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EXAMPLES OF CLASSICAL AND 

FUZZY RIESZ PROXIMITIES 

PRAMILA SRIVASTAVA — MONA KHARE 

(Communicated by Anatolij Dvurecenskij ) 

ABSTRACT. Examp les of proximities which are Riesz (respectively fuzzy Riesz) 
but not Lodato (respectively fuzzy Lodato) have been constructed. 

1. Introduction 

In the classical theory of proximities, the notion of /-proximities and, in 
particular, of Riesz (or RI) proximity is due to T h r o n [6], and that of a 
symmetric generalized proximity (now known as Lodato or LO-proximity) is due 
to L o d a t o [2]. A relationship between these two, that "every LO-proximity 
on a nonempty set is an Rl-proximity", is given by T h r o n [6]. In [5], we have 
continued the study of fuzzy /-proximities introduced in [3] and generalized 
the notion of classical Rl-proximity to fuzzy Riesz (or RI) proximity. Fuzzy 
Rl-proximity turns out to be a particular case of fuzzy /-proximities. In the 
fuzzy subset, setting also the result that "every fuzzy LO-proximity [4] on a set 
is a fuzzy Rl-proximity" holds good [5]. 

In the present paper, we have constructed 

(i) an example (Example 3.1) of an Rl-proximity wThich is not an LO-prox­
imity, 

(ii) two examples of fuzzy Rl-proximities both of which are not fuzzy 
LO-proximities. 

Example 3.2 has been obtained with the help of Example 3.1, while Example 3.3 
uses purely fuzzy behaviour in the sense that one cannot derive this example 
from a classical proximity using the technique of Example 3.2 (cf. Remark 3.4). 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Primary 54A40, 54A05. Secondary 54D35. 
K e y w o r d s : fuzzy set, fuzzy /-proximity, Riesz proximity, Lodato proximity . 
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2. P r e l i m i n a r i e s 

Let X be a nonempty set, P(X) be the power set of X, and J = [0,1] be the 
closed unit interval of the real line 1R. A fuzzy set A in X is an element of the 
family Ix of all functions from X to J . A fuzzy point x p , x E l , 0 < p < l , 
is a fuzzy set in X defined by 

if y = x , 

otherwise. 

if x G A, 

otherwise; 

XP(V) = J 0 

For A G P ( K ) , XA G Ix is defined by 

XA(z) = { Q 

and \A\ denotes the cardinality of A. For A G Ix, wre write supp A = { x G l : 
A(x) 7̂  0 } . A fuzzy set which assigns the value £, t G J , to each x in I is 
denoted by t . For A G Ix and a binary relation IT on Ix define cn(A) = 
\J{xp : (xp,A) Gi l} . 

A binary relation II on Ix is called a /uzzH Lodato (or J O ) proximity on X 
if, for A, /i, v G J x , the following hold: 

F I . (A,/i) e n = > (/i, A) G I I , 
F2. (0,1) g n , 
F3. (AV/x, i/) G IT 4=-> (A, i/) G IT or (Li, z/) G IT, 
F4. A A / i ^ o = > (A, Li) e n , 
F5. (A,/i) G IT and (xp,v) G IT for all xp < \i => (A, v) G IT ([4]). 
A binary relation IT on Ix is called a fuzzy Riesz (or RI) proximity on X 

if it satisfies F l , F2, F3, F4, and 
F 5 \ c n ( A ) A c n ( / i ) ^ 0 = > (A,L0GlT ([5]). 

3 . E x a m p l e s 

E x a m p l e 3.1. Let X = R x R, cf be the Euclidean metric on X , and 
d(A,B) = inf{d(f,77) : £ G ^4, r/ G B } for subsets .A, 5 of X. Denote by uj0 

the first infinite cardinal. Define 

6 = {(A,B) : d(A,B) = 0} 

u { ( i , 5 ) : \An{(0,y): -1 < y < l}\ > u;0 

and \BH {(x,0) : x < — l } | > u ; 0 } 

u | ( . A , S ) : \APi{(x,0): x < - l } | > ^ 0 

and | B n { ( 0 , 2 / ) : —1 < 2/ < l } | > o>o} • 
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Then 8 is a Cech proximity ([1]) on X and c$(A) = {x : (x,A) G <$} = 
{x : d(x, A) = 0 } . If ^(.A) fl Cfi(B) ^ 0, then there exists x in X such that 
d(x, A) = 0 = d(x, B). Consequently, d(A, F?) = 0, and hence (A, B) e 8. Thus 
<5 is an Rl-proximity on X. 

Next, put A = {(x,0) : x < - 1 / 2 } , B = {(0,y) : - 1 < y < 1} and 
C = {(x, s i n l / x ) : x > 0 } . Then (A, B) G 6, (6, C) G 5 for all 6 G 5 . But 
(A, C) £ 8. This proves that 6 is not an LO-proximity. 

E x a m p l e 3.2. Consider the metric space (X, d) of Example 3.1. Define 

n = {(A,/*) : (suppA, supp/x) G <5} . 

Then n satisfies F l to F4, and, for A, B , C , as taken in Example 3.1, (XA, XB) 
G n , (xp,xc) £ n for all xp < XB', but (XA,XC) ^ n . Thus n is not a fuzzy 
LO-proximity on X. 

Since cn(A) = Xc6(suPPA), if cn(A) Acn( / i) ^ 0, then Q>(supp A) nc$(supp/x) 
7-= 0. Hence (supp A, supp fi) £ 8, i.e., (A, /i) G n . Thus II is a fuzzy Rl-proximity 
on X. 

E x a m p l e 3.3. Let X be an infinite set. For 0 < t < 1, defiue 

n = {(A,M) : A A ^ O } 

U {(A,/i) : A ^ O , / i ^ O a n d 

(A V \i)(x) > £ for infinitely many elements x of K} . 

The relation n satisfies F l to F4. Let cn(A) A cn(/i) + 0. Then A ^ 0 and 
/i 7-: 0. If at least one of A and ji takes values greater than t for infinitely many 
elements of X , then (A,//) G n . Otherwise, supp A D supp/i ^ 0, which implies 
that A A Li -fc 0, and again (A, /i) G II. It may be noted that, for A G Jx, 

J 1 if A(x) > t for infinitely many elements of X, 

I XsuppA otherwise. 

That n is not a fuzzy LO-proximity, follows from the following arguments: 
Let A(?- 0 ) , v(i- 0 ) G Ix be such that A A i / ^ 0 and A(x) < t, u(x) < t, 

for all x in X. Choose /i E Ix such that supp/i = suppz/ and /i(x) > t for 
infinitely many points x of I . Then (A,/i) G II . Also, for xp < /x, /i(x) ^ 0, 
and, consequently, z^(x) ^ 0. Hence (xp, i/) G II. But (A, i!) ^ 1 1 . Thus n is not 
a fuzzy Lodato proximity on X. 

R e m a r k 3.4. Let 8 be a relation on P(X). Define 8 = {(A,/i) : 
(supp A, supp fi) G <5}. It may be verified that 8 is an LO-proximity if and 
only if 8 is a fuzzy LO-proximity. Suppose that the fuzzy proximity n of Ex­
ample 3.3 can be derived from a classical proximity 8 as in Example 3.2, i.e., 
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II — 8. Since II is not a fuzzy LO-proximity, 8 is not an LO-proximity. But 

n = {(A,B): ( x A , x B ) e n } 

= {(AB): (XA,XB)^8} 

= 8. 

and II is an LO-proximity, i.e., 8 is an LO-proximity. This provides a contra­
diction. 

Thus Example 3.3 cannot be derived from a classical proximity using the 
technique of Example 3.2. 
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