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ON COMPLETION OF MEASURES ON A q-cr-RING 

JOZEF DRAVECKY, VLADIMIR PALKO, VIERA PALKOVA 

In the classical measure theory the system of all measurable sets is assumed 
to be a cr-ring. Because of this strong postulate the classical theory cannot 
describe some situations in nature (for examples see [1], [2]). That is why modern 
theory studies more general families of sets. 

A nonempty system 21 of subsets of a set X is called a q-cr-ring if it satisfies 
00 

the following conditions: (i) Ate2l, A{ nAj = (/) for iVj implies \^J A{e£, (ii) E, 
» = i 

Fe2l, Fa E implies F\Fe2L. If Xe2L, then a q-cr-ring 21 is called a cr-class. A 
measure on 21 is a nonnegative cr-additive function, which can attain also the 
value -foo. A measure // defined on the q-a-ring 21 is said to be complete if 
F c E, ji(E) = 0 implies Fe2l. A measure /J, defined on a q-cr-ring J , is called 
a completion of the measure ju, defined on the q-a-ring 21, if /7 is an extension 
of// and /I is complete. It is a well-known fact (cf. [3], Theorem 13 B) that a 
measure // defined on the cr-ring 2f has always a completion fi, which is defined 
on the cr-ring & of all sets of the form EKJ F, where Ee2f,F' cz N, JU(N) = 0 and 
fi is of the form fi(E u r ) = fi(E). In this paper we show that the completion of 
a measure on a ^-cr-ring, if it exists, may be obtained in a similar way. We present 
a method of the construction of a completion. In the case when the domain of 
the measure is a cr-ring this construction turns to the usual construction des
cribed in [3]. Thus, the classical result is the special case of a more general result, 
which holds in the extended measure theory. In the paper there is given a 
necessary and sufficient condition for the existence of a completion. Further, we 
deal with the notion of a minimal completion and prove some existence and 
uniqueness theorems. 

1. Existence of a completion 

Througout this paper, Jf ^ will denote the family of all null sets of the 
measure /J. The following theorem gives a necessary condition for the existence 
of a completion. 
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Theorem 1.1. Let p. be a measure on a q-a-ring J2, assume that p has a 
00 

completion. Then A a BKJ[J Ni9 where A9 BE29 N^Jf ^for all i9 implies 

p(A)^p(B). 

/ - I 

P r o o f : Let fi defined on J be a completion of p. Denote M, = N,\ \^J Nj9 
J = l 

i = 1, 2, ... . Mi are mutually disjoint sets of J , hence the cr-additivity of fi 
OC 00 00 / ° ° \ _ 

implies ( J Mx = \J N^Jf^ Hence A \ ( J N, = A \ [A n ( J Nt e J2. Finally, 
/=i i=i /=i V /=i / 

p(A) = fil A \ Q Nj) ^ /I(-6) = p(B). The theorem is proved. 

The above theorem enables us sometimes to prove that a measure has no 
completion. As we shall see in the following example, such a measure can be 
found even on a three-element set. 

E x a m p l e 1.1. Let X,«2 and p be defined as follows:X= {1,2, 3}, Si = {0, 
{1, 2}, {1, 3}, {2, 3}}, p({\9 2}) = 2, //({l, 3}) = 1, p(0) = //({2, 3}) = 0. Then p has 
no completion, because the necessary condition from Theorem 1.1. is not satis
fied. 

The following, somewhat more complicated example will show that the 
condition from Theorem 1.1. is not sufficient. 

E x a m p l e 1.2. L e t X = { l , 2, 3 ,4 , 5, 6, 7}, J2 = {0, X, {1, 2, 3, 4}, {1, 2, 3, 
5}, {2, 6, 7}, {1, 2, 7}, {5, 6, 7}, {4, 6, 7}, {1, 3, 4, 5}, {3, 4, 5, 6}}, p(X) = //({I, 3, 
4, 5}) = 4, //({3, 4, 5, 6}) = 3,//({l, 2, 3, 4}) = //({l, 2, 3, 5}) = //({5, 6, 7}) = //({4, 
6, 7}) = 2, //({l, 2, 7}) = 1, /*({2, 6, 7}) = //(0) = 0. We leave the verification of 
the validity of the condition from Theorem 1.1. to the reader. If fi were a 
completion of //, then /7({1}) = /7({1, 2, 7}\{2, 7}) = 1, /7({4}) = /7({4, 6, 7}\{6, 
7}) = 2, and hence /I({1, 2, 3, 4}) = 2 < /J({1, 4}) = 3, a contradiction. 

If 2£ is a family of subsets o X, then the smallest q-cr-ring over 2£ will be 
denoted by oq(2t). If Jr is a subsystem of Jf, then ^V is called an ideal in Jf if 
for every Ae2?9BeJ^we have .A n 5 e X If . s / , , stf2 are systems of subsets of 
X, then the system of all set-theoretical differences Ax\Al9 where AxesrfX9 

A2ssil9 will be denoted by six — J / 2 -
Lemma 1.1. If ^T is an ideal in a q-cr-ring 2,, then .yV is a cr-ring. 

The proof is obvious. 
The following theorem gives a necessary and sufficient condition for the 

existence of a completion of a measure defined on a ^-cr-ring. 
Theorem 1.2. Let jj.be a measure on a q-a-ring 2. Then the following assertions 

are equivalent: 
(i) There exists a completion of p.. 

(ii) For every ordinal T there exists a transfinite sequence of measures {Ma)a<r 
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with domains Sta such that a < /? < Timplies that fip is an extension of Ha, 

/i, = /i and Ěa = <rq(\J [Z, - JT^for all a <r. 
\p<a 

(Hi) There exists a measure ji defined on a q-o-ring St which is an extension of/J 
and Jr'£ is an ideal in St. 

Proof: (i)=>(ii) Let fi defined on J be a completion of //, let T be an 
arbitrary ordinal. We construct, by transfinite induction, the sequence {/^a}a<r 
with the demanded properties. We put Stx = St and jux = //. Let y < Fand let, for 
every a < y, na be a measure defined on Sta, where Sta cz J , //a = /i|i2a, 

^ = ^ ( U ( ^ - ^ ) } D e f i n e 5 r = ^ ( y ( ^ - ^ ) ) - Obviously, 

Str cz J . Now put //r = fi\$ . In such a way the whole sequence {fia}a<rcan be 

constructed. 
(ii) => (iii) Let Fbe the ordinal number of the set 22* with some well ordering. 

By the assumption there exists a transfinite sequence {jia}a<r with the claimed 

properties. Let us assume that Sta ^ ( J ^ for every a < F. Hence there exists 
p<a 

a system {^4a}a<r of mutually different subsets of X such that AaeSla,Aa<£\J St p. 

Hence card {Aa}a<r= card 22 > card 2X, which is a contradition. Thus there 

exists an ordinal a < r such that ( J Stp = Sta = cri ( J (J^ - .yf/V) L This im-
P<a \fi<a "/ 

plies that Jr^ is an ideal in Sta. 
(iii) => (i) Let /7 defined on J be an extension of //, let yV̂ - be an ideal in J . 

Define Si = {Ev F; EeM9 F a N, Ne Jr^. Let us prove that J is a ^-cr-ring. Let 
{-4,},°!, be the sequence of mutually disjoint sets of J . Hence At = E, u Fi9 where 

00 00 00 

EteM9 Ft cz Ni9 Ntejr-9 i = 1, 2, .... We can write \jAt=\J E,v ( J F,, 
i = i / = i / = i 

00 00 00 00 00 

where ( J E^M, ( J F, cz ( J TV,.. By Lemma 1.1., ( J N^Jf^ hence ( J ,4,-e J . 
/ = i / = i 1 = 1 » = i / = i 

Let EiE&, Fi cz Ni9 A^e^-for / = 1, 2. Further we shall assume that ^ n jY, = 0. 
This is always possible, because Elu Ft = E{u ((jV,>\£,) nF,), where EfeM9 

(-V,\ £i) n F, cz jV,.\£/ and JV,\-E/ = -V/\(-V,- n £,) e ^ Suppose EXKJFXZDE2KJ 

uF2. Then (Exu Fx)\(E2uF2) = [EX\((E2\NX) v(ExnN2))]u[Exn(N2\F2)] u 
u[FA(£2uF2)]. E^&WJviEtnN^el jind [£, n (jV2\F2)] u[.FA(£2u 
uF2)] cz /V, uN 2 , hence (£, UFX)\(E2KJF2)EM. Thus, J is #-cr-ring. Let Ete 
e J , F; cz jV/? / i . -e^- , i = 1, 2. We prove that ExuFx = E2u F2 implies /JOE,) = 
= fi(E2). We suppose again EtnjY; = 0, / = 1, 2. Obviously, ExuFx= E2KJF2 
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implies £,\N2 =E2\NX. Then we can write fi{Ex) = fi{{Ex\N2) u (F, n N2)) = 
= fi{E,\N2) = fi{E2\N,) = fi{{E2\Nl)u{E2nNl)) = fi{E2). Now we can define 

uniquely on 2, the function fi as follows :ifAe£,A = EvF, where E e J , F <= N, 
NeJf^, then fi{A) = //(I?). Obviously, fi is a measure. The completeness of fi 
follows immediately. The theorem is proved. 

Theorem 1.2. gives us not only a necessary and sufficient condition for the 
existence of a completion of //, but gives, in a sense, also a method how to find 
that completion. It is necessary to extend n in the above way to a suitable 
ordinal, yielding a measure, whose null sets form an ideal. Then it will suffice to 
perform the same process as when completing a measure on a cr-ring. However, 
this process of extension to q-cr-rings Qa, a < T, need not be unique. It may 
happen that there exists a completion of fi, but after an inapropriate extension 
we obtain a measure which has no completion. This is proved by the following 
example. 

Example 1.3. Let X= {1, 2, 3, 4, 5, 6, 7}, 2, = {0, {1, 2, 3, 4}, {1, 2, 3, 5}, 
{1,2,4, 5}, {2, 6, 7}, {1, 2, 7}}, / # ) = //({2, 6, 7}) = 0 and ju{A) = oo for each other 
Ae£>. Let «22 = oq{2 — Jf\); then 2L2 consists of all disjoint unions of sets {1}, 
{2}, {3, 4}, {3, 5}, {4, 5}, {6}, {7}. Define on 22 the measure /i2 as follows: 
^({1}) = ^2({3, 4}) = oo and ^({2}) = //2({3, 5}) = /i2({4, 5}) = L/2({6}) = 
= ji2{{!}) = 0. fi2 is defined uniquely in this way. {3,4} cz {3, 5} u {4, 5}, but //2({3, 
4}) > /l2({3, 5}). The necessary condition from Theorem VI. is not satisfied, 
hence ji2 has no completion. However, there exists a completion of JJ,, for 
example the measure fi defined on 2X as follows: fi{A) = oo if 1 EA, fi{A) = 0 if 
l$A,Ae2x. 

Lemma 1.2. Let JJ, be a finite measure on a a-class J , let r be an arbitrary 
ordinal. Then there exists at most one transfinite sequence {fia}a<r of extensions of 

V, which are defined on £a, where £>} = £>, &a = crJ l̂ J (£p - JT )) and 

P < a < r implies that fj,a is an extension of np. 
Proof: Let {na}a<r and {va}a<r be two different sequences having the 

above properties. Let ybe the smallest ordinal such that nyi
Lvy. Hence fiy{A) = 

= vy{A) for all A e [J {2,p - Jf^). Obviously, the family of all sets A e2,y such 
(3<y 

that ny{A) = vy{A) is a a-class, thus it is equal to £y. Then piy = vy, a contradic
tion. The lemma is proved. 

We see now that Theorem 1.2. is significant first of all in the case when /j, is 
finite and J is a a-class. Then if the completion exists, the process described in 
that theorem will lead us to it. 
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From Theorem 1.2. there immediately follow some sufficient conditions for 
the existence of a completion. They are contained in the following two theorems, 
whose proofs are omitted. 

Theorem 1.3. If p is defined on a q-o-ring 2 and Jf \ is an ideal in 2, then there 
exists a completion of p. 

Theorem 1.4. If p defined on a q-o-ring 2 extends to some o-ring, then the 
completion o p exists. 

Remark 1.1. It follows from Theorem 1.2. and from the properties of 
ordinals that, for every measure p defined on a a-cr-ring 2 which has a com
pletion, there exists the smallest ordinal a such that there exists a sequence 

{pp}p<a of measures with domains 2p, where px = p, 2p= oA \^J (2y — Jf ^) I 
\y<P rJ 

for every /? ̂  a, y < /? implies that pp is an extension of py and JT is an ideal 
in 2a. We shall denote that ordinal by a^. For the measure p from Example 1.3. 
a^ = 2. In the following example, aM = 3. 

Example 1.4. Let X, 2 be the same as in Example 1.3. Define the mea
sure p as follows: p(A) = 1 if leA, p(A) = 0 if \$A, Ae2. We leave the 
verification of the equality a^ = 3 to the reader. 

2. Existence and uniqueness of the minimal completion 

The system L of all completions of the measure p may be partially ordered 
with relation ^ R as follows: px ^ Rp2 if p2 is an extension of px. Minimal 
elements of the partially ordered set (L, SR) are called minimal completions of 
p. It is a well-known fact that, in the case of p being defined on a cr-ring, there 
exists a unique minimal completion, which is, moreover, the smallest element of 
L. It is the measure p mentioned in the introduction of this paper. Given a 
measure on a q-o-ring, we cannot, in general, guarantee the uniqueness of the 
minimal completion. However, if p has a completion, the existence of a minimal 
completion can be guaranteed. This is stated in the following theorem, which is 
a simple conclusion of the Zorn lemma. 

Theorem 2.1. If p is a measure defined on a q-o-ring 2 which has a completion, 
then p has a minimal completion. 

The following example shows that the minimal completion need not be 
unique. 

Example 2.1. Let X= {1, 2, 3, 4}, J = {% {1, 2}, {2, 3}, {1, 3, 4}}, //({l, 
2}) = n({\, 3, 4}) = oo, /.(P) = n({2, 3}) = 0. Then each measure fidefined on 2X 

by fi({l}) = co, fi({2}) = /7({3}) = 0, fi({4}) = a, a = 0, is a minimal completion 
of//. 
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Now we give a sufficient condition for the uniqueness of a minimal com
pletion. 

Theorem 2.2.If p is a finite measure on a q-a-ring 21 and there exists a finite 
completion of p, then there exists a unique minimal completion of p.. 

Proof: Let {21 ̂ L be the system of domains of all measures of L Denote 

J = Q 2,fi, s4 = {FeJ; fi\(E) = fi2(E) for every /I,, fi2e L}. The existence of a 
fisL 

finite completion implies that s/ is a q-cr-ring. Define o n i a measure v as 
follows: v(E) = /!(£), fieL Let Eestf, v(E) = 0, Fez E. Then FeStfi for every 
/IEZ.. Hence Fe J . Since /7(F) = 0 for every / IGL, we have Fes/. Obviously 
s/ = J and thus v is the unique minimal completion of p. 
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ОБ ПОПОЛНЕНИИ М Е Р НА а— а— КОЛЬЦЕ 

^02еГ^^аVеску, У1аёптг Р а 1 к о , V^е^а Ра1коVа 

Р е з ю м е 

Семейство 2. подмножеств множества X называется а-сг-колъцом, если из Е, Ее 2, Е а Е 
следует Е\Ее2, и 2, замкнуто относительно счетных объединений непересекающихся 
множеств. В работе изучается пополнение меры, определенной на а-сг-кольце. Показано 
необходимое и достаточное условие для существования пополнения. Определяется понятие 
минимального пополнения и доказывается, что из существования какого-нибудь конечного 
пополнения следует единтвенность минимального пополнения. 
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