial t}+\frac{\partial g_{i j}}{\partial x^{k}} \dot{x}^{k}+\frac{1}{2}\left(\frac{\partial \Gamma_{i}}{\partial \dot{x}^{j}}+\frac{\partial \Gamma_{j}}{\partial \dot{x}^{i}}\right)=0, \quad 1 \leq i, j \leq m \tag{5.3}
\end{equation*}
$$

Solving this system of partial differential equations for the functions $\Gamma_{i}, 1 \leq$ $i \leq m$, we obtain (cf. [7] for technical details)

$$
\begin{aligned}
\Gamma_{i}= & -\frac{1}{2} \dot{x}^{j} \dot{x}^{k} \int_{0}^{1}\left(\left(\frac{\partial g_{i j}}{\partial x^{k}}+\frac{\partial g_{i k}}{\partial x^{j}}\right)+\int_{0}^{1}\left(\frac{\partial g_{i j}}{\partial x^{k}}+\frac{\partial g_{i k}}{\partial x^{j}}-2 \frac{\partial g_{j k}}{\partial x^{i}}\right) \circ \bar{\chi} \mathrm{d} v\right) \circ \bar{\imath} \cdot \mathrm{d} \cdot \cdot \\
& -\dot{x}^{k} \int_{0}^{1}\left(\frac{\partial g_{i k}}{\partial t} \circ \bar{\chi}\right) \mathrm{d} v+b_{i k} \dot{x}^{k}+a_{i}
\end{aligned}
$$

where $b_{i k}$ and $a_{i}, 1 \leq i, k \leq m$, are functions depending only on t and x^{p}, $1 \leq p \leq m$, and satisfying the condition

$$
b_{i k}=-b_{k i}
$$

Hence, $\Gamma_{i}=\Gamma_{i}(g)+E_{i}$, where the form $E=E_{i} \mathrm{~d} x^{i} \wedge \mathrm{~d} t$ belongs to $\Omega^{\text {lin }}(\mathbb{R} \times T M)$. Using (2.5) and the definition of the mapping \tilde{g} we obtain $h_{\Gamma}=h_{\Gamma g}+\tilde{g}^{-1}(E)$, as required.

Suppose (2). Denote $\tilde{g}(s)=E_{i} \mathrm{~d} x^{i} \wedge \mathrm{~d} t$. Since $\mathcal{D}_{\Gamma g} g=0$, we obtain

$$
\left(\mathcal{D}_{\Gamma} g\right)_{i j}=\frac{1}{2}\left(\frac{\partial E_{i}}{\partial \dot{x}^{j}}+\frac{\partial E_{j}}{\partial \dot{x}^{i}}\right)=0
$$

Let g be a variational metric on $\mathbb{R} \times T M$. A soldering form $s \in S(\mathbb{R} \times T M)$ is called potential with respect to g if the form $\tilde{g}(s)$ is locally variational. The Helmholtz conditions (3.2) immediately lead to the following

Proposition 5. A soldering form s on $\mathbb{R} \times T M$ is potential with respect to a variational metric g on $\mathbb{R} \times T M$ if and only if in each fiber chart (V, ψ), $\psi=\left(t, x^{i}\right)$ on $\mathbb{R} \times M$

$$
\tilde{g}(s)=\left(a_{i}+b_{i k} \dot{x}^{k}\right) \mathrm{d} x^{i} \wedge \mathrm{~d} t
$$

where $a_{i}, b_{i k}, 1 \leq i, k \leq m$, are functions on V satisfying the conditions
$b_{i, j}=-b_{j i}, \quad \frac{\partial b_{i j}}{\partial t}=\frac{\partial a_{i}}{\partial x^{j}}-\frac{\partial a_{j}}{\partial x^{i}}, \quad \frac{\partial b_{i j}}{\partial x^{k}}+\frac{\partial b_{k i}}{\partial x^{j}}+\frac{\partial b_{j k}}{\partial x^{i}}=0, \quad 1 \leq i, j, k \leq m$.
Obviously, if a soldering form s on $\mathbb{R} \times T M$ is potential with respect to g, then there exists an open covering \mathcal{O} of $\mathbb{R} \times T M$ and a lagrangian ω for $\tilde{g}(s)$ on each $U \in \mathcal{O}$, called a (local) potential energy associated to g. It holds $\omega=V \mathrm{~d} t$,

$$
\begin{equation*}
V=-f_{i} \dot{x}^{i}+\varphi+\frac{\mathrm{d} \phi}{\mathrm{~d} t} \tag{5.4}
\end{equation*}
$$

where $\phi, \varphi, f_{i}, 1 \leq i \leq m$, are functions depending only on t and $x^{p}, 1 \leq$ $p \leq m$, and such that

$$
\frac{\partial f_{i}}{\partial x^{j}}-\frac{\partial f_{j}}{\partial x^{i}}=b_{i j}, \quad \frac{\partial \varphi}{\partial x^{i}}+\frac{\partial f_{i}}{\partial t}=a_{i}
$$

The following proposition solves the so called inverse variational problem for semispray connections on a semi-finslerian manifold.

PROPOSITION 6. A semispray connection Γ on $\mathbb{R} \times T M$ is variational if and only if there exists a variational metric g on $\mathbb{R} \times T M$ such that the follouinty two conditions are satisfied:
(1) $\mathcal{D}_{\Gamma} g=0$,
(2) the soldering form $s=h_{\Gamma}-h_{\Gamma g}$ is potential.

Proof. Let $E \in \Omega_{\mathbb{R} \times M}^{1,1}\left(\mathbb{R} \times T^{2} M\right)$ be a locally variational form wheh that $I^{*} E=0$. By the Helmholtz conditions (3.1), in each fiber chart on $\mathbb{R} \times M$. it holds $E=E_{i} \mathrm{~d} x^{i} \wedge \mathrm{~d} t$, where $E_{i}=\Gamma_{i}-g_{i j} \ddot{x}^{j},\left(g_{i j}\right)$ is a variational metric on $\mathrm{R} \times T M$ and the conditions (1), (2) are satisfied.

The converse follows from Propositions 4 and 5.

From Propositions 4 and 6 we immediately get the following assertion:

COROLLARY.

(1) Every variational connection on $\mathbb{R} \times T M$ is metrizable.
(2) A metrizable connection Γ on $\mathbb{R} \times T M$ is variational if and only if thi soldering form $s=h_{\Gamma^{\Gamma}}-h_{\mathrm{\Gamma} g}$ is potential.

We shall call the assertion (2) of the above Corollary the generalized KruptioSattarov theorem (since it can be viewed as a generalization of the Theorem on variationality of a Finslerian structure by Krupk a and Sattarov 5 t a semispray connections on a semi-finslerian manifold).

6. Examples

(1) Riemannian metric. Let (M, g) be a Riemannian manifold. T the LeviCivita connection of g. Putting

$$
\Gamma^{i}=-\Gamma_{j k}^{i} \dot{x}^{j} \dot{x}^{k}, \quad 1 \leq i \leq \operatorname{dim} M
$$

where

$$
\Gamma_{j k}^{i}=\frac{1}{2} g^{i p}\left(\frac{\partial g_{p j}}{\partial x^{k}}+\frac{\partial g_{p k}}{\partial x^{j}}-\frac{\partial g_{j k}}{\partial x^{\prime \prime}}\right)
$$

are the Christoffel symbols of ∇, we get a semispray commection 1 an $\quad / \quad 1 /$ such that the geodesics of I coincide with the mapls of geordsichof Γ. Simeth metric g satisfies trivially the variationality comdition (1.2). it is a batatioma! metric, hence the manifold (M, g) is a particniat case of a stat-fimalerian mat ifold. We shall show that this semispray commertion 1 is the ramonical commer

comection Γ_{g} is defined by (4.6)-(4.8). Substituting the (time and velocity independent) metric g into the formulas (4.6)-(4.8) and performing integration, we get

$$
\Gamma^{i}(g)=\frac{1}{2} g^{i p}\left(\frac{\partial g_{p j}}{\partial x^{k}}+\frac{\partial g_{p k}}{\partial x^{j}}-\frac{\partial g_{j k}}{\partial x^{p}}\right) \dot{x}^{j} \dot{x}^{k}=\Gamma^{i}
$$

For the kinetic energy we get from (4.4) the familiar formula $T=\frac{1}{2} g_{i j} \dot{x}^{i} \dot{x}^{j}$. Now, every choice of a force $F \in \Omega^{\mathrm{lin}}(\mathbb{R} \times T M)$ gives us a mechanical system (A, g, F) on the Riemannian manifold (M, g). The geodesics of the corresponding semispray connection (i.e. the "equations of motion") then are of the form

$$
g_{i j} \ddot{x}^{j}+\Gamma_{i j k} \dot{x}^{j} \dot{x}^{k}=F_{i},
$$

where F_{i} are the components of F.
(2) Finslerian metric. Let g be a Finslerian metric on a manifold M, i.e. a regular symmetric fibered morphism $g: T M \rightarrow T_{2}^{0} M$ over id ${ }_{M}$, satisfying the conditions (1.1). A Finslerian metric on M is obviously a particular variational metric on $\mathbb{R} \times T M$. We shall compute the kinetic energy λ_{g} and the canonical comnection Γ_{g} of g according to (4.6)-(4.8) and (4.4), respectively. Using the formulas
$f=\int_{0}^{1}(f \circ \overline{\bar{\lambda}}) \mathrm{d} v+\dot{x}^{i} \int_{0}^{1}\left(\frac{\partial f}{\partial \dot{x}^{i}} \circ \bar{\chi}\right) v \mathrm{~d} v=2 \int_{0}^{1}(f \circ \bar{\chi}) v \mathrm{~d} v+\dot{x}^{i} \int_{0}^{1}\left(\frac{\partial f}{\partial \dot{x}^{i}} \circ \bar{\chi}\right) v^{2} \mathrm{~d} v$
for the functions $f=g_{i j}$ and $f=\partial g_{i j} / \partial x^{k}$, respectively, and using the "homogeneity condition" (1.1) we obtain

$$
T=\frac{1}{2} g_{i j} \dot{x}^{i} \dot{x}^{j}, \quad \Gamma^{i}(g)=-\Gamma_{j k}^{i}(g) \dot{x}^{j} \dot{x}^{k},
$$

where

$$
\begin{equation*}
\Gamma_{j k}^{\prime}(g)=\frac{1}{2} g^{\prime p}\left(\frac{\partial g_{p j}}{\partial x^{k}}+\frac{\partial g_{p k}}{\partial x^{j}}-\frac{\partial g_{j k}}{\partial x^{\prime}}\right) . \tag{6.1}
\end{equation*}
$$

Since the metric of satisfies the "homogeneity condition" (1.1) we get
 the Cartan connection (which is a mique linear comertion on $T M$ such that the comariant derivative of the Finslerian metric g vanishes).

OLGA KRUPKOVÁ

(3) Time-independent variational metrics. Recall that a Grifone connection is a vector-valued 1 -form $\tilde{\Gamma}$ on $T M$ satisfying the conditions $J \tilde{\Gamma}=J, \tilde{\Gamma} J=-J$. where J is the canonical almost tangent structure on $T M$. The equations for geodesics of a Grifone connection $\tilde{\Gamma}$ are of the form

$$
\ddot{x}^{i}+\Gamma_{k}^{i} \dot{x}^{k}=0
$$

where $\Gamma_{k}^{i}\left(x^{j}, \dot{x}^{j}\right)$ are the components of $\tilde{\Gamma}$. Grifone has shown in [1] that each manifold M endowed with a kinetic energy T carries a canonical Grifone connection such that the equations of geodesics of this connection coincide with the Euler-Lagrange equations of T. If the manifold M is endowed with a kinetic energy T and a Grifone force ϕ, which is defined as a 2 -form on $T M$ horizontal with respect to the projection $T M \rightarrow M$, he has shown in [1] that there is a canonical Grifone connection $\tilde{\Gamma}$ on $T M$ satisfying the following two conditions:
(1) the equations for geodesics of $\tilde{\Gamma}$ coincide with the (nonconservative) Euler-Lagrange equations

$$
\frac{\partial T}{\partial x^{i}}-\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial T}{\partial \dot{x}^{i}}=\phi_{i j} x^{j}
$$

where $\phi_{i j}=-\phi_{j i}$ are the components of ϕ, and
(2) the function

$$
E=T-\frac{\partial T}{\partial \dot{x}^{k}} \dot{x}^{k}
$$

called the principal energy, is constant along the solutions of the equations for geodesics (hence it is a first integral of these equations).
We shall show that these results are in correspondence with the results of Sec. 4 .
Denote by ψ the mapping assigning to each Grifone's connection $\tilde{\Gamma}$ a semis. pray connection Γ by

$$
\Gamma^{i}=-\tilde{\Gamma}_{i}^{k} \dot{x}^{k}
$$

where $\tilde{\Gamma}_{k}^{i}$ are the components of $\tilde{\Gamma}$. Obviously, the geodesics of $\psi(\tilde{\Gamma})$ coincidt with the graphs of geodesics of $\tilde{\Gamma}$. Similarly, by the same letter ψ, we denote the mapping assigning to each Grifone force ϕ a force $F=\psi(\phi) \in \Omega_{\mathbb{R} \times M}^{1.1}(\mathbb{R} \times M$, by $F_{i}=\phi_{i k} \dot{x}^{k}$, where $\phi_{i k}$ are the components of $\phi ;$ note that this mapping, is not surjective (even in case we restrict $\Omega_{\mathbb{K} \times M}^{1,1}(\mathbb{R} \times M I)$ to time-independent forces). Let g be a metric on $T M$ satisfying the variationality condition (4.2). and denote by $\lambda_{g}=T \mathrm{~d} t$ the kinetic energy of $g .(M, g)$ is a semi-finslerian
manifold, and the canonical connection takes the form

$$
\begin{aligned}
-\Gamma_{g}^{i} & =\Gamma_{q r}^{i}(g) \dot{x}^{q} \dot{x}^{r} \\
& =g^{i p}\left(\frac{1}{2} \int_{0}^{1}\left(\frac{\partial g_{p q}}{\partial x^{r}}+\frac{\partial g_{p r}}{\partial x^{q}}-2 \frac{\partial g_{q r}}{\partial x^{p}}\right) \circ \bar{\chi} \mathrm{d} v+\int_{0}^{1}\left(\frac{\partial g_{q r}}{\partial x^{p}} \circ \bar{\chi}\right) v \mathrm{~d} v\right) \dot{x}^{q} \dot{x}^{r}
\end{aligned}
$$

If $\tilde{\Gamma}$ is the canonical Grifone connection for the energy T, then obviously $\psi(\tilde{\Gamma})=\Gamma_{g}$. Similarly, if ϕ is a Grifone force on $T M$, then ψ maps the canonical Grifone connection corresponding to the kinetic energy T and Grifone's force ϕ to the semispray connection Γ of the mechanical system $(M, g, \psi(\phi))$. Computing the Lie derivative of E by the semispray ζ associated with the connection I we get

$$
\partial_{\zeta} E=\dot{x}^{i}\left(\frac{\partial E}{\partial x^{i}}-\tilde{\Gamma}_{i}^{j} \frac{\partial E}{\partial \dot{x}^{j}}\right)=\dot{x}^{i} \phi_{i}^{j} \frac{\partial^{2} T}{\partial \dot{x}^{j} \partial \dot{x}^{k}} \dot{x}^{k}=g_{j k} \phi_{i}^{j} \dot{x}^{i} \dot{x}^{k}=\phi_{k i} \dot{x}^{k} \dot{x}^{i}=0
$$

i.e. the "principal energy" E (which is nothing but the Hamiltonian of the free particle $(M, g))$ is conserved. This interesting property, of course, will no longer last for a general (possibly time-independent) force in $\Omega_{\mathbb{R} \times M}^{1,1}(\mathbb{R} \times M)$ (it is sufficient to take a force $F_{i}=\phi_{i j} \dot{x}^{j}, \phi_{i j}+\phi_{j i} \neq 0$, which is not the image of a Grifone force).
(4) Examples of variational metrics in classical and relativistic mechanics. Consider the manifold \mathbb{R}^{3} with the canonical global chart $\left(x^{i}\right)$.

Putting $g=m \delta$, where $\delta=\delta_{i j} \mathrm{~d} x^{i} \otimes \mathrm{~d} x^{j}$ is the Kronecker tensor and m is a positive constant, we get the semi-finslerian manifold $\left(\mathbb{R}^{3}, m \delta\right)$ which is a free particle of classical mechanics with mass m; in this case the canonical connection $\Gamma_{g}=0$, and $E_{g}=\left(m \delta_{i j} \ddot{x}^{i}\right) \mathrm{d} x^{j} \wedge \mathrm{~d} t$. Considering a force F on $\left(\mathbb{R}^{3}, m \delta\right)$ we get a classical particle of mass m in the force field F, described by the equations of motion $m \ddot{x}^{i}=F^{i}(t, x, \dot{x})$.

Put $g=f(t) \delta$, where f is a nowhere zero function. Then $\left(\mathbb{R}^{3}, f(t) \delta\right)$ is a semi-finslerian manifold. Computing the components of the canonical connection according to (4.6)-(4.8) we get

$$
\ddot{x}^{i} \circ \Gamma_{g}=-\frac{1}{f(t)} \delta^{i j} \dot{x}^{k} \delta_{j k} \frac{\mathrm{~d} f}{\mathrm{~d} t}=-\frac{1}{f(t)} \frac{\mathrm{d} f}{\mathrm{~d} t} \dot{x}^{i} .
$$

Hence, the equations of motion of the free particle on $\left(\mathbb{R}^{3}, f(t) \delta\right)$ are the Newton equations of a classical free particle with nonconstant mass. Considering a force field F on this semi-finslerian manifold we get the mechanical system

OLGA KRUPKOVÁ

$\left(\mathbb{R}^{3}, f(t) \delta, F\right)$ which is a classical particle with nonconstant mass moving in the force field F.

Let us define a semi-finslerian metric $g=g_{i j} \mathrm{~d} x^{i} \otimes \mathrm{~d} x^{j}$ on \mathbb{R}^{3} by

$$
g_{i j}=\frac{m \delta_{i j}}{\left(1-\frac{v^{2}}{c^{2}}\right)^{1 / 2}}+\frac{m}{c^{2}} \frac{\delta_{i p} \dot{x}^{p} \delta_{k q} \dot{x}^{q}}{\left(1-\frac{v^{2}}{c^{2}}\right)^{3 / 2}}
$$

where m and c are positive constants, and $v^{2}=\delta_{i j} \dot{x}^{i} \dot{x}^{j}$. Then $\Gamma_{g}=0, E_{g}=$ $\left(g_{i j} \ddot{x}^{j}\right) \mathrm{d} x^{i} \wedge \mathrm{~d} t$, i.e. $\left(\mathbb{R}^{3}, g\right)$ is a free particle of special relativity theory. Let F be the Lorentz force on the semi-finslerian manifold $\left(\mathbb{R}^{3}, g\right), F=\delta(\vec{F}, \cdot)$, where $\vec{F}=e \vec{E}+\frac{e m}{c}(\vec{v} \times \vec{H})$. Since $\Gamma_{g}=0$, we get the components of the connection Γ of the mechanical system $\left(\mathbb{R}^{3}, g, F\right)$ in the form

$$
\Gamma^{i}=g^{i j} F_{j}=\frac{e}{m} \sqrt{1-\frac{v^{2}}{c^{2}}}\left(E^{i}+\frac{1}{c}(\vec{v} \times \vec{H})^{i}-\frac{1}{c^{2}} v^{i} \vec{v} \vec{E}\right)
$$

This connection obviously differs from that describing a classical particle in the Lorentz force field, i.e. the mechanical system $\left(\mathbb{R}^{3}, m \delta, F\right)$; in this case we have

$$
\Gamma^{i}=\frac{e}{m}\left(E^{i}+\frac{1}{c}(\vec{v} \times \vec{H})^{i}-\frac{1}{c^{2}} v^{i}\right) .
$$

The difference between a mechanical system and the semispray connection describing the motion of this system can be demonstrated on the following easy example: the semispray connection $\Gamma^{i}=k x^{i}$ can describe a mechanical system $\left(\mathbb{R}^{3}, m \delta, F\right)$, where $F=\delta(\vec{F}, \cdot), \vec{F}=\left(k \dot{x}^{1}, k \dot{x}^{2}, k \dot{x}^{3}\right)$, i.e. a classical particle of mass m moving in the dissipative force field, or a mechanical system ($\mathbb{R}^{3}, e^{k t} \delta$), i.e. a classical free particle with the mass-accretion rule $f(t)=m e^{k t}$, or some other mechanical system (according to the choice of a semi-finslerian metric on \mathbb{R}^{3}).
(5) Metrizable linear connections on $T M$. We shall show that the results on metrizability and variationality of semispray connections on $\mathbb{R} \times T M$ obtained in Sec. 5. generalize the known results on linear connections on $T M$ (and on M), obtained by Krupka and Sattarov [5].

Let M be an m-dimensional manifold. Denote by ΓM the bundle of linear connections over M. Recall that by a linear connection on $T M$ we mean a fibered morphism $\gamma: T M \rightarrow \Gamma M$ over id_{M}. Denote by ∇_{γ} the covariant derivative. If $g: T M \rightarrow T_{2}^{0} M$ is a fibered morphism over id_{M}, then in any coordinates $\left(x^{i}\right)$ on $M, \nabla_{\gamma} g \in T_{3}^{0} M$ is expressed by

$$
\begin{equation*}
g_{i j ; k}=\frac{\partial g_{i j}}{\partial x^{k}}-\frac{\partial g_{i j}}{\partial \dot{x}^{p}} \gamma_{q k}^{p} \dot{x}^{q}-g_{i p} \gamma_{j k}^{p}-g_{j p} \gamma_{i k}^{p} \tag{6.2}
\end{equation*}
$$

where $\left(x^{i}, \dot{x}^{i}\right)$ are coordinates on TM, associated with $\left(x^{i}\right)$, and $g_{i j}, \gamma_{j k}^{i}$, $1 \leq i . j . k \leq m$, are the components of g and γ, respectively.

To any linear connection γ on $T M$ we can assign a semispray connection Γ $1, \| \mathbb{R} \times T M$, setting in each fiber chart

$$
\begin{equation*}
\Gamma^{i}=-\gamma_{j k}^{i} \dot{x}^{j} \dot{x}^{k} \tag{6.3}
\end{equation*}
$$

where $\gamma_{j k}^{i}$, $1 \leq i, j, k \leq m$, are the components of γ. The semispray connection [` will be called associated to γ. Obviously, geodesics of Γ and graphs of geodesics of γ coincide.

A linear comection γ on $T M$ will be called variational if there exists a F'inslerian metrice g on $T M$ such that

$$
\mathrm{I}^{*} E_{g}=0
$$

for the semispray connection Γ, associated to γ and the canonical dynamical 2 -form E_{g} of g. Using Proposition 6 we can see immediately that if a linear connection γ on $T M$ is variational, then the associated semispray connection I is metrizable, and there is a Finslerian metric g such that $\mathcal{D}_{\Gamma} g=0$.

A linear connection γ on $T M$ is called metrizable if there exists a Finslerian metrie g such that $\nabla_{\gamma} g=0$.

Proposition 7. Let γ be a linear connection on TM, Γ the semispray conucction on $\mathbb{R} \times T M$ associated to γ. Let g be a Finslerian metric. If $\nabla_{\gamma} g=0$, then $\Gamma_{1} g=0$, and $\Gamma=\Gamma_{g}$.

Proof. Suppose that γ is metrizable, $\nabla_{\gamma} g=0$. Then, by (6.1) and (6.2), the components of γ and of the canonical connection Γ_{g} of the Finslerian metric !f satisfy the relation

$$
2 \Gamma_{i, j k}(g)-2 \gamma_{i, j k}-\frac{\partial g_{i j}}{\partial \dot{x}^{p}} \gamma_{q k}^{p} \dot{x}^{q}-\frac{\partial g_{i k}}{\partial \dot{x}^{p}} \gamma_{q, j}^{p} \dot{x}^{q}+\frac{\partial g_{j k}}{\partial \dot{x}^{p}} \gamma_{q i}^{p} \dot{x}^{q}=0
$$

where $I_{i j k}(g)=g_{i p} \Gamma_{j k}^{p}(g)$ and $\hat{i}_{i j k}=g_{i p} \gamma_{j k}^{p}$. Hence, using the homogeneity of (y. we obtain

$$
\left(\mathrm{I}_{i j k}(g)-\gamma_{i, j k}\right) \dot{x}^{j} \dot{x}^{k}=\mathrm{I}_{i, j k}(g) \dot{r}^{j} \dot{x}^{k}-\Gamma_{i}=0,
$$

i.e. He associated comection Γ of γ is the canonical connection of the Finslerian metric ! g. Hence. $\Gamma_{\square} g=\mathcal{D}_{1, g}, g=0$.
\ow. Wy Corollary w Proposition 6. we get (cf. [5])

OLGA KRUPKOVÁ

Corollary. (Krupka-Sattarov theorem) Every metrizable linear connection on TM is variational, and it is the Cartan connection of the corresponding Finslerian metric.

The situation is further simplified if we consider a linear connection γ on M, i.e. $\gamma \in \Gamma M$. In this case, while speaking of variationality or metrizability. we shall naturally have the existence of a metric on M in mind. Similarly as above, we assign to γ a semispray connection Γ on $\mathbb{R} \times T M$ by (6.3). Now. however, this mapping is one-to-one, and we have

$$
\begin{equation*}
\gamma_{j k}^{i}=-\frac{1}{2} \frac{\partial^{2} \Gamma^{i}}{\partial \dot{x}^{j} \partial \dot{x}^{k}} . \tag{6.4}
\end{equation*}
$$

For a metric g on M we get $\left(\mathcal{D}_{\Gamma} g\right)_{i j}=g_{i j ; k} \dot{x}^{k}$, hence $\mathcal{D}_{\Gamma} g=0 \Longleftrightarrow \nabla_{\gamma} g=0$. As a direct consequence of this property and of Proposition 7, we obtain (cf. [5], [6])

Proposition 8. Let γ be a linear connection on M, let Γ be the semispray connection associated to γ. The following four conditions are equivalent:
(1) γ is variational.
(2) γ is metrizable.
(3) Γ is variational, and there exists a metric g on M such that $\Gamma=\Gamma_{g}$.
(4) There exists a metric g on M such that $\mathcal{D}_{\Gamma} g=0$.

REFERENCES

[1] GRIFONE, J.: Structure presque-tangente et connexions, I, Ann. Inst. Fourier (Grenoble) 22 (1972), 287-334.
[2] KAWAGUCHI, H.: The d-connections in Lagrange geometry. In: Differential Geometry and Its Applications. Proc. Conf., Sept. 1989, Brno, Czechoslovakia, World Sci., Singapore. 1990, pp. 230-235.
[3] KRUPKA, D.: Lepagean forms in higher order variational theory. In: Proc. IUTAMI-ISIMIMI Symp. on Modern Developments in Analytical Mechanics, June 1982, Turin; Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur., Suppl. al Vol. 117 (1983), 197-238.
[4] KRUPKA, D.: Geometry of Lagrangean structures 2, 3. In: Proc. 14th Winter School on Abstract Analysis, Jan. 1986, Srní (Czech Rep.), Rend. Circ. Mat. Palermo (2) Suppl. 14 (1987), 178-224; Arch. Math. (Brno) 22 (1986), 211-228.
[5] KRUPKA, D.-SATTAROV, A. E.: The inverse problem of the calculus of variations for Finsler structures, Math. Slovaca 35 (1985), 217--222.
[6] KRUPKOVÁ, O. : Lepagean 2 -forms in higher order Hamiltonian mechanics. II. Inverse problem, Arch. Math. (Brno) 23 (1987), 155-170.
[7] KRUPKOVÁ, O.: A note on the Helmholtz conditions. In: Differential Geometry and Its Applications. Proc. Conf., August 1986, Brno, Czechoslovakia, J.E. Purkyně University.: Brno, 1986, pp. 181-188.
[8] KRUPKOVÁ, O. : Variational metrics on $\mathbb{R} \times T M$, Preprint, Silesian University at Opava, Opava (Czech Republic) (1991), 1-15.
[9] de LEÓN, M.-RODRIGUES, P. R.: Generalized Classical Mechanics and Field Theory, North-Holland, Amsterdam, 1985.
[10] MANGIAROTTI, L.-MODUGNO, M.: Fibered spaces, jet spaces and connections for field theories. In: Proc. of the Meeting "Geometry and Physics", Oct. 1982, Florence, Pitagora, Bologna, 1982, pp. 135-165.
[11] MODUGNO, M.: Torsion and Ricci tensor for non-linear connections, Differential Geom. Appl. 1 (1991), 177-192.
[12] SAUNDERS, D. J.: Jet fields, connections and second-order differential equations, J. Phys. A 20 (1987), 3261-3270.
[13] SHIMADA, H.: Cartan-like connections of special generalized Finsler spaces. In: Differential Geometry and Its Applications. Proc. Conf., Sept. 1989, Brno, Czechoslovakia, World Sci., Singapore, 1990, pp. 270-275.
[14] VONDRA, A.: Connections in the Geometry of Non-Autonomous Regular Higher-Order Dynamics. Thesis, Masaryk University, Brno (Czech Republic), 1991.
[15] VONDRA, A.: Semisprays, connections and regular equations in higher order mechanics. In: Differential Geometry and Its Applications. Proc. Conf., Brno, Czechoslovakia, 1989, World Scientific, Singapore, 1990, pp. 276-287.

Received September 14, 1992
Revised April 2, 1993

Department of Mathematics
Silesian University at Opava
Bezručovo nám. 13
CZ-746 01 Opava
Czech Republic

