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Math. Slovaca 30,1980, No. 1, 65—81 

ON SUBMEASURES II 

IVAN DOBRAKOV—JANA FARKOVA 

Introduction 

In the present paper we investigate connections between uniform exhaustivity, 
equi-absolute continuity, common or equi-subadditive continuity and sequential 
compactness in the topology of pointwise convergence for families of submeasures. 
(For the terminology see section 1 and Definitions 2 and 3). 

The concept of subadditive continuity of // is linked with absolute continuity in 
the following obvious way: \i is subadditively continuous if and only if the set 
functions vf, v£: 

vf(.B) = f i (Au .B)-f i (A) 
and 

vt(B) = fi(A)-v(A-B), 

are absolutely — \i -continuous. 
For such considerations of a family v,, i el of set functions, the behaviour of the 

set function v7, Vi(E) = sup v((E) is dominant. As the example following Corol-
iel 

lary 2 of Theorem 7 shows, V/ need not be a submeasure even if v,, i = 1, 2, ... are 
uniformly exhaustive uniform submeasures on a a-algebra. 

It is mainly for this reason that we introduce and investigate a concept of 
a semimeasure, see Definition 1, which on a a-ring is more general then the 
concept of a submeasure. Namely Theorems 7 and 11 are true only within the 
framework of semimeasures but not within that of submeasures. 

Investigation of absolute continuity of subadditive set functions was initiated by 
W. Orlicz in [15] and [16] and was succesfully continued in [1], [2], [5], [8], [9] and 

in]. 
Although most of our results are generalizations of the subadditive case, we 

prove results which have no meaning in the subadditive case, see Theorems 1, 2 ,6 , 
8 , 9 . 
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In § 1 we introduce basic notations and terminology. In § 2 we consider 
subsequently set functions on a ring, on a a-ring and on a generated a-ring. 

For a solution of Problem 1 on page 14 of part I (In the following [4] will be cited 
as part I.) and for other results on submeasures see the recent paper of L. Drewn-
owski: On the continuity of certain non-additive set functions, Colloquium Math. 
38 (1978), 243—253. 

§ 1. Notations and preliminaries 

In the following JR+ = (0, +oo) and R+ = (0, +oo). T will denote a non empty 
set, 01 a ring and $f a a-ring of subsets of T. If % d 2 T , then a(<£) denotes the 
smallest a-ring containing <£. I will be a non empty set of indices. 

All the considered set functions are supposed to be monotone and equal to zero 
on the empty set (we deal as in part I only with set functions with values inR+). If 
<£c2T and vr.% —>R+, iel, are given, then v7: % --> R + denotes the set function 
defined by the equality 

VJ(JB) = SUPV J(JB), Ee%. 
iel 

Let % c:2T and let v: %—*R+. We say that v is exhaustive, if v(En)—>0 for any 
sequence of pairwise disjoint sets En e <£, n = 1, 2, .... We shall need the following 
two well-known facts about exhaustive set functions defined on a ring, see [5, 4.1 
and 4.6]. 

Lemma 1. A set function v:0l-+ R+ is exhaustive if and only if every monotone 
sequence En e 01, n = 1,2, ... is v-Cauchy, i.e., v (En AEm )—^0 if n Am—>oo. (avb, 
resp. at\b, means the maximum, resp. the minimum, of the real numbers a and b.) 

Lemma 2. Let v:0l-^>R+ be exhaustive and let Ene0l, n = 1, 2, ... Then for 
each e > 0 there is an n0 such that 

v (EH-QEЛ <E 

for n > n0. 
We say that the family v«: %—>R+, iel, is uniformly exhaustive if Vj is 

exhaustive. 
Let v: 01 —>#+. We say that v is continuous at 0, shortly continuous if v(En)—>0 

for any sequence En e 01, n = 1, 2, ... such that En\0. If vt,: 01 —> R+, i e I, and if V/ 
is continuous, then we say that the family v,, iel, is uniformly continuous. 

We say that v:0t-^>R+ has the Fatou property, briefly the (F. p.) if En e 01, n = 1, 
2, ... and En/E e0l => v(En)—>v(E). If vr.0l-^R+, iel have the ( P p . ) , then 
clearly v7 has also the (F.p.). 
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If v:0l—>R+ is exhaustive and has the (F.p.), then it is clearly continuous. If 
v:&>-^R+ is continuous, then it is exhaustive. 

Let v, \i:0l-^>R+. We say that v is absolutely ^-continuous, briefly v<\i if for 
each e > 0 there is an 6 >0 such that A e0l, ii(A)<d =-> v(A)<e. If v <\i and 
also n<v, then we say that v and \i are equivalent and write V~JLI. If \i, 
Vi'.0l-±R+, i el and if v7<^JK, then we say that the family v,, / el, is equi-^-cont
inuous. 

We say that v:0l—*R+ is pseudometric generating if there is a subadditive 
k:0l—>R+ such that v ~ A . 

This terminology is clear, since then the function g(E, F) = k(EAF), E, F e0i 
is really a pseudometric on 01. 

The following result is due to L. Drewnowski. 

Theorem 1. Lef v: 01 —>#+. Then v is pseudometric generating if and only if it 
has the following property: for each e>0 there is a d>0 such that 

A,Be0l, v(A)vv(B)<d=>v(AuB)<E. 

(The property stated in this theorem will be called the pseudometric generating 
property, briefly the (p.g.p.).) 

Proof. Necessity is immediate. Sufficiency: Monotonicity of v and the (p.g.p.) 
imply that the families Tn = {A e0l:v(A)<n~1}, n = l,2, ..., form a base at 0 for 
a unique Frechet—Nikodym topology F(v) on 01, see [5, 1.5]. Since this base is 
countable, the topology F(v) is pseudometrizable by an invariant pseudometric d 
on 01, see [3, chap. 9, § 3]. Now it is enough to put 

A(£) = sup{d (F, 0):Fe0l,FaE}. 

Lemma 3. Let ii:0l-^>R+ have the (p.g.p.). Then there is a sequence dk eR+, 

k = l,2, ..., dk\0, such that Ak e 01, fx (Ak)<6k imply jtf ( U A, )<<5* for each 

k, p = l, 2, ... 
Proof. Take arbitrary <5i eR+ and put subsequently 6k = l/2[A-iA<5(<5*-I)] for 

k = 2, 3, ..., where <5(<5*-i) is a 6 from the (p.g.p.) corresponding to e = 6k-1. 
One of our basic concepts is introduced by the next 

Definition 1. We say that v:0l-^>R+ is a semimeasure if it has the following 
properties: 

(i) the (p.g.p.), 
(ii) the (F.p.), 

(Hi) Ne0l, v(N) = 0=>v(AuN) = v(A) for each Ae0l, and 
(iv) v is exhaustive on 01. 
Let us remind, see Definition 1 in part I, that \i: 01 —> R+ is a submeasure if it is 1) 

monotone, 2) continuous and 3) subadditively continuous: for every Ae0l and 
e>0 there is a 6 >0 such that B e0l, [i(B)<6 implies: a) n(AuB) ^ n(A) + e, 
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and b) jw(A)^^i(A — B) + e. If the 6 in condition 3) is uniform with respect to 
Ae^t, then we say that JU is a uniform submeasure. 

By Theorems 1 and 3 from part I each submeasure on a a-ring is a semimeasure 
(on a ring this is not true even for countably additive measures, since they are not 
necessarily exhaustive). 

The converse is not true as the following simple example demonstrates: Let 
T=(0, 1). Let &> be the Borel a-algebra of T and let A:5^->(0, 1) be the 
Lebesgue measure. Put v(A) = A(A) if A ( A ) ^ l / 2 and v ( A ) = l if A ( A ) > l / 2 . 
Then obviously v: SF—> (0, 1) is a semimeasure which is not a submeasure. As the 
Corollary 1 of Theorems 5 will show a semimeasure v:Sf—>R+ is a submeasure if 
and only if A„ eSf, n = 1, 2, ... and A „ \ A imply v(A„)—>v(A). 

It is easy to verify that the analogs of Theorem 4—9, 11, 12, 14, 15 and 
Corollaries 1 and 2 of Theorem 15 from part I are valid for semimeasures. See also 
Theorem 10 below. On the other hand, as the example above shows, Theorem 10 
from part I is in general not valid for semimeasures. Note also that in Theorems 3a) 
and 13 in part I the subadditive continuity can be replaced by the (p.g.p.). 

Concerning the notion of the submeasure, let us note that the subadditive 
continuity may be replaced by the following one 

3)*: If A, Ane0l, n = l,2, ... and //(A AA„)->0, then ^ (A„) ->^(A) . 
Proof : 3)=->3)*. Suppose that ji(A„)-»->^(A). Then we can assume that for 

some e > 0 either \i (A„ ) > [i (A ) + e for each n, or \i (A„ ) < [i (A ) — e for each n. In 
the first case we get that u.(Av(AAAn)) ^ii(AA(AAAn)) >ii(A) + e, which 
contradicts 3a). Similarly the second case is inconsistent with 3b). 

3)*=->3). Let / i(£„)-»0. Then [i(AuBn) = J U ( A A ( B „ - A ) ) -> JU(A) and 
li(A-Bn) = ix(AA(AnBn)) -> ^ (A) . 

Similarly, the uniform subadditive continuity is equivalent with the following one 
3u)*: for each e>0 there is a d>0 such that A, B e$l and ii(AAB)<S => 

\lx(A)-ii(B)\<E. 
Using these facts, Theorem 1, and Theorem 3b) from part I., we immediately 

obtain the following characterization of submeasures defined on a a-ring: 

Theorem 2. A set function \i: £f^>R+ is a submeasure if and only if there is an 
equivalent subadditive submeasure A: Sf—>R+ such that /i is a continuous function 
on the pseudometric space (Sf, A). 

§ 2. Uniform exhaustivity and absolute continuity of set functions 

1. On a ring 

The following theorem is a generalization of Theorem 6.1 (a) from [5]. On the 
other himd it follows immediately from this result if we use Theorem 1. We give, 
however, a direct proof and thus the metrization result of Theorem 1 is not needed. 
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Theorem 3. Lef yi, v:3ft-->R+ have both the (p.g.p.), let v be exhaustive and 
suppose that Bke^t, k = l, 2, ..., B k \ and {i(Bk)->0 imply v(Bk)—>0. 

Then v < \i. 
Proof. Suppose the contrary. According to Lemma 3 take a sequence {dk} with 

stated properties. Then there is an e 0 > 0 and a sequence Ek e$l, k = 1, 2, ... such 
that n(Ek)<dk and v(Ek)>e0 for each k = l, 2, ... 

Since v has the (p.g.p.), there is an e > 0 such that 

(1) A,Be$l, v (A)v (B)<£=->v(AuB)<£ 0 . 

Further, by Lemma 3 we choose a sequence ek eR+, k = l,2, ... such that e >£i , 

e f c \0 and A k G ^ , v(Ak)<ek, k = 1,2, ... imply v ( i j AtJ<e for each k = 1, 2, ... 

Since v is exhaustive, applying Lemma 2 to the sequence En, n = 1, 2, ... and to 
e2 we find an rii such that 

(E.-Ûe) < £ 2 foГ П>Пi. 

Put Bi = Lj£i a n d aPply Lemma 2 to the sequence BinE„ , n =rci + l , «i + 2, ... 
i = l 

and to F3. Then there is an n2>ni such that 

v ( B i n E „ - B i n ( (J E , M < e 3 for n>n2. 

Define B2 = B t n I U -5) ar-d apply Lemma 2 to the sequence B2nEn, n = n2 + 1, 
Vi^i + l / 

ri2 + 2, ... and to c4. Continuing in this way we obtain a required sequence Bke0l, 
k = l, 2, ... In fact, Bk\, and 

li(Bk)^n ( C) E)<dnk_1\0 

as k—>oo. Clearly 

(2) E r , = ( E n n B o - B i ) u ( E „ n B i - B 2 ) u . . . u 
u(E„ nBfc-i - Bk)uEn nBk 

for each n, k = 1, 2, ..., where B0=T. 
Since v(E„nB*_i — B*)<£*+i for each k = l , 2, ... and each n>nk, we have 

v ( U í ß п П B ^ - B i ) ) < £ l < Є 

for each k = l, 2, ... and each n>nk. But then v(Bk)^v(EnnBk)>e for each 
k = l, 2, ... and each n>nk, because otherwise by (1) and (2) the inequality 
v(E„)>e0 cannot hold for n>nk. Since e > 0 , we have a contradiction. 

The next theorem generalizes Theorem 1 in § 2 in [11]. 
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Theorem 4. Let n, v,: 3#—>JR + i el, let v,F <̂ JU for each i el and let each vt, i el, 
have the following property (the property 3b) of a submeasure): 

For each A e$l and each e>0 there is a 6>0 such that B e$l, v,(£)<<5 --> 
\>i(A)^Vi(A-B) + e. 

Suppose further that both // and Vj have the (p.g.p.) and that v7 is exhaustive. 
Then VJ<^JU. 

Proof. Suppose the contrary. Then by Theorem 3 there is an £>0 and 
a sequence Bk e$l, k = 1, 2, ... such that H*\, ix(Bk)—»0 and Vi(Bk)>e for each 
k = 1, 2, .... For each k = \, 2, ... take ik el so that v,k(B7)>e. 

Put ki = 1. Since vlfcl has the property 3b) of a submeasure, there is an n >0 such 
that Be0l, vikx(B)<r\ ^> vikl(Bkl-B) ^ vikl(Bkl)-e/2^e/2. But vikl<^(i, hence 
there is a 6 >0 such that B e$l, fi(B)<6 => vikl(B)<n. Since y(Bk) —>0, there is 
a k2>ki such that y(Bk2)<6. In this way we have found a k2>kx such that 
Vj(Bfcl — B*2) ^ vikl(Bkl — Bk2)^e/2. Repeating this consideration subsequently for 
k2, k3, ..., we obtain a subsequence Bkn, n = \,2, ... such that Vi(Bkn —Bkn+l)^e/2 
for each n = 1, 2, ... But this contradicts the exhaustivity of v7, since J 3 * \ and 
therefore the sets Bkn —Bkn+l, n = \, 2, ... are pairwise disjoint. 

2. Onaa-ring 

The next lemma immediately follows from the monotonicity of the considered 
set functions. 

Lemma 4. Let vn\
c3i-^R+, n = \, 2, ... and let lim vn(A) = v(A) exist for each 

Ae$l Then vn,n = \,2, ... are uniformly continuous if and only if v is continuous. 
The following simple theorem is the key to the most of our results which will 

follow. 

Theorem 5. Let JU , v,: Sf^>R+, i e I have the (F.p.) and let NeSf, y. (N) = 0 =-> 
v, (A u N ) = v, (A ) for each i el and each AeSf. Let further \i have the (p.g.p.) and 
let Vj be exhaustive. Then Vj<ii. 

Proof. Suppose the contrary. Take a sequence dk, k = 1,2, ... for n according to 
Lemma 3. Then there is an e >0 and a sequence AkeSf, k = \, 2, ... such that 

fj.(Ak)<6k and Vj(A*)>e for each k = 1, 2, .... But then \i ( ( J A,-)^6fc for each 
\ i=* + l / 

k = 1, 2, ... by Lemma 3 and the (F.p.) of \i. 

Put 1V=n U At. Then ju(IV) = 0 by the monotonicity of /(, hence 
k=i i=fc+i 
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vi ( U Ai. - Jv) = v7 ( ( J A,) > v,(A*+i)>£ for each A: = 1, 2, ... Since v, has 
\/=fc+i / \/=fc+i / 

the (F.p.) and is exhaustive, it is continuous. Clearly ( J A , — N \ 0 as k—>oo, 

i=Jt + l 

hence v7 I ( J A, — Nj—>0 by the continuity of v,, a contradiction. 

In connection with the next corollary see also Theorem 2 in part I. 
Corollary 1. For a set function \i:Sf—>R+ the following conditions are 

equivalent: 
1) ii is a submeasure 
2) jti has the (p.g.p.), is monotonely continuous, i.e. An/

,(\)A => ii(An)-+ 
li(A), and v(N) = 0 => ii(AuN) = \i(A) for each A eSf. 

Particularly a semimeasure \i: Sf-±R+ is a submeasure if and only if An\A => 
li(An)-*ii(A). 

Proof. l )=>2)by Theorem 3b), Theorem la) from part I and the subadditive 
continuity of p. 

2)=>1). We have to show that \i is subadditively continuous. Let AeSf and put 
v1(JB) = f i ( A u B ) - / i ( A ) a n d v 2 ( B ) = [i(A)-\i(A -B), B eSf. Then it is easy to 
see that 2) implies that \i, Vi and v2 satisfy all assumptions of the theorem. Thus 
(vivv2)<^ju, what we wanted to show. 

Using Lemma 4 we immediately have the following version of the Vit-
ali—Hahn—Saks theorem. 

Corollary 2 .Let \ i , v n : Sf^>R+, n = l,2,... have the (F.p.), let[ihave the (p.g.p.) 
and let N eSf, n(N) = 0 => v„(AuN) = v„(A) for each n = l, 2, ... and each 
AeSf. Let further v0:Sf—>R+ be continuous and let vn(A)—>v0(A) for each 
AeSf. Then the sequence v„, n = 0 , 1, 2, ... is equi-^-continuous. 

From this we obtain the necessity of conditions II and III in Theorem 18 and of 
condition II in Theorem 23, part I, as we promised there. Namely we have 

Corollary 3. Lef \i:Sf-^>R+ be a submeasure and let AneSf, n = 1,2, ... be 
a monotone sequence with the limit A0. Then for each e>0 there is a d>0 such 
that BeSf, [i(B)<.6 => \i(AnuB) ^ \i(An) + e and \i(An-B) ^ fj,(An)-e for 
each n =0, 1, 2, ... 

Proof. For n=0, 1, 2, ... put vn(B) = [n(AnuB)~ pi(An)] v 
[ju(An)-ju(An -B)], BeSf. Then by Theorem la), Theorem 3b), part I and the 
subadditive continuity of \i clearly all assumptions of Corollary 2 are satisfied. 

Note that the last corollary is generalized by Theorem 6. 
For the next theorem we need two lemmas. The first is immediate. 

Lemma 5. Lef vn,k: 01-+R+, n, k = l, 2, ... and suppose that: 
1) for each n = l,2,... the sequence vn,k,k = l,2, ...is uniformly exhaustive, 
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2) for each k = 1, 2, ... the sequence vn,k, n = 1, 2, ... is uniformly exhaustive, 
and 

3) for each subsequences rz,—>°°, kt —> °° as i —• °° tfie sequence vnuki,i = l,2, ... 
is uniformly exhaustive. 

Then the family v„tk, n, k = l, 2, ... is uniformly exhaustive. 

Lemma 6. Let \in:Sf—>R+,n = 1,2,... be semimeasures or submeasures and put 

»w-|ri5££r *•*• 
Then \i is a semimeasure or a submeasure, respectively. 
Proof: We prove the lemma for semimeasures. The case of submeasures may 

be proved similarly. First we note that for each n = 1, 2, ..., jU„(T) = sup \in(A)< 

+ °° (if AkeSf, k = l, 2, ... and [in(Ak) / \in(T), then \in(T) = X\m [in(Ak) ^ 
fc—*oo 

\in ( U ^ * ) < + °° by the monotonicity of //„). 

1 
Now only the (p.g.p.) is not immediate. Let e > 0. Take n0 so that ^ yr<z/2, 

n=no+l --» 

and for n = 1, 2, ..., n0 take <5„ by the (p.g.p.) of \xn so that \in(A)v\in(B)<dn -=> 

\in(AuB)<e/2. Put 6 =-„- -—- where a = min <5„ and b = max JU„(T). Then 
2 ° 1 + 0 ls£ns£r»0 ls=ns£n0 

clearly ii(A)v[i(B)<6 :--> {i(AuB)<e, what we wanted to show. 
We shall need also the following 
Definition 2. We say that the family of set functions Vi:@L-*R+, iel is 

commonly subadditively continuous if for each Ae^t and each e>0 there is 
a d>0 such that B e0l, vt(B)<6 imply vt(AuB) ^ v,(A) + £ and v,(A -B) ^ 
v, (A ) — e for each i e I. 

Note that if v,: £%-->R+, iel are commonly subadditively continuous, then 
clearly vr.0l—>R+ is subadditively continuous. 

Theorem 6. Lef u.0, \in:Sf—>R+, n = 1, 2, ... be submeasures and let {in(A)—> 
Uo(A) for each AeSf. Let further AkeSf, k=l, 2, . . . and let Ak-^>A0, i.e. 

lim sup Ak = lim inf Ak = A0. Then for each e>0 there is a 6 >0 such that B eSf, 
k k 

H„(B)<d for each n = 1,2, ... imply iin(AkuB) ^ iin(Ak) + e and fin(Ak — B) ^ 
[in(Ak) — e for each n, k = l, 2, ... 

Proof. Put 

' W - | F T S Ž & - *•*• 
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Then ix:Ef-^>R+ is a submeasure by Lemma 6. For n, k = 0, 1, 2, ... define vn,k, 
v~,k:^—>R+ by the equalities: vn,k(B) = iin(AkvB) - fin(Ak) and v~*(£) 

= iin(Ak) - un(Ak-B), B eEf, Since ii(B) ^ supvn(B) for each B eSf, to prove 

the theorem it suffices to show that the family {vn,k, vn,k, n, k = l, 2, ...} is 
equi-/i-continuous. To show this it is enough to check that all assumptions of 
Theorem 5 are satisfied. Since JU is a submeasure by Corollary 1 of Theorem 5, it 
has the required properties. Similarly, since each iin, n = 1, 2, ... is monotonely 
continuous, each vn,k and vn,k, n, k = 1,2, ... is continuous and has the (F.p.). The 
property: ATeSf, \i(N) = 0 --> vt,k(AuN) = vn,k(A) and vn,k(AuN) = vn,k(A) 
for each A e Sf is immediate. Theorem lb) in part I implies that vn,k(B) —> vn,0(B) 
and vn,k(B) —> vn,0(B) for each B e&> and each n = l, 2, .... Thus according to 
Lemma 4 the sequence vn,kvvn,k is uniformly exhaustive for each n = l, 2, .... 
Similarly, since iin(B)-^>ii0(B) for each B etf, the sequence v ^ v v ^ n = 1, 2, ... 
is uniformly exhaustive for each k = 1, 2, .... If now n, Afc—> °°, then it is easy to see 
that 

( v ^ I v V ^ j t j ) ( B ) - > ( V o , o W o > o ) ( B ) 

for each Be:f, hence again by Lemma 4 the sequence v^vv^ ,* , , i = 1, 2, ... is 
uniformly exhaustive. Thus by Lemma 5 the family {vn,k, vn,k, n, k = l, 2, ...} is 
uniformly exhaustive, what we wanted to show. 

Corollary. Let the family of submeasures v,:5^—>JR+, iel be sequentially 
compact in the topology ofpointwise convergence on &*. Then vt(A ) < 4- oo for each 
A e:f, v ;: &

>—> R+ is a submeasure and the family v,, i e lis commonly subadditive -
ly continuous. 

The idea of the proof of assertion 2) of the next theorem is taken from [10, 
Theorem 3.10], see also [1, Theorem 1] and [5, 10.5]. 

Theorem 7. Let v,: £f-+R+, i el be semimeasures and let Vj be exhaustive. Then: 
1) Vj:5 -̂H• (0, +oo) is a semimeasure, and 
2) there exists a sequence inel, n = l, 2, ..., such that V/<^JU, where 

n=i 2 1 + v l f l (T) ( T ) ' 

Proof. 1) Only the (p.g.p.) of v, is not immediate. Suppose v, has not got it. 
Then there is an e > 0 and for each n = 1, 2, ... sets An, Bn e<f and /„ el, n = 1, 
2, ... such that Vj(An) v Vi(Bn)<l/n and v,„(A„uB„)>e. Thus if J= {in, n = l, 
2, ...}, then v, has not the (p.g.p.) either. Hence we reduced the case of general J to 
the case when I ={1,2, . . . } • Let I = { i ? 2 , ...} and for Ae&> put 

i-м 2 1 + v, 
v,(A)_ 

(T) 
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Then ii:Sf-^R + is a semimeasure by Lemma 6, hence v7 <fi by Theorem 5 . Let 
e > 0 . Since v7 <]U, there is a (50>0 such that ii(E)<d0 => Vi(E)<e. Since |U has 
the (p.g.p.), there is a <5>0 such that ju (A)v/ i (B)<6 => M ( A U B ) < < 5 0 . Since 
,u(A)=^Vj(A) for each A eSf, v7(A) Wj(B)<<5 => Vj (AuB)<e , what we wanted 
to show. 

2) First we show that for each e > 0 there exists a finite subset Je czI such that 
A e5^, vJe(A) = 0 =-> Vj(A)^E. Suppose the contrary. Then there is a n e o > 0 such 
that for any finite subset J cz I there is a set A e Sf and iel-J such that \'j (A ) = 0 
and v,(A)>£ 0 . Take arbitrary iiGI. Then there isan Aie : f and i2eI such that 
v,2(Ai) = 0 and v,-2(Ai) >e 0 . Similarly there is anA 2 e : f and i3 e I such that vlx(A2) 
v v,2(A2) = 0 and v,3(A2) >E0. Continuing in this way we obtain a sequence An e Sf, 
n = \, 2 , . . . and a subsequence i„GI, n = l, 2 , . . . such that v / n + 1(^«)> £o and 

v,n(A,v) = 0 for k^n, n = 1, 2, ... By the (F.p.) of each v, we have vin I U Ak) = 0 

for each n = l, 2, ..., hence vin+l [An — U Ak)>e0 for each rz. But this con-

tradicts the exhaustivity of v7, since the sets A„— U A,t,.n = l , 2 , ... are pairwise 

disjoint. In this way we have shown that for each e > 0 there is a finite subset Je czl 
such that A eSf, vJ t(A) = 0 =̂> Vj(A)=^E. Putting subsequently E = 1/k, k = \, 2, ... 
we obtain a sequence /„ GI, « = 1, 2, ... such that A eSf, 

^A)=S¥jf^m=°^A)-0-
Now clearly all assumption of Theorem 5 are satisfied, hence we have the desired 

result Vj <fi. 
From 1) and the Corollary 1 of Theorem 5 we immediately have 

Corollary 1. Let v,: Sf-+R+, i el be semimeasures and let Vi(A)< + o° for eac/7 
AeJ" . TIie/i v7 /$ a submeasure if and only if AneSf, n = 1, 2, ... and A „ \ A 
implies Vj (A„ ) —> v7 (A ). 

From assertion 2) of the theorem we easily have 

Corollary 2. Under the assumptions of the theorem suppose that each 
pseudometrizable uniform space (Sf, WVi), i el is separable or that each v,-, / e I is 
a regular Borel semimeasure on o(£ft), or that each v,, i e L has the property (p), 
see Definition 4, part I. Then the semimeasure Vj also has the corresponding 
property. 

The next simple example shows that in Theorem 7 Vj need not be a submeasure 
even if each v,-, iel is a uniform submeasure. 

Example. Let T= (0, 1), let m be the Borel cr-algebra of T and let \i'.<&-+ 
(0, 1) be the Lebesgue measure. For n = 1, 2, ... and A e£ft put 
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vn(A) = iLi(A)Al/2 + [ n ( / i ( A ) - l / 2 ) A l / 2 ] v O . 

Then each vn: $% —> (0, 1) is a uniform submeasure. Let Ak = (0, 1/2 + l / (k + 1)), 
k = l, 2, ... Then A * \ < 0 , 1/2)= A , Vj(A*) = l for each k = \, 2, ..., but 
Vj(A)= 1/2. Thus Vj is not a submeasure by Corollary 1 of Theorem 7. 

Theorem 8. Lef v{:Sf^>R+, iel be atomless semimeasures, see Definition 2, 
parti, let Vj be exhaustive and let A, BeSf and v f (A)vv j (B)< + oo imply 
Vj(AuH)< + oo. Then v 7(A)<+oo for each A eSf. 

Proof. Suppose Vj (A ) = + oo for some AeSf. Then there is a countable set J c I 
such that Vj(A)= +oo. In this way we may suppose that 1 = {1, 2, . . . } . 

Let 1= {1,2, ...} and put 

"WJfFiT^y *'*• 
Then ii:Sf-+R+ is a semimeasure by Lemma 6. Now it is easy to check that all 

assumptions of Theorem 5 are satisfied, hence Vj <̂  /i. It remains to apply the Saks 
decomposition of fi, see Theorem 8, part I, and the assumed property 

V j ( A ) W j ( B ) < + o o z > V j ( A u H ) < + oo. 

Theorem 9. Let v,: Sf-+R+, iel be semimeasures and let Vj(A ) < + oo for each 
A eSf. Then vi:Sf—*R+, is a uniform submeasure if and only if the set function 

v:Sf-^R+, v(B) = sup [vj(AuB) - v7(A)], BeSfis exhaustive. 
AeSf 

Proof : Let vx: Sf—>R+ be a uniform submeasure. Since Vj is then continuous, it 
is exhaustive. Now the exhaustivity of Vi:Sf-*R+ and its subadditive continuity 
imply the exhaustivity of v. 

Conversely, suppose that v:Sf^>R+ is exhaustive. Taking A = 0 we obtain that 
Vi:Sf-*R+ is exhaustive. Since v7: Sf-*R+ has also the (F.p.), it is continuous. Thus 
it remains to prove its uniform subadditive continuity. In fact we have to show that 
v <^vj. By Theorem 5 it is enough to check that with \t = Vj its assumptions are 
satisfied. Since each v,-, iel has the (F.p.), v7 and v also have the (F.p.). Since Vj is 
exhaustive, it has the (p.g.p.) by Theorem 7. The implication Vj(iV) = 0 => 
V/(AuN) = v(A) for each A eSf is immediate. Finally the exhaustivity of v is 
assumed. 

3. On a generated a-ring and sequential compactness 
in the topology of poinrwise convergence 

For submeasures the next result is contained in the lemmas of the proof of 
Theorem 18, part I. 

75 



(By <3la($la) as usually we denote the class of limits of increasing (decreasing) 

sequences of sets of 91.) 

Theorem 10. Let v:o(9l)-+R + be a semimeasure. Then: 

1) for each A eo(9l) and each e > 0 there are Ee9la and Fe9l6 such that 

Fez A czE and v(E —F)<8. 

2) for each A eo(9l) there are F e9loa and E e9la6 such that FczAczE and 

v(E-F) = 0, and 

3) v(A) = sup {v(F), FczA, F e % } for each A eo(9l). 

Proof. 1) Denote by Sf the class of all sets A e o(9l) for which 1) is valid. Then 

clearly 9lczSf and Sf is a ring by the (p.g.p.) of v. Let A„ eSf, n = 1, 2, ... and let 

An/A. According to Lemma 3 and the (F.p.) of v there is a sequence dk\0 such 

that Bk eo(9l), v(Bk)<dk, k = \,2, ... imply v ( {jBk\<e. Since v is exhaustive, 

by Lemma 2 and the (F.p.) of v there is an n0 such that v(A — A„0)<<5i. Take 

F e % so that FczAno and v(A„0-F)<<52|for each n=n0 + k, k = \, 2, ... take 

Ene9la such that EnzoAn and v(Eno+k - Ano+k) < 62+k, and put E=UEno+k. 
k=\ 

Then Ee9la, FczAczE and v(E-F)<e. 

Thus A e<f, hence Sf = o(9l). 

2) follows immediately from 1) by the mono tonicity of v. 

3) Let A eo(9l). By 2) take F e9laa so that FczA and v(A - F ) = 0. Then 

v(A) = v(F) and v(F) = sup {v(G), G e % , GczF} by the (F.p) of v. 

The implication 1)=$>3) of the next theorem in the case when each v,-, iel is 

additive was proved in [17, Theorem 2.1] and for subadditive v, it follows from 

Theorem 7.2 in [5], see also Theorem 2.1 in [9]. 

Theorem 11. Let v£: o(9l)->R+, iel be semimeasures. Then the following 

conditions are equivalent. 

1) Vj: 91 —> JR + is a semimeasure 

2) Vi:o(9l)—>R+ is exhaustive 

3) Vj: o (91) —> R + is a semimeasure. 

Proof. 2)=>3) by Theorem 7.1) and obviously 3)=>1). 

l)=->2). Suppose the contrary. Then there is an £0>0 and a sequence Ak e o(M), 

k = \, 2, . . . of pairwise disjoint sets such that Vj(A*)>£ for each k = l, 2, . . . . 

According to Theorem 10.3) there are Fk e9ta, k= 1, 2, . . . such that Fk czAk and 

Vi(Fk)>e0 for each k = 1, 2, ... For each k = 1, 2, ... take R*e9l, j = 1, 2, ... so 

that R*\Fk. Let ke{l,2, ...} be fixed. Since Vj:^->£+ is exhaustive, by 

Lemma 1 there is an j0 such that Vi(R^0 — Rf)<e0 for each j^j0. But then 

v,(-R*0-F*)sSeo by the (F.p.) of vz: o(9l)->R+, hence vi(_R*-F*)-»0 asj-» oo for 

each fc = l, 2, . . . . By the (p.g.p.) of Vj:f#—>JR+ take <50>0 so that A, Be9l, 

V,(A)VVJ(JB)<6 0 =-> vi(AuB)<e0 . According to Lemma 3 take a sequence 
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Sk\0, Ar = l, 2,... such that Ake0t and V/(A*)<<5*, k = l, 2,... imply 

v/ ( I j A , ) < 6 0 for each k = 1, 2, .... Further for each k = 1, 2, ... choose jk so that 
k-i 

Vi(Rik -Fk)<dk, put Ri = R)x and Rk = R-k- \JRt for k^2, 2, .... Then Rk, k = l, 

i = l 

2, ... are pairwise disjoint elements of 0t and R*k = Rkv (R*kn ( U-Rij) for each 

k = l , 2 , . . . 
Since Fk, k = 1, 2, ... are pairwise disjoint, it is easy to see that 

Sk = Rln ( U R.) <= Ů (V4 - F,) 

for each k = 1,2, .... Hence V/(S f c)<60 for each k = 1,2, .... Since R*k = RkvSk and 
since V/(i?jcJ^V/(F/c)>e0 for each k = 1, 2, ..., we have obtained that V/(R*)>6 0 

for each k = 1, 2, ..., a contradiction with the exhaustivity of vr0t—>R+. 
The theorem is proved. 

Theorem 12* Let /i, v f: o(0t)—>R+, i el be semimeasures, let vr.o(0t)^>R+ be 
exhaustive and let v, <\i on 0t for each i el. Then V/< .̂u on o(0t). 

Proof. According to Theorem .5 it is enough to show that N eo(0t), [i(N) = 0 
=->V/(AT) = 0 for each iel. Let us have fixed iel, Neo(0t) with ii(N) = 0 and 
£ > 0 . Since vt<^[i on 0t, there is a 6 > 0 s u c h that A e0t, JU(A)<<5 =-> vt(A)<£. 
By Theorem 10.1) there is an Ee0ta such that Nc=E and / i ( f})<6. Choose 
An e0t, n = 1, 2, ... so that An/E. Then \i(An)<b, hence v,(A„)<£ for each 
n = 1,2, .... But then V , ( £ J ) ^ £ by the (F.p.) of v,. Since e > 0 was arbitrary, 
v, (IV) = 0, what we wanted to show. 

Definition 3. We say that v,: 0t —» R+, i el are subadditively equicontinuous if for 
each A e0t and each e>0 there is a 6>0 such that iel, B e0t and vt(B)<6 
imply: 

v ( ( A u B ) ^ v , ( A ) + e and v,(A -B)^Vi(A)-e. 

If such a 6 > 0 exists commonly for all A e0t, then we say that vr.0l-^> R+, iel 
are subadditively equicontinuous uniformly on 0t. 

Clearly, if v,: 3ft --> R+, i e I are subadditively equicontinuous and v7(A ) < + o° for 
each Ae0t, then vr0t—*R+ is subadditively continuous. Further, if vn:0t—>R+, 
n = 1, 2, ... are subadditively equicontinuous and if vn(A)—>v(A)eR+ for each 
A e 0t, then obviously v:0t-+R+ is subadditively continuous. 

Subadditive equicontinuity clearly implies common subadditive continuity. The 
following simple example shows that the converse is not true even if we have 
uniform submeasures on a a-algebra. 

Let T = { 0 , 1, 2, ...} and let Sf = 2T. For n = l, 2, ... define vn:tf-*R+ as 
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follows: v„(0) = O, vn({n})=\/n, v„(A) = 2 if { 0 } u { n } c A and v „ ( A ) = l if 
{ 0 } u { n } 4 A and A contains some k<n. Finally we define v„(A) = 0 if 
inf {k:keA}>n. 

Theorem 13. Let the semimeasures vn:o(0l)-+R+, n= 1, 2, ... be commonly 
subadditively continuous, let them be uniformly exhaustive on 01 and let 

lim v„ (A ) € R+ exist for each Ae0l. Then lim v„ (E) e R+ exists for each E eo(0l) 
„_*.oo „—+oo 

and v(E) = \\mvn(E), Eeo(0l), is monotone and continuous on o(0i). 
„—*oo 

Proof. Let Eeo(0l) and let e > 0 . By assumption there is an d > 0 such that 
Beo(0l), v „ ( B ) < d for each n = \, 2, ... implies v„(EuB) ^ v„(B) + £ and 
vn(E-B) ^ vn(E)-e for each n = 1, 2, .... 

Put 

Then JU: a(£%)—*R+ is a semimeasure by Lemma 6, and N eo(0l), /x(N) = 0 =-> 
v„(Au_V) = v„(A) for each A e a ( ^ ) and each n = \, 2, .... Further, by 
Theorem 11 the sequence v„, n = \, 2, ... is uniformly continuous on o(0t). Thus 
by Theorem 5 the sequence v„, n = 1, 2, ... is equi-|Li-continuous on a(02). Hence 
there is a <5>0 such that Beo(0l), n(B)<d -4> v„(B)<£i for each n = 1, 2, .... 
Applying Theorem 15 from part I to /z we find an A e01 such that /x(HAA)<6. 
Since E — (AAE)(= A C=IJ U (A AE), we have the inequality vn(E) — e ^ v„(A) 

^ V„(JE) + £ , i.e. |v„(H)-v„(A) |^£ for each n = 1, 2, .... Since l imv„(A)ei*+ 

exists for each A e 01 by the assumption, there is an n0 such that |v„ (H) — vm(£})| ^ 

3e for each n, m^n0. Since e > 0 and £ e a ( ^ ) were arbitrary, limv„CE)e.R+ 

exists for each Eeo(0l). Since also the sequence v„, n = \, 2, ... is uniformly 

continuous on a ( ^ ) , the set function v(E) = limvn(E), E e o(0l) is continuous on 
rt—*oo 

o(0l). Its mono tonicity is obvious and thus the theorem is proved. 
From here and from Theorem 6 we immediately have 

Corollary 1. Let v, vn:o(0t)^>R+, n = 1, 2, ... be submeasures and let v„(A)—> 
v(A) for each A e0l. Then the following conditions are equivalent: 

1) the sequence vn,n = \,2, ...is commonly subadditively continuous on o(0l), 
and 

2) v„(A)-*v(A) for each Aeo(0t). 
Further, we have 

Corollary 2. Let vn:o(0l)-*R+, n = \, 2, ... be subadditively equicontinuous 
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submeasures and let limv„(A)€R .h exist for each Ae0l. Then the following 
n—*oo 

conditions are equivalent: 
1) v„, n = \, 2, ... are uniformly exhaustive on 01, and 

2) limv„(A)e.R+, exists for each A eo(0t) and v(A) = limv„(A), A eo(0t) is 
n—K30 n—•oo 

a submeasure. 
Where from using the Cantor diagonal process and the Corollary of Theorem 6 

we immediately have 

Corollary 3. Let 01 be a countable family, see Theorem C, § 5 in [12], and let 
v,: o(01)—>JR + , iel be subadditively equicontinuous submeasures. Then the fol
lowing conditions are equivalent: 

1) Vi:o(0l)-*R+, i el is a relatively sequentially compact family in the topology 
of pointwise convergence on o(0t), and 

2) Vi(A)< + oo for each Ae0l and vr.0l->R+ is exhaustive. 
This Corollary 3 generalizes Theorem 2, § 3 in [2], while the next theorem 

generalizes Theorem 1, § 3 in [2]. 

Theorem 14. Let v,: £f-+R+, i el be subadditively equicontinuous submeasures 
and let for each i el the pseudometrizable uniform space (Sf, °U^) be separable. 
(For the definition of (£f, °llVi) see the paragraph preceding Theorem 14, part L). 
Then the following conditions are equivalent: 

1) Vj:: &*—>R+, i el is a relatively sequentially compact family in the topology of 
pointwise convergence on £f, and 

2) Vj(A)<+ oo for each A etf and vr^f—>R+ is exhaustive. 
Proof. l)-=>2) by the Corollary of Theorem 6. 
2) => 1). By assertion 2) of Theorem 7 there is a sequence i„ e I, n = 1, 2, ... such 

that Vj <̂  n, where 

«<A>=!?if$r A^-
Clearly, the pseudometrizable uniform space (&*, ^M) is also separable. Hence 

there is a sequence En e Sf, n = 1, 2, ... which is dense in (&*, ^ ) . Let 01 be the ring 
generated by this sequence. Then 01 is countable, see Th. C, § 5 in [12] and in the 
same way as in Lemma 3. 1 in [2] we can show that to each E eSf there is a set 
A eo(0l) such that ii(EAA) = 0. E*ut then Vi(fiZ\A) = 0, hence it is enough to 
prove l ) o n a ( ^ ) . But this is the implication 2)=^> 1) of Corollary 3 of Theorem 13. 

Lemma 7. Lef T be a locally compact Hausdorff topological space and let 
vn:a(38A)—>R+, n = \, 2, ... be regular Borel (Baire) semimeasures. Then the 
following conditions are equivalent: 
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1) V/:^A—>R+ is exhaustive, and 
2) V/:a(^A)—>R+ is exhaustive. 

(For notations see Definition 3, part I.) 
Proof. l)=->2) by the regularity of v„, n = 1, 2, ..., while 2) =->l) is immediate. 
Now in the same way as in Theorem 13 we can prove the following 

Theorem 15. Let T be a locally compact Hausdorff topological space, let 
v„:a(^A)—>R+, n = l, 2, ... be regular Borel (Baire) semimeasures and let 

\imvn(C)eR+ exist for each C e ^ A . Let further vn:^A—>R+, n = l, 2, ... be 
n—»oo 

uniformly exhaustive and let their extensions vn: a(3#A)-H>R+ be commonly 

subadditively continuous. Then Umvn(E)eR+ exists for each £ e a ( ^ A ) and 
n—*°o 

v(E) = \imvn(E), £ e a ( ^ A ) , is monotone and continuous on a(£#A). 

We omit the obvious formulations of the analogs of Corollaries 1,2, and 3 of 
Theorem 13. 

We finish this section with the following version of the Vitali—Hahn—Saks 
theorem. 

Theorem 16. Let the submeasures v, vn:9l-+R+, n = l,2, be exhaustive and 
subadditively equicontinuous uniformly on 01. Let further ^i:o(0t)—>R+ be 
a semimeasure, let vn<iion0l for each n = 1,2, ..., and let v„ (A )—> v(A ) for each 
Ae&t. Then 

1) the extended submeasures vn:o(0l)-+R+, n = l, 2, ..., are subadditively 
equicontinuous uniformly on o(0t), 

2) vn(E)-^v(E) for each Eeo(9l), and 
3) the extended submeasures vn:o($l)—*R+,n = 1,2, ... are equi-^i-continuous 

on o(0l). 
Proof. 1) follows immediately from the extension procedure for submeasures 

given in the proof of Theorem 18, part I. 
2) follows immediately from 1) and Corollary 1 of Theorem 13, and 
3) follows immediately from 2), from Lemma 4 and from Theorem 12. 
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О СУБМЕРАХ II 

Иван Д о б р а к о в - Я н а Ф а р к о в а 

Р е з ю м е 

Пусть 01 кольцо подмножеств непустого множества Т. Функция /!/: ^ —> (0, +<») называется 
субмерой, если она монотонна, непрерывна (Ап\0 -=> /л(А„)—>0), и полуаддитивно непрерывна 
( У Д е ^ и ^ > 0 3 6 > 0 ; ВеЖ, р(В)<6 4> ц(АиЗ) ^ ц(А) + е и р(А -В)^ц(А)-е). В 
первой части, смотри [4], было показано, что почти все результаты об отдельных мерах имеют 
обобщения для субмер. В настоящей части исследуются отдельные связи между равномерным 
отсутствием ускользяющей нагрузки, равностепенной абсолютной непрерывностью, совместной 
или равностепенной полуаддитивной непрерывностью и слабой компактностью для некоторых 
семейств функций множеств, в частности для субмер. После вводных замечаний данных в §1 , 
в §2 исследуются упомянутые связи вначале на кольце, после того на а-кольце, и наконец на 
а-кольце порожденном кольцом. Решающую роль в этих исследованиях семейства V,, / е I, играет 

поведение функции V/, УХ(Е) = виру,(Б), и эквивалентность полуаддитивной непрерывности (л с 
1ш1 

абсолютной ц-непрерывностью функций V? и У 5 , где У*(В) = ц(АиВ) — ц(А), и У*(А) 
= ц ( А ) - ц ( А - В ) . 
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