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SIGNED STATES ON A LOGIC 

ANATOLIJ DVUREtENSKIJ 

In the paper the notion of signed state on a logic will be studied. The 
decomposition of signed states as a difference of two positive signed states on 
a modular logic of finite rank will be shown. Finally, the important case of signed 
states on a logic L(H) of all closed subspaces of a separable Hilbert space H of 
dimension at least 3 will be solved; it deals with a generalization of the known 
Gleason theorem. This paper is based on a dissertation [2]. 

1. Signed states on a logic 

Let L be a a — lattice with the first and the last elements 0 and 1, respectively, 
and an orthocomplementation _L: a>-+a±, a, axeL, which satisfies 

(i) (axY = a for all aeL\ 
(ii) ifa<bithenb±<a±; (1) 

(iii) ava± = 1 for all a eL. 
We further assume that if a, b e L and a<b, then b =av(a±Ab). A o — lattice L 
satisfying the above axioms will be called a logic ([5]). 

Let L be a logic. We say that a,b eL are orthogonal and write alb if a<bx. 
An observable is a map x from the Borel sets B(Rx) of _R, into a logic L, which 

satisfies (i) x(R{)= 1; (ii) x(E)±x(F) if EnF = 0; (iii) x ( Q E,) = \fx(E.) if 
\ I = I ' i = i 

E,nE, = 0,/=£/, {E,}cB(R,). 
A signed state is a map m from L into i?,u{ + °°}u{-o°} such that 
(i) m(0) = 0; 

(ii) m (\/ai) = ^m(ai), a.JLfl,, i-*-=/, (2) 
\i = i / i = i 

k } c L ; 

and it may attain at most one of the values ±*>. A signed state m is positive 
(negative) if m(a)^0 (m(a)^O) for all a eL. A state is a positive signed state m 
such that m ( l ) = 1. 
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Lemma 1. 1. Let m be a signed state, a<b, |m(/?)|<oo. Then |m(a) |<oo. 

Lemma 1. 2. If {a{} is a sequence of mutually orthogonal elements of L such that 

m (Vtfi/ < c o> tnen tne series 2 l m ( f l i ) l converges. 
\ 1 i i - \ 

LcnuKua 1.3. 17 a,<a2<. ., \Ja(=a, then m(a) = lim m(a,). If a ,> l j 2 >. . . , 
i = i ' 

/\a{=a, \m(at)\<sc at least for one i, then m(a) = \\m m(a,). 
i 1 ' 

The proofs of the last three lemmas are omitted; they are the same as in [3]. 
Let O(L) be the set of all observables of L. A signed state function is a map P: 

x ^>PX, x eO(L), which assigns to each observable x eO(L) a signed measure Px 

on B(RX) such that for any real valued function / on Rx and any observable x one 
has 

Pfx(E) = Px(f\E)), EeB(R,), (3) 

where fox is an observable /ox: E\-^>x(f ](E)). The notion of the signed state 
function closely connects with the concept of the signed state: 

TEueorem 1.4. Let L be a logic, O(L) the set of all observables and m be a signed 
state on a logic. If we define, for any observable xeO(L) and any Borel set 
E eB(Ri), a function 

P?: E^m(x(E)), 

then Px is a signed state function. Coversely, if P is a signed state function, then 
there is a unique signed state monL such thatPx (E) = m(x(E)) for allx and E. 

Proof. The first part of our theorem is evident. 
The second part. Let P be a signed state function. Let us put 

m(a) = />„„({ 1}) (4) 

for each aeL, where qa is a question, that is such a unique observable that 
qa({0}) = a±, qa({\}) = a. Then m is a signed state on L. Indeed, m(0) = 
f\ ,({l}) = 0- Let {at}T-\ be a sequence of mutually orthogonal elements of L and 

a = V a i - Let x be a unique observable such that x({0}) = aX, x({i})~at, i = \, 2, 
i i 

.... If f=X{i), i = \, 2, ..., and f = X{U2,...), then fox is a question qa,, fox is 
a question qa and, by (4) and (3), we have m(at) = Px({i}), m(a) = Px({\, 2, ...}). 
Since Px is a signed measure it follows that m(a) = Pqa({l}) = PM({l}) = P({l, 2, 

i - i i i 

The uniqueness of m follows from the equation (4). 
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Theorem 1.5. LerM(L) be the set of all bounded signed states on L, then M(L) 
is a real vector space with respect to the usual addition and the multiplication by 

real scalars. The number \\m \\ = sup \m(a)\, m e M(L), defines the norm of m with 
a e L 

respect to which M(L) is a Banach space. 
Proof. Only the completeness of the norm. Let {mn} be a Cauchy sequence of 

elements from M(L). There is a number m(a)~ lim mn(a) for any a e L. We shall 

show that a function m: a»->m(a), aeL, is a bounded signed state. We have 
m(O) = 0 and m is finitely additive function. 

Now let a = \f at, a,_La,, /-£/, then 
i = l 

m(a)-^Jm(ai) ^\m(a)-mn(a)\+ \mn(a)-mn [\f at\\ + 
i=l 1 4 = 1 I 

+ \m„ (\/a,)-m (\/a») . 
I 4 = 1 ' 4 = 1 ' 

£• 
If e > 0 is given, then the first and the third member is smaller than - for some n, by 

the uniform convergence of {mn}. The middle member is smaller than - , by the o 

— additivity of mn. Hence m is a bounded signed state on L and the property 
\\mn -m\\—>0 follows from the uniform convergence. 

Q.E.D. 

2. Decomposition of signed states 
on a modular logic of finite rank 

Let L be a logic. By a chain in L we mean a strictly increasing finite sequence of 
nonzero elements, that is, (fli, a2, ..., an}, a{<a2<...<an, a, =£ O, a^fl, if /=/=/. 
We shall say that L has a finite rank if there is an integer k such that every chain in 
L has at most k elements. A logic L is modular if for any three elements a,b,c eL 
for which c<ay one has 

flA(bVC) = ( f lAb )vC. (5) 

A nonzero element x in a logic L is called an atom if for any element y < x either 
y =JC or y = 0 . 

By a valuation on a logic L we mean a real valued function v defined on L with 
the following properties 

(i) u (O) = 0, v(a)^0 for all aeL\ 
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(ii) if a<b,aJ=b,thenv(a)<v(b); (6) 
(iii) v(a Ab) + v(a vb) = v(a) + v(b) for all a, b eL. 

In [5] it is shown that if L is a modular logic of finite rank, then every nonzero 
element of L is a lattice sum of orthogonal atoms. Moreover, there exists a unique 
valuation v on L such that v(x) = 1 for every atom x eL, and a logic of finite rank 
is modular if and only if it possesses a valuation (Theorem 2.8 [5]). 

From this proposition it follows that if {ax,a2,..., an} and {bx, b2, ..., bm} are sets 
of orthogonal atoms such that axva2v ..van = bxvb2v...vbm, then n =m and if 
v is a valuation from the above proposition, then v(b) is the maximal number of 
orthogonal atoms x<b. 

Now we are in a position to say the main theorem of this section. 

Theorem 2.1. Let L be a modular logic of finite rank. Then every bounded signed 
state m on L may be expressed as a difference of two positive signed states mx,m2, 
that is, 

m=mx-m2. (7) 

Proof. From our assumption it follows that there is a valuation v on L such that 
v(x)= 1 for every atom x eL. Let m be an arbitrary bounded signed state. We 
define a real valued function wm on atoms of L by wm(a) = m(a), a — atom. wm is 
a bounded function on atoms of L. Let K = - inf {wm(a): a —atom}, then K^O 
and wx() = wm() + K is a nonnegative function. The function m2(b) = Kv(b) is 
a positive signed state and so is also mx = m +m2, because if b eL and {ax, a2, ..., 

n 

an) is a set of orthogonal atoms such that \Jal=b, then mx(b) = m(b) +m2(b) 

= ^m(a,) + Kv(b) = j^(m(a,) + K) = 2> , (a , )2*0 . 
i 1 i 1 i = \ 

It is easily seen that m=mx-m2 is the searched decomposition. 
Q.E.D. 

In the third section of this paper the decomposition of bounded states on a logic 
of a separable Hilbert space will be investigated (Theorem 3.5). 

3. Signed states on a logic od a Hilbert space 

Let H be a separable Hilbert space over complex or real scalars with the inner 
product (•, •). The complete lattice L(H) of all closed subspaces M of a Hilbert 
space H is a logic. This logic is one of the most important examples of logics. 
Modern quantum theory works with the assumption that the logic of any atomic 
system is isomorphic to logic L(H) for some separable Hilbert space H. 

Since there is a one-to-one correspondence between the closed subspace M of H 
and its projector PM, we shall write M for a subspace as well as its projector. 
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The excellent theorem of Gleason ([5]) asserts that every state m on L(H) (that 
is, positive signed state m such that m(H)= 1) is of the form m(M) = tr (TM), 
MeL(H), where T is a Hermitean positive operator of trace class, tr (T)= 1. 

A Hermitean operator T on H is an operator of trace class if there is an 
orthonormal bas {/} such that ^ \(Tf, f)\ <°° , then the sum tr (T) = ^(Tf, f) is 

i i 

called a trace of T and it is independent of the used basis ([4]). 
Let T be a Hermitean operator of trace class, then the function mT(M) = 

tr (TM) is a bounded signed state ([4]). A signed state m is called regular if there is 
a Hermitean operator of trace class such that m=mT. Then T is unique (use all 
one-dimensional subspaces of H), and mT + ms =mT+s, amT = maT holds, where 
T, S are Hermitean operators of trace class and a is a real scalar. 

Theorem 3.1. Let R(H) be the set of all regular signed states on L(H) and 
M(H) be the set of all bounded signed states on L(H). Then R(H) is a Banach 
subspace of M(H). 

Proof. Let {mTn} be a Cauchy sequence of regular signed states. There is 
a bounded signed state m eM(H) such that \\m - mTn||—>0. We shall show that m 
is regular. Let us denote by / the projector operator generated by a unit vector / , 
that is, fx = (x, / ) / for xeH. Then m(f) = lim mTn(f) = lim tr(Tnf) = lim (Tnf, / ) . 

n n n 

Hence there is a Hermitean operator T = w - lim Tn. 

If {/} is an orthonormal base, then (Tf, / ) = lim (Tnf,f) = m(ft), i = 1,2, .... 
n 

The series ^(Tf,f) converges absolutely because ^(Tf,f) = ^m(fl) = m(H) 

and the series 2 w ( / » ) converges absolutely, by Lemma 1.2. Hence T is an 

operator of trace class. 
It remains to show that m = mT. Let M eL(H) and let {#,} be a base in M. Then 

m(M) = ^m(g,) = ^(Tg^gj) = tr(TM). 

O.E.D. 
There arises a natural question: is R(H) equal to M(H)1 For the definite 

answer we need the following notions and lemmas. 
Let H be a Hilbert space, by G(H) we denote the unit sphere in a Hilbert space. 

A real valued function w on G(H) is called a weight function if 
(i) w(cf) = w(f), \c\ = l,feG(H); 

(ii) there is a constant W such that ^w(f,)= W for every orthonormal base 

{/}• 
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The number W is called the weight of the weight function w. 
Suppose T to be a Hermitean operator of trace class, then wT(f) = (Tf,f), 

f e G(H), is a bounded weight function with the weight tr(T). A weight function w 
is regular if there is a Hermitean operator T of trace class such that w = wT. 

Let m be a bounded signed state, then a function wm(f) = m(f) is a bounded 
weight function, too. To prove the equality R(H) = M(H) it is necessary and 
sufficient to show that every wm is a regular weight function. 

Lemma 3.2. Let w be a bounded weight function on G(H), dim H = 3. Then w is 
regular. 

Proof. Denote k = inf w(f), then w,(/) = w(f)-k is a positive weight func-
if!! = i w ' v f / v-^z 

tion. By Lemma 7.22 ([5]), w, is regular and hence there is a Hermitean operator T 
on H such that w,(f) = (Tf, f). Therefore w(f)=w,(f) + k = (Tf, f) + k(f, f) 
= ((T+ kl)f, / ) , where I is the identic operator on H. We have proved to w is 
a regular weight function. 

Q.E.D. 

Lemma 3.3. Let H be a separable Hilbert space of dimension at least 3. Then 
every bounded weight function w on G(H) is regular. 

Proof. The restriction of a bounded weight function w on any subspace is 
a bounded weight function, too. Since every two-dimensional subspace N may be 
imbedded in a threedimensional subspace, it follows from Lemma 3.2 that the 
restriction of w to the unit sphere G(N) of N is regular, and consequently there is 
a unique symmetric bilinear form 0N such that <PN(u, u) = w(u), u eG(N). 

We shall now define a bilinear functional <P( •, •) on H as follows: let / , g be two 
vectors of H and N be a two-dimensional subspace containing / and g, then 

0(f,g) = 0»(f,g)-
<P is well defined if / and g are linearly independent, since then N is unique. If at 

most one of them is zero, then <PN(f, g) = 0 for every subspace N . If / , g are 
dependent and nonzero, then they span a one-dimensional subspace. Let now Nt, 
N2 be two-dimensional subspaces containing / , g and let M be a tree-dimensional 
subspace containing N, and N2. For a symmetric bilinear form 0M we have 
<PM(a, a) = w(a), a eG(M). The restrictions of &M to N, and N2 are symmetric 
bilinear forms whose quadratic forms coincide with w on G(N,) and G(N2), 
respectively. Therefore 0N}(f, g)-= 0M(f, g), 0NJJ, g) = 0M(f, g), which proves 
that 0 is well defined. 

0 is symmetric and homogeneous. We claim to show that 0(f,g+h) 
= 0(f, g)+0(f, h) for any three vectors / , g, h. Let N,, N2, N3 be two 
dimensional subspaces containing / , g ;f,h and f,g+h, respectively, and let M be 
a three-dimensional subspace containing/, g, h. For a bilinear foim 0M on M we 
have 0M(f, g) = 0Nl(f, g), 0M(f, h) = 0»2(f, h), 0M(f, g+h) = 0N,(f, g+h). 
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We see that <*>(/, 0+ /1) = &N3(f,g+h) = &M(f,g + h) = 4>M(/ g) + ^ ( / , h) 
= <*>Nl(f,g) + 0N2(f,h) = 0(f,g) + 0(f,h). 

A symmetric bilinear form 0 is bounded because \<P(f,f)\ = \w(f)\ ^ 

sup |w(f)\ < oo. Therefore there is a unique Hermitean operator T on H such that 
II/II -

®(f,g) = (Tf, 0)([4]).If { / , } i s a n o r t h o n o r m a l b a s e , t h e n 2 ( r / , / ) = S w ( / * ) = 

W and the series ^(Tf, f) converges absolutely because of absolute convergence 

of 5>(f,). 

Q.E.D. 

Theorem 3.4. Lef H be a separable Hilbert space over complex or real scalars of 
dimension at least 3 and L(H) be its logic of all closed subspaces of H. If T is 
a Hermitean operator of trace class, then mT: mT(M) = tr(TM), MeL(H), is 
a bounded signed state on L(H). 

Conversely, for every bounded signed state m there is a unique Hermitean 
operator T of trace class such that m(M) = tv(TM), MeL(H). 

Proof. The first part of our theorem is evident. 
Let now m be a signed state from M(H). Then wm(f) = m(f), feG(H), is 
a bounded weight function with the weight m(H). Therefore, by Lemma 3.3 there 
is a unique Hermitean operator T of trace class such that wm (f) = (Tf, f),feG (H). 

Let now MeL(H) and let {#,} be an orthonormal base in M, then m(M) = 

5>(&) = 2(rft,ft) = tr(7M). 
/ / 

Q.E.D. 
Theorem 3.4 does not hold for a two-dimensional Hilbert space as can easily be 

seen from the following. Let / , g be an orthonormal base in a two-dimensional 
Hilbert space H. We define the state m by m(O) = 0, m(H)=l, m(g) = 0, 
m(f)=\ and m(M) = \ for other one-dimensional subspaces of H. 

If the state m was regular, then the respective weight function wm(h) = m(h), 
\\h\\ = 1, would be continuous, which contradicts our example. 

The Gleason theorem follows from Theorem 3.4, but the proof of Lemma 3.2 is 
based on the important Lemma 7.22 [5] from Gleason's proof. In paper [1] there 
was given a proof of Gleason theorem for any separable complex Hilbert space (for 
a two-dimensional space, too) which is incorrect, of course. 

Theorem 3.5. Let H be a separable Hilbert space (real or complex) and L(H) be 
a logic of all closed subspaces of H. Then every bounded signed state m on L(H) 
may be expressed as a difference of two positive signed states mx, m2. 
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Proof. If H is not a two-dimensional Hilbert space, then every bounded signed 
state is regular, by Theorem 3.4, that is, m is of the form m(M) = tr(TM), 
M eL(H). A Hermitean operator T of trace class may be written as T= T+ — T , 
where F", T~ are positive Hermitean operators of trace class ([4]). Therefore 
m=mT = mT+-mT- = mx-m2, where mx = mT+, m2 = mT- are positive signed 
states. 

For a two-dimensional Hilbert space the proposition follows from Theorem 2.1. 

Q.E.D. 
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ОБОБЩЕННЫЕ СОСТОЯНИЯ НА ЛОГИКЕ 

Анатолий Д в у р е ч е н с к и й 

Р е з ю м е 

В работе исследуется понятие обобщенного состояния на логике. Показано здесь разложение 

обобщенного состояния в виде разности двух позитивных обобщенных состояний на модулярной 

логике конечного ранга и исследуются обобщенные состояния на логике Ь(Н), Шт Н ^ З . 
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