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VARIATIONAL METRICS ON IRxTM 

AND THE GEOMETRY OF 

NONCONSERVATIVE MECHANICS 

OLGA KRUPKOVÁ 

(Communicated by Julius Korbaš ) 

ABSTRACT. We introduce a variational metric on 1R x TM which is a gener
alization of Riemannian and Finslerian metrics and is suitable for a geometric 
description of time-dependent mechanical systems. We show tha t a manifold en
dowed with a variational metric carries a canonical metric semispray connection. 
Connections associated with a variational metric are shown to be a global counter
part of the rionconservative Euler-Lagrange equations, and they can be viewed as 
a generalization of the Levi-Civita connection for a Riemannian structure, of the 
Cartan connection for a Finslerian structure, and of the Grifone connection for a 
generalized Finslerian structure. We also investigate metrizability and variation
al ity of general semispray connections on M x TM, and obtain a generalization 
of Krupka-Sattarov's theorem on variationality of a Finslerian structure. 

1. Introduction 

The aim of this paper is to propose a generalization of the concept of Fins
lerian manifold, suitable for a geometric description of time-dependent noncon
servative mechanical systems. 

The dynamics of a regular time-dependent mechanical system on a manifold 
M is described by a semispray (a "second order vector field") on the fibered 
manifold 1R x A/ —> 1R, or equivalently, by a semispray connection which is 
an Fhresmann connection on IR x TM (i.e. a section R x TM —> R x 12M, 
where T2M denotes the tangent bundle of order 2 of M). Locally it is rep
resented by a regular system of second order differential equations for sections 
of the fibered manifold IK x M —* R. In case that the manifold M is endowed 

A MS S u b j e c t C l a s s i f i c a t i o n (1991): Primary 53B40, 53B50, 53C05, 58B20. 
Secondary 70H35. 

Key w o r d s : Semispray connection, Locally variational form, Helmholtz conditions. Time 
and velocity dependent metric, Finslerian structure, Nonconservative time-dependent mechan
ical system. Kinetic energy, (Nonconservative) Force. 
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with a Riemannian metric g, it carries a canonical semispray connection T such 
that the geodesies of T coincide with the graphs of geodesies of the Levi-Civita 
connection V of g; a similar situation occurs in the case of a Finslerian mani
fold. Moreover, we know that both in Riemannian and Finslerian geometries the 
equations for geodesies are variational (i.e. they are the Euler-Lagrange equa
tions of a lagrangian called the "kinetic energy" of Riemannian and Finslerian 
structures, respectively). Hence, the geodesies in Riemannian and Finslerian ge
ometries can be viewed as geodesies (paths) of semispray connections describing 
the dynamics of a Riemannian and Finslerian free particle, respectively. These 
two important particular cases of mechanical systems suggest us an idea to inves
tigate the structure of semispray connections on R x TM, and to search for all 
(semispray) connections describing the dynamics of "free particles". Naturally, 
we will require these connections be variational. 

In classical Finslerian geometry, a Finslerian manifold is a manifold M en
dowed with a Finslerian metric g on TM which is a regular symmetric fibered 
morphism g: TM —> T$M over id M (where JT2°M denotes the bundle of all 
tensors of type (0,2) over M ) , satisfying the following two conditions: 

| f j = | ^ ("integrability"), f f f ± f c = 0 ("homogeneity"). (1.1) 

Omitting the "integrability" condition one obtains a class of metrics which is 
studied in a generalized Finslerian geometry (cf. e.g. [13] and the references 
therein). 

In this paper, we consider regular symmetric fibered morphisms g: R x T M —> 
T®M over idM (time-dependent metrics on TM) which satisfy the "integrabil
ity" condition, but not necessarily the "homogeneity" condition; we call these 
metrics variational metrics on R x TM. A manifold M endowed with a vari
ational metric is then called a semi-finslerian manifold. Using the results of [7] 
we show in Sec 4 that every semi-finslerian manifold (M, g) carries a canoni
cal (semispray) connection Tg. The property of variationality of the canonical 
connection enables us to introduce naturally the concept of a kinetic energy Xg 

associated with the variational metric g. Since any semispray connection on 
a semi-finslerian manifold (M,g) is uniquely determined by the fundamental 
connection and a soldering form, the equations for geodesies of a connection on 
a semi-finslerian manifold take the form of the Euler-Lagrange equations for a 
general nonconservative mechanical system, 

l ^ - T - ! ^ = * i , K z < d i m M . (1.2) 
dxl dtdx' ~ ~ v J 

In comparison to [2], where certain connections determined by a lagrangian 
defined on R x TM are constructed, we are interested in semispray connec-
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tions, since they naturally arise as a geometric counterpart of the "equations of 
motion". 

In Sec 5, we study the structure of semispray connections on R x TM. We 
propose a concept of metrizability of such connections, and we get a classification 
of metrizable semispray connections. We study conditions of variationality [6] 
of a semispray connection (the so called "inverse variational problem" for con
nections), and investigate the relation between variationality and metrizability. 
We obtain a generalization (to metrizable semispray connections) of a theorem 
by K r u p k a and S a t t a r o v [5]. 

In Sec 6, we show on a few easy examples from geometry and physics that 
our concepts of semi-finslerian manifold and mechanical system are a general 
background for mechanical systems connected with Riemannian and Finslerian 
geometries and/or described by G r i f o n e 's connections [1]. Finally, we show 
that applying our theorem on variationality of semispray connections to linear 
connections on M and on TM one gets the results known in Riemannian and 
Finslerian geometries (cf. [5]). 

We use some results on Ehresmann's connections, semispray connections (see 
e.g. [6], [10], [11], [12], [14], [15]), and the calculus of variations on fibered man
ifolds ([3], [4], [9] and references therein); notations and the main concepts are 
briefly explained in Sec 2 and Sec 3. 

The present paper is an enlarged version of the Preprint [8]. 

2. Semispray connections and regular second order equations 

Throughout the paper, all manifolds and mappings are supposed to be 
smooth, and the summation convention is used. We denote by * the pull-back, 
T the tangent functor, and d the Lie derivative. T denotes the ring of smooth 
functions on R x TM. 

We shall consider a fibered manifold 7r: R X M —> R, where M is an 
m-dimensional manifold, and n is the first canonical projection. The first (resp. 
second) jet prolongation of n will be denoted by -K\ : JX(R x M) —• R (resp. 
TT2: J 2 (R x M) -> R) . Note that J*(R x M) (resp. J 2 (R x M ) ) is canonically 
identified with R x TM (resp. R x T2M, where T2M C T(TM) is the tangent 
bundle of M' of order 2). 

The global coordinate on R will be denoted by t. If (xl), 1 < i < m, are 
coordinates on an open subset of M, we obtain a fiber chart (V, VO > ^ ~ (^ x%) 
on R x M. The associated fiber chart on R x TM (resp. on R x T2M) will 
be denoted by (VIJT/JI), 0 I = (t,xz,xl) (resp. ( T ^ , ^ ) ? 02 -^ (t,XjXl,x )). 
Obviously, for any two fiber charts (V, ip), 0 = (^#2) a n d (V,1^) > W = (t,x ) 
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such that V + y / 0 , the overlap mapping is defined by 

1., • • дxг ... ... д2xг ,-k дxг ,, 
rM řг — x . • X = : X3 X + ^ 

дxk дx'Wxк Әxк 

X1(X«), X% = —rX«.- X1 = ~—--T XJXK ^r -—r Xf 

OXK OX3 OX. OXK 

(2.D 

If 7 : R —> R x M is a section, then the first (resp. second) jet prolongation 

of 7 is denoted by J1^ (resp. J 2 7 ) ; J*7 (resp. J 2 7') is a section of the fibered 

manifold TTI : Jl(R x M) -> R (resp. TT2 : J 2 ( R x M) -> R). Since 7 ( 0 -

(f, c(0) , w-here c(t) is a curve in M defined on an open subset of R. we have 

J x

7 ( 0 = (0c(0,dc/dr) and J 2

7 = (l, c(l), dc/dl, d 2 c/d l 2 ) . 
Recall that a (Ehresmann) connection on R x Ai is a section of the fibered 

manifold R x T2M —> R x M . In fibered coordinates, a connection F is repre
sented by means of its components Tl, 1 < i < dim M , defined by (t.x!) o F -•-
( l ,F0- A connection can be identified with the so called horizontal form hy . 
or with the vertical form vy , or with a horizontal distribution Hy on R x M. 
which, in fibered coordinates, are expressed as follows: 

# , T^ # A „-> ^ . _ 9 Лг = Nŕг + Г + ) ® d t , w = + ® (dx' - r a*), 

/řr = s p a n { ^ + r ť 

ðť дxЧ ' L õx-
_д_ 
дx1 

A (local) section 7 of IK-X -W —̂  K is called a geodesic (a pa£b, or an integral sec
tion) of a connection I if F o ^ — J 1 7 ; this equation, when expressed in fibered 
coordinates, gives a system of m first order ordinary differential equations 
for 7 . 

The dynamics of a time-dependent mechanical system on M is described by 
a semispray connection on R x TM , which is a section T: R x TM —> R x T2 M 
(hence, it is a kind of Ehresmann's connection on R x TM). In a fiber char1 

{V, </>), t/j = (t,xl) on R x M, r is expressed by 

(£ ,xVv \F ; ) o r = ( L z \ £ * , P ) , (2.2) 

where T% are functions on V\, called the components of F . Obviously. F' . 
1 < i < ra, transform like the coordinates x1 under transformations of fibered 
coordinates (cf. (2.1)). A semispray connection F on R x T M is identified with 
the horizontal form, hy of F , or the vertical form vy of F , 

hy^(d -t__d_ r_cl\wdt 
\dt 3xl dx'J 

«r = 7T7 ® (da:* - xl At) + -~ « (dx' - V At), 
ox ox 
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or the 7TT-horizontal distribution Hp = Im/ip C F(R X TM) spanned by the 
vector field 

<9l; & r z <9xz 

called a semispray. 

A (local) section 7 of 7r is called a path or an integral section or a geodesic 
of a semispray connection F if 

ToJ1
1 = J2

1. (2.3) 

If j(t) = (£, c(£)), where c is a curve defined on an open subset of R, we obtain 
that 7 is a geodesic of T if and only if 

dí2 Г(t,c(t),j£), \<i<m, (2.4) 

in each fiber chart ("V, ip), i\) — (£, x1) on R x M . It is clear that integral sections 
of a connection F and of its horizontal distribution Hp coincide. 

Every 7Ti 0-vertical valued TV\-horizontal one-form on R x TM is called a 
soldering form. Soldering forms on R x TM can be roughly characterized as 
"differences of semispray connections'". More precisely, if T, V are two semispray 
connections on R x TM, then the vector valued one-form s defined by 

s = Zip — hY' (2-5) 

is a soldering form; conversely, if 5 is a soldering form on R x TM, then there 
exist semispray connections F , V such that s = hY — h'r. We shall denote by 
S(R x TM) the j^-module of all soldering forms on R x TM. 

For more details on connections and semispray connections on fibered mani
folds we refer e.g. to [10], [11], [12], [14] and [15]. 

A semispray connection describes the motion of a mechanical system but does 
not represent the mechanical system itself. It is easy to find different mechanical 
systems represented by the same semispray connection (i.e. possessing the same 
"trajectories"): this situation occurs if the corresponding equations of motion 
differ from the equations for geodesies by a so called "regular integrating factor", 
i.e. if they are of the form 

iЏ Г)) o J 2

7 = 0 and [gЦx' - Г ) ] o J 2

7 = 0 : 

where (gL) and (gfj) are regular matrices (at each point of R x TM). As an 
example, let us consider a damped harmonic oscillator of mass ra, frequency 
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uj and damping constant k, and a harmonic oscillator of frequency ^ whose 

tnass-accretion is ruled by me . The corresponding ecpiations of motion are 

vix' -\- rnkx + rnuu2 x = 0 and mekt(x + kx + UJ2X) = 0 . which means tha-

the motion of bo th these physical systems is described by the same semispray 

connection x o F = —kx — uj2x. Examples from classical mechanics show that the 

"integrat ing factor" carries an impor tan t physical information, since it is related 

to the "kinetic energy" of the sys tem . Therefore, to avoid confusion, it is h e t t e -

to work with the equat ions of motion in their "covariant form". Wi th in the 

range of the theory of second (resp. first) order ordinary differential equat ions 

on a fibered manifold R x M —• R this means t ha t we have to consider the 

T'-module of one-contact 2-forms on R x T"M (resp. on R x TM). which an 

horizontal with respect to the projection 702,0. R x T2M —* R x M (see e.g .*!. 

[4], [6]); this module is denoted by n^M(R. x T2M) (resp. O :^ A / ( R x TM) ). 

For our purpose it is sufficient to recall tha t this module consists of 2-forms. 

which in each fiber chart (V,^). ijj = (t,xl) on Rx M are expressed in the 

form 

E = Etdxl Adt. (2.h) 

where IR are functions on V2 (resp. on Ki) , i.e. Et = Et(t, xk. xk. xk") (resp. 

Et = Ei(t,xk,xk)), 1 < i < d im AIR A (local) section 7 of 77: R x M —> R 

is called a solution of such a form E on IR x T2M (resp. on R x TM) if 

E o J 2 7 = 0 (resp. E o J1^ = 0 ) . Clearly, a section 7(1 , c ( / ) ) of ~ is a solution 

Of E G - ^ X M ( R X T2M) ( r e SP- ° f E G 4 X M ( R X r A /)) i f a i l d ( ) l l l v i f iT 

satisfies the system of m = dim M second (resp. first) order ordinary differential 

equations 

Et(t,c(t),dc/dt,d2c/dt2) = 0 , resp. Et(t, c(t). de/dt) = 0 . (2.7) 

In this paper , we shall consider a submodule H l u i (R x J2M] (resp. 

Qlhl(R x TM)) of the module n^KM(R x T 2 i \7) (resp. ^ ! / ' A 7 < R x TM)). 

which is defined as a module of 2-forms on R x T2 M ('resp. ,R > TM ) satisfying 

in each fiber chart the condit ion 

E = Ei d R A d / , Ei = At + Blkx
k . (2 .8. 

resp. 

E = E, dx' A dt . Ei = A} -f- B-lkx
k . « 2 . < > * 

where A./, i^/,., 1 < i, k < m are functions of t. xJ . xJ (resp. of / . x' o 
1 < j < rn. 

A form E E 0 l h l ( R x T2M) (resp. E e - l l i l ,(R x 7RU) ) is called n .(////or if 

det(B /A .) R 0 . (2.1()> 

It is easy to see (cf. [6]. [14], [15]) the following: 
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PROPOS IT ION 1. Let E G 0 l i n ( E x T2M) (resp. E e 0 l i n ( lR x TM)) be a 

regular form. Then there exists a unique semispray connection F on ER x TM 

(resp. an Ehresmann connection F on 1R x M) such thai the geodesies of F 

coincide with the solutions of FJ. The connection F is obtained as the solution 

of the equation F*E — 0 . 

The connection F satisfying the equat ion F*E — 0 is called associated 
to E. 

Regular forms Ex , E2 e ilhn(R x T2M) (resp. in J2 l in(K x TM)) are called 

cquiralent if the semispray connect ions (resp. E h r e s m a n n ' s connections) associ

ated to E\ and E<i coincide. This means t h a t equivalent forms have the same 

solutions . Hence, we can say t ha t a semispray connection on 1R x TM (resp. 

a connection on 1R x M) represents an equivalence class of regular forms in 

$2,hl('S; x T2M) (resp. in Q l i n (R x TM)). 

3 . L o c a l l y v a r i a t i o n a l f o r m s a n d v a r i a t i o n a l c o n n e c t i o n s 

We shall need a few concepts from the calculus of variat ions on fibered man

ifolds. Our exposit ion is adap t ed to the ca.se of second (and first) order ordinary 

dillerential equat ions on a fibered manifold !R x M —> IK; for more complete 

information we refer e.g. to u\\. [4]. [6], |9] and references therein . 

Recall that a first order lagrangian on a fibered manifold TT: IR X M ~- iR 
is defined as a ni-horizontal one-form A on IR x TM] in fibered coordinates 
it is expressed by A --- L• di•, where L is a function of t , x' and x' . If A is a 
first order lagrangian, we denote by E\ the Euler-Lagrange form of A; we have 
E\ E, dx' A d / , where 

dL d OL 
Ei = TT"- ~ — 7TT7 , 1 < 7. < ?n, 

dx' at ox' 

are called the Euler-Lagrange expressions of the lagrangian A. It is easy to see 

that FA E 0 l i n ( I R x T'2M). 

Let E € i}hn(R x T2M) be a form. E is called globally variational if there 
exists a lagrangian A defined on RxTM such t h a t E — E\. FJ is called locally 
canational if !R x TM can be covered by open sets such t ha t the restriction 
of F to each of these sets is variat ional . Recall t h a t E is locally variational if 
and only if in each fiber char t (Vnp). V = (£,£**) on IR x M t he functions E, , 
I < / < m , satisfv the Ifelrnholtz conditions 

UE± dEk - 0
 dE> dEk o d °Ek -= Q 

'i)xk ~ l)ž} ~ *' dxk Ox' ~dt()x' 

OEj 0Ek d dE^ _ ^_$Ek_ __ 

()xk 'dx^ ^ d/ 0x! dť2 dx' 

(.4.1 
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If E is projec table on to R x M, then the Helmhol tz condi t ions are obviously 

reduced to 

dEi dEk dEi dEk d 8Ek , N 
— - H T- = 0 , — - H - = 0 . (3.2) 
9x f c <9x2 ' dxk dxl At dx% 

We no te that the exis tence of local lagrangians in general does no t imply the 

exis tence of a global lagrangian. 

Solu t ions of a locally varia t ional form are called extremals, and the corre-

spoding equa t ions for ex t remals are called the Euler-Lagrange equations. 

A semispray connec t ion F on R x TM (resp. an E h r e s m a n n connec t ion on 

R x M) is called variational [6] if there exists a locally varia t ional form E such 

that 

T*E = Q. , (3.3) 

4. V a r i a t i o n a l m e t r i c s , s e m i - f i n s l e r i a n m a n i f o l d s 

Deno te by T®M the bundle of all tensors of t ype (0,2) over M. Let g: 

R x TM —> F2 M be a fibered morphism over IC\M ; g will be called a metric 

on R x TM if it is regular and symme t r ic (i.e. if in every fiber char t (V. v). 

p = (£,xz) on R x M the ma t r ix (g i j ) , buil t from the componen ts of g. is 

regular and symme t r ic ) . 

We shall say that a me tr ic g on R x TM is variational if there exists a 

regular locally varia t ional form B o n R x T2M such that 

BE 
9i3 = —Q_J, l<i,j<rn (4.1) 

in each fiber char t on R x M . Every (local) lagrangian A such that the form E 

is the Euler-Lagrange form of A will be called a dynamical lagrangian for the 

me tr ic g. Every 2-form E G - l l i n (R x T2M) satisfying (4.1) will be called a 

dynamical 2-form associa ted wi th the varia t ional me tr ic g. 

P R O P O S I T I O N 2 . A metric g on R x TM is variational if and only if the 

components of g satisfy in each fiber chart (V,ip), ip = (t,xl) on R x M the 

conditions 
dgij _ 3gik 

дxk дxJ 
1 < hhk < m • ( 4 - 2 ) 

P r o o f . Le t g be varia t ional. T h e n the rela t ions (4.2) follow from the 

Helmhol tz condi t ions (3.1) . 

We shall prove the converse. Consider an o p e n ball W C R m wi th the cen ter 

a t the origin, a n d deno te by (x%) the canonical coordina tes on \Y. Let g be a 
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metric on R x TW satisfying (4.2). Define a mapping x'. [0? 1] x (R x TW) —> 
R x TW setting 

X(v,(t,xi,xi)) = (t,xi,vxi), (4.3) 

and put 

T = xlxj / / (gij o x) dv J o xv dv . (4.4) 

Then T dt is a lagrangian on the fibered manifold n: R x W —> R satisfying 

d2T dEi(T) 
9ij = дxlдxi дiэ 

where Ei(T) are the Euler-Lagrange expressions of Tdt. 

Now, let 7r: R X M —> R be a fibered manifold, g a metric on R x TAJ, 
satisfying the conditions (4.2). Then there exists an open covering O of Rx TM 
such that on every open set of O the lagrangian T dt (4.4) is defined. From 
the transformation properties of the components g^ , 1 < i,j < m, of g and 
of the coordinates x1, 1 < i < rn, it is easy to see that the local lagrangians 
T dt define a (global) lagrangian Xg on R x TM such that for each [ / E O , 
A I = T dt. For the Euler-Lagrange form Eg of the lagrangian Xg we have 

(4.1), i.e. the metric g is variational. 

This completes the proof. 

If g is a variational metric on R x T M , then the (global) dynamical lagrangian 

Xg of g defined in the proof of Proposition 2 will be called kinetic energy of the 

metric g. The Euler-Lagrange form Eg of the kinetic energy Xg will be called 

a canonical dynamical 2-form of the metric g. 

By Proposition 1, there exists a unique semispray connection Tg : R x TM —> 

Rx T2 M such that the geodesies of Tg coincide with the extremals of the kinetic 

energy Xg , i.e. they coincide with the solutions of the Euler-Lagrange equations 

3T d 8T 

~dx~i ~~ dt 'dx1 ~ 

This connection is defined by the relation 

T*gEg=Q, (4.5) 

and will be called a canonical connection associated w i t h t h e m e t r i c g. Express

ing t h e relat ion (4.5) in a fiber char t ( t , x 2 ) on R x M one o b t a i n s for t h e 

c o m p o n e n t s r ? ( O ) , 1 < i < m of Fg t h e following formulas: 

x>org = r(g) = giprp(g), (4.6) 
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where (gip) is the inverse matrix to (gip), and the functions Tp(g), 1 < p < m, 
are given by 

1 

-Tp(g) = Tpqr{g)x"xr + x" J ( ^ - o X ) d*;, (4.7) 

where 

^«=i/(#^-2^)-d»+/(^->d- («) 
o o 

A manifold M endowed with a variational metric # will be called a semi-
finslerian manifold. According to Propositions 2 and 1, on every semi-finslerian 
manifold (M,g) there exists a unique canonical dynamical 2-form Eg and a 
unique canonical semispray connection Tg. 

Let (M,g) be a semi-finslerian manifold, E\, E2 dynamical 2-forms on 

R x T2M associated with g. Then obviously E± - E2 <E ^ ^ ( R x TM). 

Conversely, if E\ is a dynamical 2-form associated to g, and F is an element 

of f ] ^ M ( R x TM), then E2 = E\ + F is another dynamical 2-form of g. 

This leads us to the following definition: A triple (M, g, F) will be called a 

mechanical system in the force field F if (M, g) is a semi-finslerian manifold 

and F G - ^ R ' X M ( ^ X TM)', we shall also say that F is a force on a semi-

finslerian manifold (M, g). A mechanical system (M, g, F) is characterized by 

the dynamical 2-form E = Eg + F. Hence, its motion is described by sections 

7 of R x M —> R which are solutions to the "Euler-Lagrange equations for a 

nonconservative mechanical system" 

дT d ӘT jp 
дx* dí дx* 

o J 2

7 = 0, 

where T and Fi are the components of the kinetic energy A^ and the force F, 
respectively. A mechanical system (M, g, 0) will be also called a free particle, 
and will be identified with the semi-finslerian manifold (M, g). 

Let (M, g) be a semi-finslerian manifold. Then there arises a canonical iso
morphism 

g: S(R x TM) 3 s - g(s) =Ee ^ M ( R x TM) (4.9) 

of .^-modules. It is defined in each fiber chart (V, -0), ip = (t,xz) on R x M, 
where 

s = s1-^ ®dt, E = Ei dxl A dt, 
ox1 
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by t h e formula, 

Ei - gl3s
J . 

By this i somorphism, on a semi-finslerian manifold, forces can be identified with 

soldering forms. Thi s means, however, t h a t a mechanical system (A/, ry, F) can be 

equivalently represented by t h e semispray connect ion F such t h a t hy — hyt -f.s, 

where s — g~] (F). 

Let F be a semispray connect ion on a fibered manifold R x M —> R. Note 

that if it is chosen a. variat ional metr ic g on R x TA1 , t h e n F represents a 

unique mechanical system (M,g,F): it holds F — </(«s). where s — //,̂  — jVr . 

5. M e t r i z a b l e s e m i s p r a y c o n n e c t i o n s 

In this section, we shall define t h e concept of a metrizable semispray connec

tion, and we shall s t u d y t h e condit ions of metrizabil ity. We shall be interested in 

the relation between variat ional i ty and metr izabi l i ty of a semispray connection, 

and we shall obta in a classification of metr izable and variat ional connect ions. 

Let us denote by M2

}(R x TM) t h e set of all fibered m o r p h i s m s R x TM -> 

IVM over i d A / . 

P R O P O S I T I O N 3 . Let V: R x TM —> R x T2M be a semispray connect/ion. 

The formula 

, , n , d(Hj . Ogij .k 0gtJ k i / SYk . 0Tk \ i ^ • • ^ 

^)iJ = ^ + M X + ̂  M ^ ^ ^ ^ J ' !<^<-' 
(5.1) 

defines a mapping VF : M2

](R x TM) 3 g -» P p g G A l ^ ( R x TM). 

P r o o f . Let g E .A/f^R x 7'Aj). We have to check the t rans format ion 

propert ies of Vyg u n d e r t rans format ions of fibered coordinates . Let (V, ijj). 

r (Lxr) and ( F . 0 ) , <<; — (t,xl) be two fiber char t s on R x A/, and denote1 

by glf (resp. gtj) and F ' (resp. V ) t h e c o m p o n e n t s of g a n d F in t h e chart 

(V.r) (resp. ( V . - 0 ) ) . T h e n 

()X'' Ox" - , f?2.TA: ,. , <9# _ r 
^ ; := -—• — - qrH . LA =- — - — - xf xh + - — Vr . 1 < i, y, A, < m . 
• 7 i)x'- c)x:> dxrdx* 0xr ~ J ~ 

(Computing t h e c o m p o n e n t s of V\g in the chart (V, 0 ) and using the rela tion 

02x' Ox*' ()x(i Ox1 02xIJ 

0 . 
дxi}ł)x(i OxJ 0xk Oxr 0x-i0xk 

:Ï2: 



OLGA KRUPKOVÁ 

we obtain the transformation formula 

) . . = - . . 

*-7 dxl dx3 

proving our assertion. 

QX,r (JXS 

The mapping X>p will be called a derivative along T or a T-derivative. A 
semispray connection r on R x TM is called metrizable if there exists a vari
ational metric g on R x TM such that the derivative of g along T vanishes, 
i.e. 

£>rg = 0. (5.2) 

The following proposition is a classification of metric connections on Rx TM . 

PROPOSITION 4. Let T be a semispray connection on RxTAf . The following 
two conditions are equivalent: 

(1) r is a metrizable connection. 
(2) There exists a variational metric g on R x TM such that 

hr = hTg + s , 

where Tg is the canonical connection of g, and g(s) is an element of 

Q l in(R x TM) such that (in the notation of (2.9)) B2J = -BJt. 

P r o o f . 

Suppose (1). Let g G A T ^ R X TM) be a variational metric on R x TM such 
that F>pa = 0. Pu t in every fiber chart on R x M 

Tz = g?;,F . 

Then the relation Vyg = 0 reads 

% + TT*fc + £ ( l i + + f+> )=0. 1<U<™. (5.3) 

Solving this system of partial differential equations for the functions F,. 1 < 
i < m,, we obtain (cf. [7] for technical details) 

r>=-i«*K(%+&)+K%+!£-2!&y^y^ 
0 X 0 7 1 

±к \Чif0x] dv + ьik±
k + ai, ŕ / ( * ' : 

0 
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where 6^ and a^, 1 < z, fc < ra, are functions depending only on £ and xv, 
1 < P < ra, and satisfying the condition 

Ozfc = —Hi • 

Hence, Tz = Tl(g)+E.l, where the form E = E{ dxll\dt belongs to Q l i n(RxTA j) . 
Using (2.5) and the definition of the mapping g we obtain Zip = hrg + g~l(E), 
as required. 

Suppose (2). Denote g(s) = Ei dxl A dt. Since T>^gg = 0, we obtain 

(ад. = 4 ( S + ^ ) = o -2 \ ai j a i ť 

Let a be a variational metric on R x TM. A soldering form s G S(R x TAJ) 
is called potential with respect to g if the form g(s) is locally variational. The 
Helmholtz conditions (3.2) immediately lead to the following 

PROPOSITION 5. A soldering form s on R x TM is potential with respect 
to a variational metric g on R x TM if and only if in each fiber chart (V, I/J) , 
V> = (t,xl) on R x M 

g(s) = (ai + bikx
k) dxl A dt, 

where a7;, b^ , 1 < i, k < ra, are functions on V satisfying the conditions 

ot ox J ox1 oxk oxi OX1 

Obviously, if a soldering form s on R x TM is potential with respect to 
c/, then there exists an open covering O of R x T M and a lagrangian u) for 
#(«s) on each U £ 0 , called a (local) potential energy associated to g. It holds 
u) = V dt, 

V = -fix
i + <p+^, (5.4) 

where (j),(p,fi,l__i<rn: are functions depending only on t and x p , 1 < 
p < ra, and such that 

dfi_ __ __j__ _ h d___ dfj __ 
dxJ dxJ ~ ij ' dxi + Ot " ai' 

The following proposition solves the so called inverse variational problem for 
semispray connections on a semi-finslerian manifold. 
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P R O P O S I T I O N 6. A semispray connection F OH M x T A 1 is variational if and 
only if there exists a variational metric g on K x TM such that the following 
two conditions are satisfied: 

(1) Vrg = 0, 

(2) the soldering form, s -= Zip — hyg is potential. 

P r o o f. Let E G ^ ^ ^ ( I R x T2M) be a locally variat ional form such that 

V*E = 0 . By the Helmholtz condit ions (3 .1) . in each fiber chart on X x M. it 

holds E = Eiclx1 A d t , where E{ = F, — g7Jx
J . (O / ;) is a variational metr ic on 

R x TM and the condit ions (1) , (2) are satisfied. 

The converse follows from Proposi t ions 4 and 5. 

From Proposi t ions 4 and 6 we immediate ly get the following assertion: 

COROLLARY. 
(1) Every variational connection on M x TM is metrizahle. 
(2) A metrizahle connection T on RxTM is variational if and only if the 

soldering form s = hp — hrg is potential. 

We shall call t he assertion (2) of the above Corollary the generalized Krapka-

Sattarov theorem (since it can be viewed as a generaliza t ion of the Theorem on 

variationali ty of a Finslerian s t ruc tu re by K r u p k a and S a t t a r o v 7Y to 

semispray connections on a semi-finslerian manifold) . 

6. E x a m p l e s 

(1) Riemannian metric. Let (M,g) be a Riemaimian manifold. V the Levi-
Civi ta connection of g. P u t t i n g 

V = -Y)kx
jxk , 1 <•/ < d i m i U . 

>k "" 2° \t)xk ~T).r,i " &r" , 

are the ChristofFel symbols of V , we get a semispray connection F on ?.. v / M 
such that the geodesies of F coincide witli the graphs of geodesies of V . Since t h -
metric g satisfies trivially the variationality condition (4 .2) . it is a variational 
metric, hence the manifold (M,g) is a part icular case5 of a semi-hnslerian man
ifold. We shall show tha t this semispray connection 1 IN the canonical counrc-
tion for the semi-finslerian manifold (M.g). According to Sec. i. t ho canonical 
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connect ion Tg is defined by ( 4 . 6 ) - ( 4 . 8 ) . Subs t i tu t ing t he ( t ime and velocity in

dependen t ) metr ic g into the formulas (4 .6 ) - (4 .8 ) and performing integrat ion, 

we get 

For tire kinetic energy we get from (4.4) t he fanriliar formula T = —g^x'x-1 . 

Now, every choice of a force F £ Q lm(]R x TM) gives us a mechanical sys tem 

(jU, g. F) on the Rie inannian manifold (Af, g). T h e geodesies of the correspond

ing scmispray connection (i.e. the "equat ions of mot ion") t hen are of the form 

9ijXj +Tijkx
jxk = Fi, 

where F, are the components of F. 

(2) Finslerian metric. Let g be a Finslerian metr ic on a manifold A/ , i.e. a 

regular symmetr ic frbered morphisrn g: TM —> T$M over idjv/ , satisfying the 

condit ions (1.1) . A Finslerian metr ic on M is obviously a par t icular variat ional 

metric on 1R x TM. We shall compu te the kinetic energy Xg and the canonical 

connection Vg of g according to (4 .6 ) - (4 .8 ) and (4 .4) , respectively . Using the 

formulas 

i4 i i l 

/ - J (fox) ( h ; + f/(fr°x)t; dv = 2 f(f°X)v dv + x! j (j^Lox^ti2 dv 
o o ' o o 

for tire functions / — g7j and / — dgtj/dxk , respectively , and using the "homo

geneity condit ion" (1.1) we ob ta in 

T = \gt,W , r(g) = -Y)k(g)xixk , 

where 

ľ'.;lЛ0) — 
2" J \dxk ' 0x> ~ ~dxV j 

Since U.e metr ic r/ satisfies t h e "homogenei ty condit ion^ (1.1)., we get 

l\i.[g)xJxh — 7.yA..i;-
,.r',: . where 7^... 1 < i.j,k < m. are t h e c o m p o n e n t s of 

t lie C a r t a n connection (which is a unique' l inear connection on 7'A/ such thai 

the coeariant derivative of the Finslerian metr ic g vanishes). 
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(3) Time-independent variational metrics. Recall that a Grifone connection 
is a vector-valued 1-form Y on TM satisfying the conditions J r = J, Y J = — J . 
where J is the canonical almost tangent structure on TM. The equations for 
geodesies of a Grifone connection Y are of the form 

xi + Ti
kx

k = 0, 

where Y\(x3,x3) are the components of T. G r i f o n e has shown in [1] that 
each manifold M endowed with a kinetic energy T carries a canonical Grifone 
connection such that the equations of geodesies of this connection coincide with 
the Euler-Lagrange equations of T . If the manifold M is endowed with a kinetic-
energy T and a Grifone force </>, which is defined as a 2-form on TM horizontal 
with respect to the projection TM —> M , he has shown in [1] that there is a 
canonical Grifone connection Y on TM satisfying the following two conditions: 

(1) the equations for geodesies of Y coincide with the (nonconservative) 
Euler-Lagrange equations 

where faj — —(pji are the components of </>, and 
(2) the function 

E = T--^xk, 
dxk 

called the principal energy, is constant along the solutions of the equa
tions for geodesies (hence it is a first integral of these equations). 

We shall show that these results are in correspondence with the results of Sec 4. 

Denote by ip the mapping assigning to each Grifone's connection F a semis-
pray connection V by 

F = -Ykxk , 

where F?
A< are the components of F . Obviously, the geodesies of w(Y) coincide 

with the graphs of geodesies of Y. Similarly, by the same letter i'1, we denote the 
mapping assigning to each Grifone force 0 a force F = v(o) 6 QR x y (3. x M \ 
by Fi = 4>ikXk , where (f)ik are the components of (p; note that this mapping 
is not surjective (even in case wre restrict IQ^ M (R x M) to time-independent 
forces). Let g be a metric on TM satisfying the variationality condition (4.2) . 
and denote by Xg = T dt the kinetic energy of g. (ALg) is a semi-iinslerian 
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manifold, a n d t h e canonical connect ion takes t h e form 

* * 2feN)oxd» + / ( | f o x | . - < l . . | ^ ' дxq дxp 

If T is t h e canonical Grifone connect ion for t h e energy T, t h e n obviously 

0 ( F ) = Tg . Similarly, if 0 is a Grifone force on TM, t h e n xj) m a p s t h e canonical 

Grifone connect ion corresponding t o t h e kinetic energy T a n d Grifone's force 0 

to t h e semispray connect ion V of t h e mechanical sys tem ( M , g,0(0)). C o m p u t 

ing t h e Lie derivative of E by t h e semispray ( associated wi th t h e connect ion 

F we get 

<**-<!?-«$)-**^*-.**^ = *-*'**-°-
i.e. t h e "principal energy" E (which is n o t h i n g b u t t h e H a m i l t o n i a n of t h e free 

particle (Al,g)) is conserved . Th i s interest ing property, of course, will no longer 

last for a general (possibly t i m e - i n d e p e n d e n t ) force in - \ ' X M ( ^ X ^ 0 (^ * s 

sufficient to take a force F{ = (f>ijXJ , 0 7̂- -f 0J?; ^ 0, which is not t h e image of a 

Grifone force). 

(4) Examples of variational metrics in classical and relativistic mechanics. 

Consider t h e manifold M3 w i th t h e canonical global char t (xl). 

P u t t i n g g = rnS, wThere 6 = 6{j dxl 0 dxJ is t h e Kronecker tensor and rn is 

a positive constant , we get t h e semi-finslerian manifold (M3,ra<5) which is a free 

particle of classical mechanics wi th mass rn ; in this case t h e canonical connection 

\ u = 0, a n d Eg = (rnSijX1) dxJ Ad/;. Considering a force F on (R3,m<5) we get 

a classical part icle of mass m in t h e force field F, described by t h e equat ions 

of mot ion rnx1 = Fl(t, x, x). 

Put g = f(t)S, where / is a nowhere zero function. T h e n (M3, f(t)fi) is a 

semi-finslerian manifold. C o m p u t i n g t h e c o m p o n e n t s of t h e canonical connect ion 

according to (4 .6)-(4 .8) we get 

1 o 1 ^ - f(t)d xd>kdt " f(t) dt J • 

Hence, t h e equat ions of m o t i o n of t h e free part icle on (WtK f(t)6) are t h e New

ton equat ions of a classical free part icle with n o n c o n s t a n t mass. Considering 

a force field F on this semi-finslerian manifold we get t h e mechanical system 
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(R3, /(£)<$, F ) which is a classical particle with nonconstant mass moving in the 
force field F . 

Let us define a semi-finslerian metric g = gij dx% eg) dx^ on R3 by 

m6ij m 6ipx
p 6kqx

q 
•••""•ij _i_ 

9 i J - - 2 N 1/2 + "_ ( ł f 2 ч З / 2 > 

J9 where m and c are positive constants, and v2 = 6ijXlx^ . Then Tg = 0, Eg 

(9ij&) d# z A dt, i.e. (R 3,g) is a free particle of special relativity theory. Let F 

be the Lorentz force on the semi-finslerian manifold (R 3, g), F = 6 ( F , •), where 

F = eE+ --^- (vxH). Since Tg = 0, we get the components of the connection 

T of the mechanical system (R 3,_/,F) in the form 

ri=9^Fj = ^ ^ l - ^ ( E i + ^(vxH)i-^vivE). 

This connection obviously differs from that describing a classical particle in the 
Lorentz force field, i.e. the mechanical system (R 3, ra<$, F ) ; in this case we have 

r1 = -^-(E{ + ±-(V x HY - -W) • 
ra V c v J c2 / 

The difference between a mechanical system and the semispray connection 

describing the motion of this system can be demonstrated on the following easy 

example: the semispray connection Tl = kxl can describe a mechanical system 

(R 3, ra<5, F ) , where F = <5(F, •), F = (kx1, kx2, kx3), i.e. a classical particle of 

mass m moving in the dissipative force field, or a mechanical system (R 3, ekt6), 

i.e. a classical free particle with the mass-accretion rule f(t) = mekt, or some 

other mechanical system (according to the choice of a semi-finslerian metric 

o n R 3 ) . 

(5) Metrizable linear connections on TM. We shall show that the results on 
metrizability and variationality of semispray connections on R x TM obtained 
in Sec 5. generalize the known results on linear connections on TM (and on 
M), obtained by K r u p k a and S a t t a r o v [5]. 

Let M be an m-dimensional manifold. Denote by TM the bundle of lin
ear connections over M. Recall that by a linear connection on TM we mean a 
fibered morphism 7 : TM —> TM over id_vr • Denote by V 7 the covariant deriva
tive. If _/: TM —+ T$M is a fibered morphism over idM - then in any coordinates 
(xl) on M , V7_t E TgM is expressed by 

&9ij Ogij p p p ( . 
9ir,k = -Q^k--Q^p- %kxq - 9iPr3k ~ Qiplik . (6--) 
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where (x'.x1) are coordinates on TM, associated wi th (.Tz), and gi3;, 7-A., 

1 <_ /'-I- ^ < ^ ; are the components of g and 7 , respectively. 

To any linear connection 7 on 7"M we can assign a semispray connection F 

on E x TM . set t ing in each fiber char t 

T = -ilkx>xk , (6.3) 

where y'A,, 1 < i,j, k < 777 , are the components of 7 . T h e semispray connec

tion F will be called associated to 7 . Obviously, geodesies of T and graphs of 

geodesies of 7 coincide. 

A linear connection 7 on TM will be called variational if there exists a 

Finslcrian metric g on T i l / such t h a t 

1 * / ^ - 0 

for the semispray connection F , associated to 7 and the canonical dynamical 

2-form Eg of g. Using Propos i t ion 6 we can see immediate ly t h a t if a linear 

connection 7 OH TM is variational, then the associated semispray connection 

V is mctrizable, and there is a Finslcrian metric g such that Pyg — 0 . 

A linear connection 7 on TM is called metrizable if the re exists a Finslenan 

metric g such t h a t V 7 a = 0 . 

P R O P O S I T I O N 7. Let 7 be a linear connection on TM , F the semispray con

nection on IR x TM associated to 7 . Let g be a Finslcrian metric. If V7O = 0 , 

tlien Pyg — 0 , and, F = Ig . 

P r o o f. Suppose tha t 7 is metr izable , V7,O — 0 . Then , by (6.1) and (6 .2) , 

t he components of 7 and of the canonical connect ion Fg of the Finslerian metr ic 

// satisfy the relation 

2V • -i (a) - *>->••! - °^- yp rq - °^- -p rq + ^ V r* - 0 

where 1 7yA-(<7) — yi]XVj{,{g) and 7,;./A- — yiplVn. • Hence, using the homogenei ty of 

</. we obta in 

(j',;H;7) " Jul*)*"'*1* = Vijk(9)*J*k' ~ F l = ° ' 

i.e. the associated connection F of 7 is t he canonical connection of the Finslcrian 

metric //. Hence. Pyg --- P\\ g --- 0 . 

Now. by Corollary to Proposi t ion 6. we get (cf. [5]) 
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COROLLARY. (Krupka-Sattarov theorem) Every metrizable linear connection 
on TM is variational, and it is the Cartan connection of the corresponding 
Finslerian metric. 

The situation is further simplified if we consider a linear connection 7 on 
M, i.e. 7 E TM. In this case, while speaking of variationality or metrizability. 
we shall naturally have the existence of a metric on M in mind. Similarly as 
above, we assign to 7 a semispray connection F on 1R x TM by (6.3). Now. 
however, this mapping is one-to-one, and we have 

,. 1 d2r 

^k = ~2dxJdx^' ( f U ) 

For a metric g on M we get (Drg)ij = gij-k,xk, hence D r g = 0 <<=> V7O = 0. 
As a direct consequence of this property and of Proposition 7, we obtain 
(cf. [5], [6]) 

PROPOSITION 8. Let 7 be a linear connection on M . let T be the semispray 
connection associated to 7 . The following four conditions are equivalent: 

(1) 7 is variational. 
(2) 7 is metrizable. 
(3) T is variational, and there exists a metric g on M such that T = Tg . 
(4) There exists a metric g on M such that Drg = 0. 
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