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QUASIUNIFORM LIMITS 

OF QUASICONTINUOUS FUNCTIONS ^ 

JAN BORSIK 

ABSTRACT. It is proved that every cliquish function / : JR —• R, is a quasiuni-
form limit of a sequence of quasicontinuous functions. 

A real function / : R —> R is said to be quasicontinuous (cliquish) at x G R 
if for every neighbourhood U of x and every e > 0 there is a nonempty open 
set G C U such that \f(x) - f(y)\ < e for each y G G (\f(y) - f(z)\ < e for 
each j / , z G G ) . A function / is quasicontinuous (cliquish) if it is such at each 
point of its domain [5]. 

A sequence ( / 7 l ) , / n : R —> R quasiuniformly converges to / : R —-> R [6] if 
the sequence ( / n ) pointwise converges to / and 

Ve > 0 Vm G N 3p G N Vx G R : 

min{ |/m+i(:r) - / ( x ) | , . . . , |/m+,>(z) - /(*)!} < £ • 

The letters R and N stand for the set of real and natural numbers, respec
tively. If A is a subset of R and x G R, then d(x, A) = inf{|x — a\: a G A} . 
If / : R —• R is a function , then Cf and Qf stand for the set of all continuity 
and quasicontinuity points of / , respectively. 

If / : R —+ R, then the function ujf. R—>RL){co}, given by the formula 
ujf(x) = inf {sup{|/(y) — f(z)\: y, z G U} : U is a neighbourhood of x} , is said 
to be oscillation of the function / . It is well known that ujf is upper semi-
continuous and ujf(x) = 0 if and only if / is continuous at x [6]. 

If K is a family of functions / : R —> R, then B(K), U(JC) and D(JC) denote 
the collection of all pointwise, uniform and quasiuniform limits of sequences 
taken from /C, respectively. Further we denote by C, Q and V the family of 
all continuous , quasicontinuous and cliquish functions / : R —> R, respectively. 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Primary 26A15. 
K e y w o r d s : Quasicontinuity, Cliquishness, Quasiuniform convergence. 
^Suppor t ed by Grant GA-SAV 367 

269 



JAN BORSIK 

It is well known that U(C) = D(C) = C and B(C) is the family of Baire 
1 functions. Further U(Q) - Q and U(V) = V [5]. In [3] it is shown that 
B(Q) = V and B(V) is the family of all functions with Baire property. In [1] 
it is shown that D(V) = V (see also [2]) and that D(Q) ^ Q. We shall show 
that D(Q) = P. The inclusion D(Q) C D(V) = V is obvious. 

THEOREM. Every cliquish function / : R —> R is the quasiuniform limit of a 
sequence of quasi continuous functions. 

P r o o f . Put An =- {x G R: Uf(x) > 2~n} . Then An are closed sets with 
oo 

regard of the upper semi-continuity of ujf and because the set R — Cf = (J An 
n = l 

is a set of the first Category [2], they are nowhere dense. Moreover, A\ C A 2 C 
• • • C An C . .. . Since the set Cf is dense in R we can define a function 
g: R- i • R as follows: 

{ limsup f(u), f o r x G R —-4i, 
uecf,u^x 
/ ( x ) , f o r x E A ! . 

Since / is bounded on some neighbourhood of x G R — A\ we have g(x) < oo 
for each x G R. The function g has the following properties: 

(1) g(x) = f(x) for each x G Cf, 
(2) if x £ Ak then | /(x) - g(x)\ < 2~k and 
(3) R-A\ C Q , . 

(1) is obvious. 

(2): Let x £ Ak . Then Wf(x) < 2~k and there is a neighbourhood U of x 
such that \f(x) — f(y)\ < 2~k for each y G U. There exists a sequence (un) 
of points in Cf such that (un) converge to x and g(x) = lim f(un). Then 

n—+oo 

| /0r) - S ( i ) | = | / (x) - lim / (u„ ) | < 2-k . 
n—KX> 

(3): Let x G R — A\ , U be a neighbourhood of x and £ > 0. Then there 
is u G C/ fl U such that | / (u) — g(z)| < | . Since u e Cf there is an open 
neighbourhood G of u , G C U such that |#(u) — g(y)| < § for each y G G. 
Therefore, with respect to (1), for each y G G we have 

|</(V) - j,(y)| < |ff(i) - / (u ) | + | / (u) - g(u)\ + \g(u) - g(y)\ < e , 

which yields x G Qg • 

Let k G N. Since R-.A* is open, R-A f c = [J (ak, bf), where sk G {0,oo}uN 
i= i 

and (a? ,6?)n(a} ,6 j ) = 0 for i ^ j . 
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Let i G N. Let a? ^ - c o . Then a? G Afc . If a? g Aa , then a? G -4t+i - At 

for some t G { 1 , 2 , . . . , k - 1} . Since a? £ A* so w/(a?) < 2~"'. Therefore there 
is a? > 0 such that | / (a?) - f(y)\ < 2~l for each y G (a? - 2a?, a? + 2a? ) . If 
a? G Ai , put a? = £ . Now put 

-*=-
min{ař + ì , a ř + a ř , a ř + ì ( b ř - a ř ) } , 

min{af + ì , af + a f } , 

if бf ф oo, 

if 6? = oo. 
(4) 

Further put 

g? = m i n b Є N : d(a^As) < -

,* _ Evidently a? < k. If a? = — oo, we put c: 

Now we define a function /2fc-i : R. —> R as follows 

' / ( * ) , 

9(x), 

f2k-i(x)= I T r ^ s i n ^ r , 

for x Є Afc, 

forxЄ(c?,6?) , 

for x Є (a?,c?] and ø? = 1, 

/(ařЭ + г1"9 ' ' sin-
for x G (a*,cf] and 

"' g ? e { 2 , 3 , . . . , f c } . 

Let i € N. Let 6f -£ oo. Then 6? 6 A*. If 6f £ A1, then 6f £ A ( + 1 - A, for 

some t G { 1 , 2 , . . . , k - 1} and hence there is /?f > 0 such that | /(6f) - /( j /) | < 

2 - ' for each y € (if - 2/?f, 6f + 2/3f). If 6? G A, , put # = - + Put 

dЧ = 

Let 

m a x { b f - ì , b f - / i ř , a f + | ( b f - a f ) } , 

m a x { б f - ì , b ř - / 9 f } , 

r ř = m i n { s Є N : d ( ò ř , Л . ) < i } . 

if af ^ - o o , 

if af = — oo. 

If 6? = oo, we put d? = oo. 

Now we define a function /2/fc: R -» R as follows: 

ґ/(*), 
g(x), 

hk(x) = { 
Ьì-x 

1 

Ц-x ' 

/(břî + г^вin-ib-

for x G Ajt, 

for x G (a?,d?), 

fora: G [d?,6?) and r? = 1, 

for x G [d?, 6? ) and 
rke{2,3,...,k}. 
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We shall show that f2k-i is a quasicontinuous function. Analogically we can 
prove that f2k is quasicontinuous. 

Let x G R. 
If x G (a^c*-), then f2k-\ is continuous at x and hence x G Qf2k-X • 
If x = c* , then f2k-\ is continuous from left at x and hence x G Qf2k-x • 
If x E.(c*,6*), then according to (3) the function </ is quasicontinuous on the 
open set (c\,b\) and hence x G Qf2k^l • 
Now let x G -4jt, let <5 > 0 and £ > 0. We may assume that 8 < j . 

If a: G .Ai , then there is i G N such that (x,x + 8) fl (a*,6*) = (it, w) ^ 0. 
Then d(a\, A\) < \ and q\ = 1. Since x < a\ so D = a* . Since / u - i ((v,iv)) = 
R , then with respect to the continuity of f2k-i on (v,w) there is y G (v, w) such 
that f2k-i(x) — f2k-i(y) • Hence there is an open set G C (D, iv) C (x — 8,x + 8) 
such that 1/2^-1(2) — /2*-i(:c)| < e for each z £ G. Thus x G Qf2k.r • 

Let x ^ A] . Then there is m G {2 ,3 , . . . ,k} such that x G Am — A m _i . 
Since x £ Am-\ and Am_i is closed there is /? > 0 such that (x — /3,x + /?)fl 
Am_i = 0. Since u;/(x) < 2 1 _ m there is a > 0 such that | / (x) - / ( y ) | < 2 1 _ m 

for each y G (x — a, x + a). Denote 

7 = min{a, f3, 8} > 0. 

Since x G -4/t there is z G N such that (x, x + 7) H (af, 6f) = (D, iu) ^ 0 . Then 
f = a* and ^(a^, A m ) < af - x < 7 < £ . Therefore of < m . 
If Of = 1, then quasicontinuity of f2k-i at x we can prove similarly as for 
x G Ai . 

Let q\ G {2, 3 , . . . , m} . Put £ — m i n ^ c f } . Then for each y G (a*,f) we 
have 

fu_l(y) = f(a
k) + 21-^sm—^ 

y-a-i 

a n d / 2 f c _ 1 ( ( a f , 0 ) = [ / ( a f ) - 2 1 - » < , / ( a f ) + 2 1 - ^ ] . 
Since \x - ak | < 7 < a , so | / (z) - / (a*) | < 2 1 "" 1 . Thus 

/ (* ) € (/(a*) - 2 1 ~" \ / ( a? ) + 2 1 - 1 ) C (/(a?) - 21~'><J(ak) + 2 1 " ' ' ) 

and hence there is u G («?-£) such that f(x) = f2k-i(u). Now there is an open 
set G C (a*, £) C (# — £, x + 8) such that for each y G G we have 

l / 2 * - i ( * ) - / 2 * - i ( y ) | = l / ( * ) - / 2* - i (y ) l = l /2*- i ( t i ) - / 2 fc- i (y) | < £ 

Therefore x G Qf2k.l • 
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Now we will prove that the sequence ( /n) is quasiuniformly convergent to 
the function / . First we will prove pointwise convergence. 

If x ^ Cf , then there is k G N such that x G Ak and then fn(x) = f(x) 
for each n > 2k — 1. 

Let x G Cf. Then according to (1) we have f(x) = g(x). Let e > 0. Let 
m G N be such that 2 2 ~ m < e. Since x fi Am there is k > m such that 
(x - £, x + £ ) D Am = 0. Therefore 

d(x,Am)>j. (5) 
K 

Let n > 2k and n be odd. Then n = 2j — 1, where j G N and j > k. Since 
x ^ A7- there is i G N such that x G (aj ,6j) . 

a) If d(a\,Am) < £ then x — a\ > 4 . Indeed, if x — a;- < 4 , then there is 

z G Am such that |aj — 2:| < £ and hence \x — z\ < \x — a\\-\-\a\ — z\ < 4 + £ < £ , 

a contradiction with (5). However, then x G (c\,b\) and fn(x) = f2j-\(x) = 
g(x) = f(x). a 

b) Let c?(aj,Am) > £ . Then q{ > m. 

If xe(c\,b\), then fn(x) = f(x). 

If x G («• ,c j ] , then / n (x ) = /(cr?) + 2 1 - ^ sin ^ - y . Since a] ^ Am , then for 

each y G («],c^], with respect to (4), we have \f(a\) — f(y)\ < 2~ m . Therefore 

|/»(*) - f(x)\ < \fn(x) - f(a{)\ + \f(a{) - f(x)\ < 21-* + 2~™ < 3 • 2~m < e. 

Similarly, for n even we can prove that | / n (x) — / ( ^ ) | < £. Therefore 

lim / n (x ) = f(x). 
n—->oo 

Now let m G N and e > 0. Let r G N be such that 2~ r < e and let 
p = m + 2r . Let x G R. 

a ) If x G - 4 m + r , then fm+p-i(x) = /2(m+r)-i(^) = / ( x ) a r-d hence 

l/m+P-i(a:) - / ( -c) l < e. 

/3) Let x g A m + r . Then there is i G N such that x G ( a r + m , 6 r + m ) . 
If x G jK«r + r + ^ + r ) ^ r + r ) C (cm+r ,6m+r), then /2(m+r)_1(x) = g(x). 
According to (2) we have 

\fm+P-i(x) - f(x)\ = \g(x) - f(x)\ < 2-(m + r> < 2~r < e. 

If x E « , + r , I ( a (
m + r + b?+r)), then similarly \fm+P(x) - f(x)\ < e. 
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Therefore for each x G l w e have 

min{\ fm+^x) - f(x)\,... ,\fm+p(x) - f(x)\} < e 

and the sequence (fn) quasiuniformly converges to / . 

P r o b l e m . In [4] it is shown tha t every cliquish function / : R —> R is a 

pointwise limit of a sequence of Darboux quasicontinuous functions. Is it t rue 

also for quasiuniform convergence? 
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