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ALGEBRAIC PROPERTIES OF PRE-LOGICS 

IVAN C H A J D A — RADIMÍR HALAS 

(Communicated by Anatolij Dvurečenskij ) 

A B S T R A C T . We introduce the concept of a pre-logic which is an algebra weaker 
than a Hilbert algebra (an algebraic counterpart of intuitionistic logic) but strong 
enough to have deductive systems. On every such a pre-logic A a quasiorder Q 
can be defined and a Hilbert algebra can be reached as a quotient algebra of .A 
by the congruence induced by Q. We study algebraic properties of pre-logics and 
of lattices of their deductive systems. 

In early 50-ties, L. Henkin and T. Skolem have introduced the so-called 
Hilbert algebras to describe algebraically properties of the logic connective im
plication in intuitionistic logics. The concept of deductive system in Hilbert al
gebras was introduced by A. D i e g o [8]. Properties of these deductive systems 
were systematically treated by A. D i e g o , W. A. D u d e k [9], Y. B. J u n [10] 
and the authors [3], [4], [5]. However, we feel that the concept of Hilbert algebra 
is relatively too strong for deductive systems; in other words, they can be intro
duced and treated in a more general setting. It was the reason we introduce a 
concept of so-called pre-logic where deductive systems have desired properties 
and we show that Hilbert algebras rise as quotient algebras of pre-logics by a 
congruence induced by a natural quasiorder. Moreover, we show that in fact 
every quasiordered set can be equipped with a suitable binary and miliary op
eration to become a pre-logic. The paper is intended as a systematical approach 
to aforementioned concepts where connections with other algebraic concepts as 
ideals and pseudocomplements are described. 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Primary 08A30, 06D15, 03B20, 03B22, 
03G25. 
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1. Preliminaries 

Hilbert algebras form important tools in algebraic logic because they can 
be considered as fragments of any intuitionistic propositional logic containing 
only a logical connective implication and the constant 1 which is considered 
as the value TRUE. As usually, we denote the binary operation "•" (or bv 
juxtaposition, if possible) instead of "=>" although it has the same meaning. 

We recall the formal definition: 

DEFINITION 1. A Hilbert algebra is a triplet U = (H\ •, 1) where H is a non
empty set, • is a binary operation on H and 1 G H is a fixed element (i.<. a 
miliary operation) such that the following axioms hold: 

(HI) x.(y.x) = l, 
(H2) (x.(y.z)).((x.y).(x.z)) = l, 
(H3) x • y = 1 and y • x = 1 imply x = y. 

It was proved by A. D i e g o [8] that the class of all Hilbert algebras forms 
a variety, i.e. it is determined by a set of identities. The following result is al o 
adopted from [8]: 

LEMMA 1. Every Hilbert algebra satisfies the following identities: 

x . x = 1, 

1 • x = x , 

x • 1 = 1, 

x • (y • z) = y • (x . z), 

x-(y.z) = (x.y).(x.z). 

It can be easily checked that the binary relation < introduced in a Hilbert 
algebra K = (H; •, 1) by setting 

x < y if and only if x • y = 1 

is a partial order on H with 1 as the greatest element. 
For our next considerations, let us recall several general algebraic concepts. 

Let A = (A, F) be an algebra. Denote by Con A the set of all congruences of A ; 
of course, Con A is an algebraic lattice (i.e. complete and compactly generated 
with respect to set inclusion. The identity relation uA on the set A is the least 
and the square Ax A the greatest element of Con A. For an element a G A and 
a congruence 0 G Con .4 denote by [a]0 = { J G A : (.r, a) G 0 } the class r / 
0 containing a. If A has a constant (i.e. miliary operation) 1, the class [l]c i 
called a kernel of O. 
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By a quasiorder on a set A is meant a reflexive and transitive binary relation 
on .4 . In particular, every partial order and every equivalence relation on A 
are quasiorders on A. If Q is a quasiorder on A, the couple (A, Q) is called a 
quasiordered set. Denote by EQ the binary relation on A defined as follows: 

(x, y) G EQ if and only if (x, y) € Q and (y, x) G Q . 

It is evident that EQ is an equivalence relation on A; it is called an equiva
lence induced by Q. If (A,Q) is a quasiordered set, one can introduce a binary 
relation < g on a quotient set A/EQ by 

[O]EQ <Q [b]EQ if and only if (a, b) G Q . 

It is well known and easy to see that <Q is a partial order on a quotient set 
A/EQ] we call the couple (A/EQ,<Q) an ordered set assigned to the quasi-
ordered set (A, Q). 

2. Basic properties of pre-logics 

At first, we define the concept of a pre-logic formally. 

DEFINITION 2. By a pre-logic it is meant a triplet A = (A; •, 1) where A is 
a non-empty set, • is a binary operation on A and 1 G A is a miliary operation 
such that the following identities hold: 

(PI) x-x = l, 
(P2) l-x = x, 
(P3) x-(y z) = (x-y)-(x- z), 
(P4) x-(y z) = y-(x-z). 

Comparing Definition 2 with Lemma 1, we conclude that every Hilbert al
gebra is a pre-logic, i.e. Hilbert algebras are stronger systems than pre-logics. 
Moreover, pre-logics are determined by identities thus the class of all pre-logics 
forms a variety. 

LEMMA 2. Let A = (A; •, 1) be a pre-logic. Then 

(a) x • 1 = 1 ; 
(b) x • (y • x) = 1 ; 
(c) a binary relation QA on A defined by 

(x, y) G QA if and only if x • y = 1 

is a quasiorder on A; 
(d) (a, 1) G QA for each a G A; 
(e) (1, a) G QA for a G A implies a = 1. 

159 



IVAN CHAJDA — RADIMIR HALA§ 

P r o o f . Applying (P3) for x = y = z we obtain x • (x • x) = (x • x) • (x • r); 
by (PI) this yields 

x l = 1 1 = 1 

proving (a). 

If we consider (P3) once more with x = 2, then, by (PI) and (a), we conclude 

x-(y-x) = (x-y)-(x-x) = (x-y)-l = l 

proving (b). 

Introduce QA on A as in (c). Due to (PI), QA is reflexive. If (x,y) G QA 

and (y, z) G QA, then x • y = 1 and y • z = 1 and, by (a), (P2) and (P3), 

1 -= x • 1 = x • (y • z) = (x • y) • (x • z) = 1 • (x • z) = x • z 

which yields (x, z) G QA , i.e. QA is also transitive and hence a quasiorder on A. 
(d) and (e) follows immediately from (a) and (P2). • 

R e m a r k . The quasiorder QA of Lemma 2 (c) will be called the induced qua
siorder of a pre-logic A. 

LEMMA 3. Let QA be the induced quasiorder of a pre-logic A = (A\ •, 1) and 
x, y, z G A. If (x, y) G QA, then (z • x,z • y) G QA and (y • z,x • z) e Q {. 

P r o o f . Suppose (.r, y) G QA . Then x • y = 1 and 

(z • x) • (z • y) = z • (x • y) = z • 1 = 1 

giving (z • x,z • y) E QA. Further, 

(yz)- (x -z)=x- ((y • z) • z) = (x • (y z)) • (x • z) 

= ((x • y) • (x • z)) • (x • z) = (l • (x • z)) • (x • z) 

= (x • z) • (x • z) = 1 

proving (y • z, x • z) G QA. • 

We conclude this section by the following essential result: 

THEOREM 1. Let A = (A;-,1) be a pre-logic, QA its induced quasiorder and 
Q = EQA the equivalence induced by QA. Then 

(1) 0 is a congruence on A with kernel [1]0 = {1}; 
(2) the quotient algebra A/Q = (-4/0; •, [1]@) is a Hilbert one. 

P r o o f . Since 0 is an equivalence on a set A, we need only to show that 
it has the substitution property with respect to •. Suppose (x,y) G 0 and 
(z,v) G 0 . Then (x,y) G QA, (y,x) G QA, (v,z) G QA and (z,u) G QA. 

160 



ALGEBRAIC PROPERTIES OF PRE-LOGICS 

Applying Lemma 3, we obtain (x • z, x • v) G QA and (x • v, y • v) G QA . Due 
to transitivity of QA , we have (x • z, y • v) G QA. Analogously it can be shown 
(y -v,x-v) G QA and (x • v, x • z) G QA thus also (y • v, x • z) G QA. Together, we 
obtain (x • z, y • v) G 0 , i.e. 0 G Con A. Moreover, (e) of Lemma 2 immediately 
yields [ l ] e = { l } . 

The quotient algebra A/0 clearly satisfies all the identities of A. Hence, 
by (b) of Lemma 2, A/0 satisfies (HI) and, by (PI) and (P3), it satisfies also 
(H2). Finally, let x,y G , 4 / 0 and x-y = [1]0 and y-x — [1] 0 . Clearly x = [a]e 

and y = [b]e for some a,b e A. This means (a, b) G QA and (b, a) G QA thus 
(a, b) G 0 , i.e. x = [a]0 = [b]Q = y proving (H3), i.e. . 4 / 0 is a Hilbert algebra. 

• 

EXAMPLE 1 . Let A 

table 
{a, b, c, 1} and the binary operation is defined by the 

a b c 1 

a 1 b c 1 

b a 1 1 1 

c a 1 1 1 

1 a b c 1 

Then A = (A] •, 1) is a pre-logic which is not a Hilbert algebra: we have b • c — 
c - 6 = l , but c 7-= 6. 

3. Deductive systems 

The concept of a deductive system of a pre-logic can be induced formally in 
the same way as for Hilbert algebras (cf. [8]): 

DEFINITION 3. Let A = (A; •, 1) be a pre-logic. A subset D C A is called a 

deductive system of A if the following conditions hold: 

(dl) leD; 
(d2) if x G D and x -y G D, then y G D. 

EXAMPLE 2. A pre-logic from Example 1 has the following deductive systems: 
{1}, { l , a , 6 , c } , { l , a} and { l , 6 , c} . 

Also the concept of an ideal was introduced for Hilbert algebras in [4] formally 
by the same way as for pre-logics: 
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DEFINITION 4. Let A = (A; •, 1) be a pre-logic A nonempty subset I of ,4 
is called an ideal of A if the following conditions are satisfied: 

(11) x G A and y G I imply x • y G I, 
(12) x G A and H15 y2 G J imply (H2 • (yx • x)) • x e I. 

It was recently shown by W. A. D u d e k [9] that for a Hilbert algebra %, 
ideals and deductive systems coincide. In what follows we prove the same also 
for pre-logics: 

THEOREM 2. Let A = (A; •, 1) be a pre-logic. Then every ideal of A is a 
deductive system on A and, conversely, every deductive system, of A is an ideal 
of A. 

P r o o f . Let I be an ideal of a pre-logic A. We need only to verify (d2). 
For this, let x G I and x • y £ I. Denote a1 = x • y. By (P2) and (12) we ha\e 
a2 = (x • y) • y = (l • (x • y)) • y G / and hence 

JJ = 1 ' y = [{(x - y) - y) • ((x • y) -y)]-y= [a2 • (ax • y)] -y e l , 

thus I is a deductive system of A. 

Conversely, let D be a deductive system of A. If y G D and x G / I , then, 
by (b) of Lemma 2 and (dl), (d2), y • (x • y) = 1 G D and hence x • y G D 
proving (12). We need only to show (13). 

At first, if y G D; then y • ((y • x) • x) = (y • x) • (y • x) = 1 G D thus, by (d2), 
also (y • x) - x G D. 

Now, let yx ,y2 G D and x e A. Applying the previous fact, we obtain by (P4 

<J2 ' ((?Ji ' (2/2 ' •r)) " x) = (Vi ' (V2 ' *)) * (»2 " *0 € .D 

and, using (d2), we obtain (yx • (y2 -x)) -x G D. Altogether, we have shown that 
D is an ideal of A. • 

We are going to show that ideals and congruence kernels on pre-logics coin
cide: 

THEOREM 3. Let A = (A',-,1) be a pre-logic, let 0 G Con.4 and I be an 
ideal of A. Then 

(1) the kernel [1]Q is an ideal of A; 

(2) I is the kernel of 0 7 G Con .4 defined by setting 

(x, y) G 0 7 if and only if x • y G / and y • x G I . 

0 7 is the greatest congruence on A whose kernel is I. 
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P r o o f . 
(1) Let J = [1]0 for 9 G Con A. The condition (II) is satisfied trivially. Let 

x e A and y e l . Then (y, 1 ) 6 0 and 

(x-y,l) = (x-y,x- 1) e 6 

proving x • y e I, i.e. also (12) holds. Now, let x G A and j/1,J/2 ^ -r> Then 
d / n l ) G 0 , (y2,1) G 0 and hence 

((y2 • (Vl • x)) • x, 1) = ((y2 • (tfl • x)) • x, (1 • (1 • x)) • x) G 0 

proving (H2 • (T/1 • x)) • x G / , i.e. (12) holds. 
(2) Of course, 0 7 is both reflexive and symmetric. Suppose (x,y) G 0 7 and 

(y, z) e © 7 . Then x • y, y • x, y • z, z • y e I and, by (P3) and (II), also 

(x-y)-(x- z) = x-(y z) e I. 

However, 7 is a deductive system of A by Theorem 2 and x -y e I thus, by 
(d2), also x • z e I. Analogously, (z • y) • (z • x) = z • (y • x) G I by (12) and, due 
to (d2), also z • x e I. We have shown (x,z) G 0 7 , i.e. 0 7 is transitive. 

It remains to check the substitution property of 0 7 . Suppose (x,y) G 0 7 

and (u, v) G 0 7 . Hence x • y, y • x, u • v, v • u G I. We obtain 

(x • u) • (x • v) = x • (u • v) e I 

and 

(x • v) • (x • u) = x • (v • u) e I 

by (12), i.e. (x •u,x-v)eQI. Further, by (13) 

(x-v)-(y-v)=y((x-v)-v) = (y • (x • v)) • (y • v) 

= ((y -x)-(y v)) -(yv) = (l-((yx)-(yv)))-(yv)el. 

Analogously, 

(y-v)-(x-v) = x- ((y • v) • v) = ( l • ((x • y) • (x • v))) • (x • v) e I. 

We have shown (x • v, y • v) G 0 7 . Due to transitivity of 0 7 , this yields 
(x • u, y • v) e Qj whence 0 7 G Con ,4 . Since x • 1 = 1 and 1 • x = x, we 
conclude immediately [1]0J = I-

Finally, let \I> G Con A and suppose [1]^ = I. Then for (x,y) G ^ we have 

(x • y, 1) = (x • y, y • y) G ^ 

and 

(yx,l) = (y-x,y-y) G * 

giving x • y,y • x e [1]# = I and hence (x,y) G 0 7 . Thus 0 7 is the greatest 
congruence on A having the kernel I. • 
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COROLLARY 1. In every pre-logic A, ideals, deductive systems and congruence 
kernels coincide. 

We can compare deductive systems of pre-logics with quasiorder-filters of the 
induced quasiorder. For this, let us first state a technical lemma: 

LEMMA 4. Let A = (.4; •, 1) be a pre-logic and QA its induced quasiorder. 

(a) For every x,y £ A, (y, (y • x) • x) G QA; 

(b) for every x,y,ze A, (y z, (x • y) • (x • z)) G QA; 
(c) if D is a deductive system of A and a G D, (a,b) G QA, then b G D. 

P r o o f . 

(a) By (PI) and (P4), we compute y • [(y • x) • x] = (y • x) • (y • x) = 1, i.e 

(y,(yx)-x) G QA. 
(b) By (b) of Lemma 2 we have z • (x • z) = 1 thus also (z, x • z) G QA. By 

Lemma 3 we conclude (y • z, y • (re • z)) G QA. However, 

y-(x- z) = x-(y- z) = (x-y)-(x- z), 

I.Є. 

(y -z,(x-y)-(x- z)) Є QA . 

(c) Let D be a deductive system of A and a G D, (a,b) G Q^ • Then 
a-b=le D thus also k D . D 

Let (A, Q) be a quasiordered set. For a subset MCA we denote by 

UQ(M) = {x G A : (m,x) eQ for each m G M} . 

A subset F C A is called a Q-filter if U{^Q( a ) : a G F } C F . In other words, 
F is a <3-filter of (A,Q) if a G F and (a, b) G Q imply b G F . In account of 
Lemma 4, we have: 

COROLLARY. Every deductive system of a pre-logic A = (A; •, 1) is a QA-filter 
of (A, QA) where QA is the induced quasiorder of A. 

4. The lattice of deductive systems 

For a pre-logic A = (A; •, 1), we denote by Ded.4 the set of all deductne 
systems of A. Of course, {1} G Ded^4 and A G Ded.4. It is almost evident by 
Definition 4 that the set theoretical intersection of an arbitrary set of ideals of A 
is an ideal of A again. Hence, due to Theoiem 2, the set Ded A forms a complete 
lattice with respect to set inclusion where the operation meet coincides with set 
intersection; the least (or greatest) element of Ded A is {1} (or A, respectively). 
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Hence, given a subset X C A, there exists the least deductive system containing 
X, the so-called deductive system of A generated by X. It will be denoted by 
DA(X). Of course, 

DA(X) = f]{D G Bed A : X C D} . 

In particular, -0^(0) = {1}. It is almost trivial to check that X C DA(X), 
DA(DA(X)) = DA(X) and X C Y = > - ^ ( A ) C DA(Y) thus D^ is a 
closure operator on the power set Exp A. This yields immediately that for the 
operation join in the lattice Ded .4 it holds that 

D1\fD2 = DA(D1UD2) 

or, more generally 

\J{DX :XeA} = DA ((J{oA : A € A}) . (A) 

If Ar is a singleton, say A" = {b}, we will write briefly DA(b) instead of DA ({b}). 
From the foregoing formula, one can derive 

D = \J{DA(b): b€D} (B) 

for every D G Ded A. 

THEOREM 4. The lattice Ded A of all deductive systems of a pre-logic A = 
(A; •, 1) is an algebraic lattice whose compact elements are just finitely generated 
deductive systems. Let X C A. If X = 0, then DA(X) = {1}; if X ^ 0, then 

DA(X) = {<* £-4 : xx-(x2- (•••(zn-a)---)) = 1 for x l 5 . . . ,xn G A"} . 

P r o o f . It is immediately clear that Ded A is a complete lattice and that 
DA{Q) = {1}. Let fb^XCA. Denote by 

H= [ a G . 4 : xx • (x2 • (• • • (xn • a) • • •)) = 1 for xx,...,xn G K} .. 

Suppose a £ H and a • b G JB". This means 

x i ' {x2 ' (" ' (xn •«)•••)) = ! for some x l r . . , a : n G l 
and 

x[ • (x2 • (• • • (x^ • (a • 6)) • • •)) = 1 for some x[,..., x'm G A . 

Then 

! = *„•! 
= ^„-K-(4-(-- -K- («^))-- - ) ) ] 

= < . ( 4 - ( . - - ( x ; n . ( x „ . ( a - 6 ) ) . - - ) ) 

= *i " ( 4 • (• • • K • ((sB • a) -(x„-6)) •••))) . 
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Analogously we can show 

1 = - v i • -
= *„-! • {< • (4 • (• • • K • ((*„ • «) • (*„ • *))) • • 0)) 

= < • ( 4 • (• • • « • (x„-i • ((*„ • a) • (xn • b)))) . . •))) 

= < • « • {• • • K • ( k - i • (xn •«)] • K-i • K • &)])) • • •)) 

= X'l • ( 4 • (• • • (X'm • [Xl •(X2-(--- {Xn-1 • (Xn " «)) ' ' "))] * 

• [-v(-v(----v&)---)])"-)) 
= X'l-(X2-(---{X'm-(Xl-{---(Xn-b)---))---)) 

proving b G H. Hence, H G Ded A. 

Evidently, X C H because x • x = 1 for each :r G X . Suppose D G Ded .4 
and X CD. Let 

x i ' (x2 ' ( ' '" (xn • a) •••)) = 1 for some x 1 , . . . , x n G X C D . 

Since D is a deductive system, this implies 

x2 ' (•' * (xn ' a)''') G D 

and, after n steps, we derive a e D. We have shown H = D. 
From the above construction it is immediately clear that for each element 

b G -A, the one-generated deductive system DA(b) is a compact element of 
Ded A. With respect to the previous formula (B), the lattice t)ed.4 is compactly 
generated and hence algebraic. • 

By Corollary 1, every deductive system is a congruence kernel and vice versa, 
hence, it makes sense to compare the lattices Con A and Ded A. 

LEMMA 5. Let A = (A; •, 1) be a pre-logic and 0 , $ G Con A. Denote by 6 V$ 
the join of 0 , $ in Con A. Then in Ded A we have 

[lie V [1]* = [ l ] e v » • 

P r o o f . Of course, [1]0 V [1]$ is a deductive system of A and, due to 
Corollary 1, there is a \I> G Con A such that [1]0 V [1]^ = [1]^. Without loss of 
generality we suppose that ^ is the greatest congruence on A having the kernel 
[1]0 V [1]$. Let (x,y) G 0 . Then, by Theorem 3, x • H, y • x G [1] 0 , thus also 
x • y, y • x G [1]^. Since * is the greatest congruence with this kernel, by (2) of 
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Theorem 3 this yields (x, y) G \I>, hence 9 C $ . Analogously we obtain $ C * 
thus also 6 V $ C $ . This yields immediately 

[l]eV[l]*c[l]ev«c[l]»-[l]eV[l], 

proving the desired equality. • 

THEOREM 5. Fbr a pre-logic A, the lattice Ded.4 is distributive. 

P r o o f . It is trivial to see that for every a, /3 £ Con A it holds 

[i]an[i]/J--[iLn/J-

To prove distributivity of Ded A, we need only to show 

Won^v*) -= [l](en*)v(en*) 

for every 0 , $ , * G Con A (with respect to Corollary 1). Let x G [llen^v*)* 
Thus (x, l ) G 0 n ( $ V $ ) , i.e. there exist elements c x , . . . , cn G A such that 

(x,C!>€*, (cx,c2)e^y (c2,c3) G $ , . . . , (cn , l) G $ 

(we can suppose that n is even with respect to reflexivity of congruences). 
Since (x, 1) G 0 thus also 

(c- • x, 1) = (c- • x, ci • 1) G 0 for i = 1 , . . . , n, 

which yields (with respect to symmetry and transitivity) 

(ct • x, c i + 1 • x) G 0 for i = 1 , . . . , n — 1. 

Hence, 

(cx • x, 1) = (cx • x, cx • 1) G 0 n $ 

(cx • x, c2 • x) G 0 n * 

(c2 • x, c3 • x) G 0 n $ 

(cn • x, x) = (cn • x, 1 • x) G 0 n $ 

giving (x, 1> G (0 n $) V (0 n * ) . • 

Remark. Although we have shown that the lattice of all congruence kernels of 
A is distributive, it does not mean that Con .4 has the same property. (See the 
following example.) 
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= {a, b, c, 1} and the binary operation is defined by the 

a b c 1 

a 1 1 1 1 

b 1 1 1 1 

c 1 1 1 1 

1 a 6 c 1 

It is an exercise to check that A = (A; •, 1) is a pre-logic. The lattice of congru
ences is as depicted in Fig. 1, where 0 is given by the partition {a, b, c}, {1} . 

T A x Л 

(a,b) (a,c) 

Of course, Con A is not distributive however Ded.4 is isomorphic to the 
two-element chain. 

It is well known that every distributive and algebraic lattice is also infinitely 
distributive, i.e. Ded.4 satisfies the equality 

D n (\J{DX

 : A e A}) = \/{D nDx: XeA} 

for each D,DX G Bed A and an arbitrary index-set A. This yields immediately: 

COROLLARY 3. For every pre-logic A the lattice Ded .4 is relatively pseudo-
complemented. 
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5. Annihilators of pre-logics 

In this section we will describe the (relative) pseudocomlpements of Ded.4 
explicitly. At first, we describe the intersection (i.e. the meet in Ded.4 in terms 
of the language of pre-logics: 

LEMMA 6. Let A = (A; •, 1) be a pre-logic and C,D G Ded^l . Then 

(a) CnD= {(d-c)-c: ceC, d G D} ; 
(b) CdD = {1} if and only if (d-c,c) G EQA = 0 (the congruence induced 

by the quasiorder QA) for each ce C and d G D. 

P r o o f . 
(a) Denote by M = {(d • c) • c : c G C, d G D} for C,D G D e d A If 

y G M, then y = (d • c) • c for c G C, d G D, and due to (12) also y G C 
and y = ( l • (d • c)) • c yields by (13), y e D, i.e. M CCDD. Conversely, let 
y G C n D. Take c = y = d. Then (y • y) • y = 1 • y = y G M, i.e. M = CnD. 

(b) If C n D = {1}, then, by (a), we obtain (d • c) • c = 1 for each c G C, 
d G D. By Lemma 2 we have (d • c, c) G Q ^ . However, (d) of Lemma 2 and 
Lemma 3 give (c, d • c) = (I • c, d • c) G QA whence (d • c, c) G EQA = 0 . 
Conversely, if (d • c, r) G 0 for each c€ C, d e D, then (c) of Lemma 2 yields 
( d - c ) - c = 1 and, by (a), we have CC\D = {1}. • 

DEFINITION 5. Let „4 = (A; •, 1) be a pre-logic: for C,B C A we denote by 

(C) = {x G A : (x- c, c) G EQA for each c G C} , 

(C, J5) = {x G .4 : (x-c)-ceB for each c G C} . 

If C = { c}, we will write briefly (c) instead of ({c}). The set (C) is called 
an annihilator of a set C. The set (C, B) is called a relative annihilator of C 
with respect to B. 

The following results are easy observations: 

• if C- C C 2 , then (Cx) D (C2); 
• for each C C A w e have (C) = f]{(c) : c G C} . 

THEOREM 6. For every element c of a pre-logic A = (A; •, 1), the annihilator 
(c) is a deductive system of A. 

P r o o f . Denote by 0 = EQA . As shown by Theorem 1, 0 G Con A. Sup
pose now x G (c) and x • y G (c) for some c G -4. By Definition 5, (x • c, c) e @ 
and ((x- y) • c, c) e Q. Then 

Or • y) • (x • c) = x • (y • c) = y • (x • c) , 
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further (x • c, c) G 0 implies 

(y-(x-c), yc) G 6 , 

((-C-2/)- ( T - C ) , ( T - ? / ) - C ) G 6 , 

i.e. ((x-y)-c, y-c) G 0 . Together with ((x-H)-c, c) G 0 we conclude (//-c, r) G 0 
thus y G (c) directly by Definition 5. We have checked (d2). Since (dl) holds 
trivially, (c) is a deductive system of A. • 

THEOREM 7. For every deductive system D of a pre-logic A = (A; •, 1), its 
annihilator (D) is a pseudocomplement of D in the lattice Ded A. 

P r o o f . If d G -On (£>), then d G (d) since (F>) C (d) thus ( l ,d) 
(d • d, d) G F Q ^ by Definition 5, i.e. ( l ,d) G Q/i and, by (e) of Lemma 2, 
d = 1. Thus D D (D) = {1}. Suppose now F G Ded .4 and D n F = {1}. Then 
( / • d, d) e EQA for each / G F and d G F> by (b) of Lemma 6, i.e. / G (d) for 
each rfG.D thus also f e f]{(d) : d G £>} = (D) proving F C (D). Altogether, 
(D) is the greatest deductive system of A with 29 D (D) = {1} and hence the 
pseudocomplement of F> in the lattice Ded A. • 

We can ask whether the annihilator of a given subset coincides with the 
annihilator of a deductive system generated by this set: 

THEOREM 8. For a pre-logic A = (A; •, 1). the following conditions arc cq av-
alent: 

(1) (M) = (D(M)) for each subset MCA; 
(2) (b -c, c) e EQ if and only if (c • b, b) G EQ for every two elements b, c 

of A. 

P r o o f . 
(1) ==-> (2): Let c, b G A. By the assumption (1), (c) = (D(c)), i.e. b G (c) 

implies (b • c, c) G Fg^ . Applying (13) we get (c • x) • T = (l • (c • T ) ) • x G F*(c 
for each x G .4 thus also b G ((c • T) • T) . Taking x = b we obtain b G ((c • b) • b), 

(b-((c-b)-b),(c-b)-b)€EQA. 

By (b) of Lemma 2 we have b • ((c • b) • b) = 1, i.e. ( l , (c • b) • b) G F g ^ and, 
by (e) of Lemma 2 again, also (c • b) • b = 1 proving (2). 

(2) = » (1): Let b, c G A. Then (c) = {x e A : (x - c, c) E EQA} and 
(b) = { T G A : (x • b, b) G F Q A } . By (2) we have b G (c) if and only if c G (b). 
Prove (c) C (D(c)): let z G (c). As shown this gives w.r.t. (2) also c G (z) 
whence D(c) C (z). Suppose x G F ( c ) . Then x G (^) and hence z E (x), i.e. 

* e n { < x > : * € D ( c ) } = (J}(c)Y 
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Now, let M CA.We have 

(M) = f]{(m) : m G M} = f]{(D(m)) : m G M} . 

If H G (D(m)) for each m, e M, then also y G (m) = (D(m,)) and hence 
rr. G (y) giving D(M) C (y) . This implies (D(m)) D ((y)). It remains to show 
V e ((y)) • We have (7/) = {x G -4 : (x-y,y)e EQA } and 

((v)) = {z € A : (z • x, x) for each x e (y)} . 

But x G (y) yields ye (x), i.e. (y • x, x) G F?gA for each x G (y) proving 

y G ((y)) . In the summary, we conclude (M) = (D(M)). D 

We are ready to describe relative pseudocomplements of Ded A in terms of 
relative annihilators: 

THEOREM 9. Let B. C be deductive systems of a pre-logic A = (A',-,1). 
Then (C, B) is the relative pseudocomplement of C with respect to B in the 
lattice Ded A. 

P r o o f . It is almost evident that if x G C n (C, B), then x = 1 • x = 
(x • x) x e B, i.e. C n (C,B) C B . Moreover, if F G Ded.4 and C n F C B, 
then for each c e C and / G F we have by Lemma 6, (f • c) • c E B thus, by 
Definition 5, F C (C,B). It remains to prove that (C,B) is a deductive system 
of A 

Suppose x G (C,B) and x-y G (C,B). Then (x-c)-cG i? and ((x-y)-c)-ce B 
for each c G C. Since C is an ideal of A, we have x • c G C and hence also 
((x • y) • (x • c)) • (x • c) G B. Then 

w = (y • c) • (re • c) = a; • ((y • c) • c) = (x • (y • c)) • (x • c) = ((x • y) • (x • c)) • (x • c) G 5 

for each c € C. Set i> = (y • c) • c. Then 

((x-c)-c)-((y-c)-c) = (y-c)-(((x-c)-c)-c) = ((y-c)-((x-c)-c))-((y-c)-c) = (TL-i;).^. 

Since B is an ideal of .4 and u € B, also (u • v) • v e B, i.e. 

( ( x - c ) - c ) • ( ( y c ) - c ) G B . 

However, ( x - c ) - c G B and B is a deductive system of A, thus also (y-c)-c £ B 
giving y G (C,B). We have shown (C,F?) G Ded A. • 
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6. Principal deductive systems 

It was shown in Section 4 that every deductive system i ) in a pre-logic 
A = (A; •, 1) is a join of one-generated deductive systems, namely 

D = \J{DA{b): beD}. 

Hence, these one-generated deductive systems play a crucial role. In what follows, 
we call a deductive system D G Ded^4 principal if D = DA(b) for some beD. 
On the other hand, the description of a deductive system generated by a given 
set as shown in Section 4 is rather complex. Moreover, by Corollary 1, every 
deductive system is a QA -filter of A where QA is the induced quasiorder on A. 
We can ask if also a principal deductive system is a principal QA -filter. Both 
the questions are answered by the following theorem. 

THEOREM 10. Let A = (A',-,1) be a pre-logic and c€ A. Then 

DA(c) = {(c-x)-x: xeA}=UQA(c) 

where QA is the induced quasiorder of A. 

P r o o f . Since DA(c) is a QA-filter of A, by Corollary 1 and c G DA(c), it 
is immediately clear that UQA(C) = {y G A : (c,y) G QA} C DA(c). To pro\e 
the converse inclusion it is enough to show that UQA(C) is a deductive system. 
By Theorem 2 we only need to show that UQA(C) is an ideal of A. 

Let z G UQA(C), i.e. (c,z) G QA. By Lemma 3 we conclude (c,x • c) G QA 

and (x - c, x - z) G QA for each x e A thus also x • z e UQA (C) . Hence UQA (C) 

satisfies (12). The condition (II) is evident. Prove (13). 

Suppose cx,c2 G UQA(C). Hence (c,c2) G QA thus (c2 • x,c -x) G QA and 

(c- -(c2-x), cx -(c-x)) G QA, 

moreover c1-(c-x) = (c-c^-^-x) = c-x because (c,cx) G QA implies c-cx — 1 by 
Lemma 2. Hence, (cx-(c2-x), c-x) €QA which yields ((c-x)-x, (cx -(c2 • x)) -x) 
G QA and also 

(c- ((c-x)-x), c- ((Cl -(c2-x))-x)) eQA. 

However, 1 = (c-x) - (c-x) = c- ((c-x)-x) gives (c- ((cx - (c2 -x)) -x), l ) G EQA 

and hence c • ( ( q • (c2 • x)) - x) = 1 giving (c, (cx • (c2 • x)) • .r) G ^ , i.e. 

(cx - (c2 - x)) • x G UQA (C) which proves (13). 

Finally, c • ((c - x) - x) = (c - x) - (c • x) = 1 implies (c • x) - x G UQA(C). 
Conversely, if z G UQA (C) , then (c, z) G QA, i.e. c- z = 1 and hence 

2 = 1 • z = (c- z) • z G {(c-x) -x : x G A} . 

We have shown UQA (C) = {(c • x) • x : .x- G -4} . 
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7 Quasiorder algebras 

We are going to show that every quasiordered set can be considered as a 
pre-logic. 

THEOREM 1 1 . Let (A,Q) be a quasiordered set. Suppose 1 $. A and set Ax = 
A U {1} . Define a binary operation • on Ax as follows 

1 if(x,y)eQ, 

y otherwise. 

Then A = (Ax; •, 1) is a pre-logic. 

P r o o f . We need to verify the conditions of Definition 2. Of course, (PI) 
and (P2) are evident. 

Prove (P3). If (x,y) G Q and (y, z) G Q, then also (x,z) G Q and 

x - (y ' z) = x • 1 = 1 = 1 • 1 = (x • y) • (x • z). 

If (x, y) G Q and (y, z) $. Q, then 

x • (y • z) = x • z = 1 • (x • z) = (x • y) • (x • z). 

Suppose (x, y) <£ Q and (y, z) G Q. Then x • (y • z) = x • 1 = 1. 
If (x, z) G Q, then (x • y) • (x • z) = y • 1 = 1; if (x, z) tf. Q, then (x-y)-(x-z) = 

y • z = 1. Finally, suppose (x,y) £ Q and (y, z) <£ Q. Then x • (y • z) = x • z. If 
(x, 2) G Q, then a: • (y • z) = x • z = 1 and 

(x • y) • (x • z) = y • 1 = 1 = x • (y • z). 

If (x, z) £ Q, then x • (y • z) = x • z = z and 

(x • y) • (x • z) = y • z = z = x • (y • z). 

It remains to prove (P4). We can compute the term x • (y • z) as follows: 

x • 1 = 1 for (y, z) G Q , 

{ 
Analogously, we have 

2/ • 1 = 1 for (x, 2) G Q , 

X • (y • z) = { _ \ 1 for (x, 2) Є Q , (y, 2) £ Q , 

2 for (x, 2) £ <Ҙ , (y,z) ţ Q . 
X • 2 

2/ • (x • 2) = <{ f 1 for (2/, 2) Є Q , (x, 2) £ Q , 
У'Z~ -{ 2 for (2/, 2) £ Q , (x,z)$Q. 

Hence, x • (y • z) = z = y • (x • z) for (x, 2) ^ Q, (2/, z) <£ Q and x • (2/ • 2) = 
1 = 2/ • (x • 2) in all other possible cases. • 

Congruences on quasiorder algebras have very special properties: 
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THEOREM 12. Let (A, Q) be a quasiorderedset and A = (Ax\ •, 1) its assigned 
quasiorder algebra. Suppose <fr G Con .4. / / (x,y) G <D, then either x,y G [1]$ 
or (x,y) G EQ (where EQ is the equivalence induced by Q). 

P r o o f . Suppose $ G Con A and (x,y) G $ . Let (x,y) (£ EQ. Due to 
reflexivity, also (x,x) G $ and (y,y) e $ thus 

(x-y,x-x) and (y -x,y-y) £$. 

Since x - x = 1 = y - y and (x, y) £ EQ, then either x-y = y or y-x = x 
so we have either (l,y) G $ or (l,a?) G $ . Applying transitivity, we conclude 
z , j / e [ i ] * . • 

As mentioned in Section 1, a partial order and an equivalence relation are 
particular cases of a quasiorder. We conclude our paper by the example of pre-
logics which are quasiorder algebras in these cases. 

EXAMPLES. 

(a) If Q is a partial order on a set A, then the quasiordered algebra assigned 
to (A,Q) is just a Hilbert algebra since the induced equivalence EQ is the 
identity relation uA due to antisymmetry of Q. 

(b) If Q is an equivalence relation on a set A, then Q = EQ, i.e. Q forms 
a partition of A. With respect to (e) of Lemma 2, [1]^ = {1} in this partition 
and hence the quasiordered algebra assigned to (A,Q) is a semi-implication 
algebra (see [2] for details). It can be visualised as shown in Fig. 2. Moreover, 
the quotient Hilbert algebra A/Q for 0 = EQ existing by Theorem 1 is just an 
implication algebra (defined by J. C. A b o 11 in [1] as a fragment of a classical 
logic containing only the implication and the constant value 1). It was shown 
by A. D i e g o that implication algebras are especial case of Hilbert algebras. 

the partition of A by Q 

F I G U R E 2. 
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