Mathematic Slovaca

Andrzej Walendziak

($\mathcal{L}, \mathcal{L}^{\prime}$)-products of algebras

Mathematica Slovaca, Vol. 48 (1998), No. 5, 447--455

Persistent URL: http://dml.cz/dmlcz/128755

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1998

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

$\left(\mathcal{L}, \mathcal{L}^{\prime}\right)$-PRODUCTS OF ALGEBRAS

Andrzej Walendziak
(Communicated by Tibor Katrin̆ák)

Abstract

An $\left(\mathcal{L}, \mathcal{L}^{\prime}\right)$-product of algebras $A_{i}(i \in I)$ is a subdirect product of A_{i} satisfying certain conditions involving \mathcal{L} and \mathcal{L}^{\prime}, where \mathcal{L} and \mathcal{L}^{\prime} are ideals of the power set of I. Direct, full subdirect and weak direct representations of algebras are special cases of $\left(\mathcal{L}, \mathcal{L}^{\prime}\right)$-representations. Theorem 1 of this paper characterizes such representations in terms of congruence relations.

1. Introduction

Let I be a nonvoid set. $\mathcal{P}(I)$ and $\mathcal{F}(I)$ denote the set of all subsets of I and the set of all finite subsets of I, respectively. We denote by $P(I)$ the Boolean algebra

$$
\left\langle\mathcal{P}(I), \cap, \cup,^{\prime}, \emptyset, I\right\rangle .
$$

If $\left\langle A_{i}: i \in I\right\rangle$ is a system of similar algebras, then $\Pi\left\langle A_{i}: i \in I\right\rangle$, or ΠA_{i}, denotes the direct product of algebras $A_{i}, i \in I$. If $A=A_{i}$ for all $i \in I$, we write A^{I} for the direct product and call it a direct power of A.

For two elements $x, y \in \Pi\left\langle A_{i}: i \in I\right\rangle$ we define

$$
I(x, y)=\{i \in I: x(i) \neq y(i)\}
$$

A full subdirect product of the $A_{i}, i \in I$, is a subalgebra A of $\prod A_{i}$ satisfying the following condition:
(A1) If $x \in A, y \in \prod A_{i}$ and if $I(x, y)$ is finite, then $y \in A$.
It is easy to verify that a subalgebra A of ΠA_{i} is a full subdirect product if condition (iii) on p. 45 of [7] holds.

Let $A \subseteq \prod\left\langle A_{i}: i \in I\right\rangle$ be a subdirect product and let \mathcal{L} be an ideal of $P(I) . A$ is called an \mathcal{L}-restricted subdirect product (see [4; p. 92]) if it satisfies the following condition:
(A2) For every $x, y \in A, I(x, y) \in \mathcal{L}$.

[^0]Let a subdirect product $A \subseteq \prod A_{i}$ satisfy (A2). If A has the property that for every $x \in A$ and for every $y \in \prod A_{i}, I(x, y) \in \mathcal{L}$ implies $y \in A$, then we say that A is an L-restricted direct product (see [3; p. 140] or [6; p. 219]). A subalgebra A of ΠA_{i} is an L-restricted full subdirect product of algebras A_{\imath}, $i \in I$, (see [7; p. 45]) if conditions (A1) and (A2) are satisfied.

Now we generalize these notions in the following way:
DEFINITION 1. Let A be a subdirect product of algebras $A_{i}, i \in I$, and let $\mathcal{L}, \mathcal{L}^{\prime}$ be ideals of $P(I)$. We say that A is an $\left(\mathcal{L}, \mathcal{L}^{\prime}\right)$-product of A_{i}, and we write

$$
A=\prod_{\mathcal{L}}^{\mathcal{L}^{\prime}}\left\langle A_{i}: i \in I\right\rangle, \quad \text { or } \quad A=\prod_{\mathcal{L}}^{\mathcal{L}^{\prime}} A_{i}
$$

if A satisfies (A2) and the following condition:
(A3) $x \in A, y \in \Pi A_{i}$ and $I(x, y) \in \mathcal{L}^{\prime}$ imply that $y \in A$.
If $C=A_{i}$ for all $i \in I$, we call $A=\prod_{\mathcal{L}}^{\mathcal{L}^{\prime}}\left\langle A_{i}: i \in I\right\rangle$ an $\left\langle\mathcal{L}, \mathcal{L}^{\prime}\right\rangle$-power of C with exponent I.

If $\mathcal{L}=\mathcal{L}^{\prime}$, we write $A=\prod^{\mathcal{L}}\left\langle A_{i}: i \in I\right\rangle$ for the $\langle\mathcal{L}, \mathcal{L}\rangle$-product.
 $i \in I$. In particular, $A=\prod^{\mathcal{F}(I)}\left\langle A_{i}: i \in I\right\rangle$ if and only if A is a weak direct product (see [3; p. 139]). If $\mathcal{L}=\mathcal{L}^{\prime}=\mathcal{P}(I)$ we obtain the direct product.

If $\mathcal{L}^{\prime}=\{\emptyset\}$ in Definition 1, we get the concept of an \mathcal{L}-restricted subdirect product. We note that if $\mathcal{L}=\mathcal{P}(I)$, then an \mathcal{L}-restricted subdirect product is a subdirect product.

It is easily seen that $\prod_{\mathcal{L}}^{\mathcal{F}(I)} A_{i}$ is an \mathcal{L}-restricted full subdirect product of the $A_{i}, i \in I$. Finally, a full subdirect product is a $(\mathcal{P}(I), \mathcal{F}(I))$-product.

Example. Let I be an index set and let $G=Z_{2}^{I}$ where Z_{2} is the two element group. For $x \in G$, we define the support of x, denoted $\operatorname{supp}(x)$, as

$$
\operatorname{supp}(x)=\{i \in I: x(i) \neq 0\}
$$

Let I^{\prime} be a subset of I, and set

$$
\mathcal{L}=\left\{X \cup Y: X \text { is a finite subset of } I^{\prime} \text { and } Y \subseteq I-I^{\prime}\right\}
$$

$\left(\mathcal{L}, \mathcal{L}^{\prime}\right)$-PRODUCTS OF ALGEBRAS

Define

$$
\begin{aligned}
& H_{1}=\left\{x \in G: x(i)=x(j) \text { for all } i, j \in I-I^{\prime}\right\} \\
& H_{2}=\left\{x \in G: I^{\prime} \cap \operatorname{supp}(x) \text { is finite }\right\} \\
& H_{3}=\{x \in G: \operatorname{supp}(x) \text { is finite }\} \\
& H_{4}=\{x \in G: \operatorname{supp}(x) \text { is finite or } I-\operatorname{supp}(x) \text { is finite }\} .
\end{aligned}
$$

It is easy to see that H_{1} is a $\left\langle\mathcal{P}(I), \mathcal{P}\left(I^{\prime}\right)\right\rangle$-power of Z_{2} with exponent I, and H_{2} is an \mathcal{L}-restricted direct power (and also an \mathcal{L}-restricted full subdirect power). $H_{1} \cap H_{2}$ is an $\left\langle\mathcal{L}, \mathcal{F}\left(I^{\prime}\right)\right\rangle$-power of Z_{2}, and H_{3} is a weak direct power. Finally, H_{4} is a full subdirect power of Z_{2}, but it is not a weak direct power.

In the present paper we characterize $\left(\mathcal{L}, \mathcal{L}^{\prime}\right)$-products in terms of congruence relations.

2. Preliminaries on congruence relations

Let A be an arbitrary algebra. We denote by $\operatorname{Con}(A)$ the set of all congruence relations on A. Con (A) forms a complete lattice with 0_{A} and 1_{A}, the smallest and the greatest congruence relations, respectively.

Let I be a nonvoid set and let $\mathcal{L}, \mathcal{L}^{\prime}$ be ideals of the Boolean algebra $P(I)$. Let $\Theta=\left\langle\theta_{i}: \quad i \in I\right\rangle$ be a system of congruences on A. For an arbitrary set $M \subseteq I$, we define a congruence relation $\theta(M)$ of A by

$$
\theta(M)=\bigwedge\left\{\theta_{j}: j \in I-M\right\}
$$

We shall use the notion $\bar{\theta}_{i}$ for $\theta(\{i\}), i \in I$. We write

$$
0_{A}=\prod_{\mathcal{L}}^{\mathcal{L}^{\prime}}\left\langle\theta_{i}: i \in I\right\rangle
$$

if the following conditions hold:
(i) $0_{A}=\bigwedge\left\{\theta_{i}: i \in I\right\}$,
(ii) $1_{A}=\bigvee\{\theta(M): M \in \mathcal{L}\}$,
(iii) if $M \in \mathcal{L}^{\prime}$ and if $x, y_{i}(i \in I)$ are elements of A such that $\left\langle x, y_{i}\right\rangle \in \theta_{i}$ for all $i \in I-M$, then there exists $z \in A$ satisfying $\left\langle z, y_{i}\right\rangle \in \theta_{i}$ for each $i \in I$.
We write $\prod^{\mathcal{L}}\left\langle\theta_{i}: i \in I\right\rangle$ for $\prod_{\mathcal{L}}^{\mathcal{L}}\left\langle\theta_{i}: i \in I\right\rangle$.
We begin with the following three lemmas.

Lemma 1. (see [6; Lemma 4]) If $\mathcal{L}=\mathcal{P}(I)$, then

$$
1_{A}=\bigvee\{\theta(M): M \in \mathcal{L}\}
$$

LEMMA 2. Let \mathcal{L}^{\prime} be an ideal of $P(I)$ containing all finite subsets of I. Then (iii) implies the following condition:
(iv) For every $i \in I, 1_{A}=\theta_{i} \circ \bar{\theta}_{i}$, where \circ denotes the relational product of two binary relations on A.

Proof. Let i_{0} be an arbitrary element of I and let $x, y \in A$. We define

$$
y_{i}= \begin{cases}x & \text { if } i=i_{0} \\ y & \text { if } i \neq i_{0}\end{cases}
$$

Obviously, $\left\langle y, y_{i}\right\rangle \in \theta_{i}$ for each $i \in I-M$, where $M=\left\{i_{0}\right\}$. Since $M \in \mathcal{L}^{\prime}$, by (iii) we conclude that there is an element $z \in A$ such that $\left\langle z, y_{i}\right\rangle \in \theta_{i}$ for all $i \in I$. Then $\langle x, z\rangle \in \theta_{i_{0}}$ and $\langle z, y\rangle \in \bar{\theta}_{i_{0}}$. Hence (iv) holds.
Lemma 3. If $\mathcal{L}^{\prime}=\mathcal{F}(I)$, then (iii) is equivalent to (iv).
Proof. Let Θ satisfy (iv). To prove (iii), we apply induction on the cardinality of M. Let $M=\left\{i_{0}\right\}, x$ and $y_{i}(i \in I)$ be elements of A with $\left\langle x, y_{i}\right\rangle \in \theta_{\imath}$ for $i \neq i_{0}$.

By (iv), there is an element $z \in A$ satisfying $\left\langle y_{i_{0}}, z\right\rangle \in \theta_{i_{0}}$ and $\langle z, x\rangle \in \bar{\theta}_{i_{0}}$. Then $\left\langle z, y_{i}\right\rangle \in \theta_{i}$ for each $i \in I$.

Now suppose that the assertion is true for all $M \subseteq I$ with $|M|<n$. Let $M=\left\{i_{1}, \ldots, i_{n}\right\}$ and let $x, y_{i} \in A(i \in I)$ such that $\left\langle x, y_{i}\right\rangle \in \theta_{i}$ for $i \in I-M$. Again by (iv), there exists an element $y \in A$ satisfying $\left\langle y_{i_{n}}, y\right\rangle \in \theta_{i_{n}}$ and $\langle x, y\rangle \in \bar{\theta}_{i_{n}}$. Then $\left\langle y, y_{i}\right\rangle \in \theta_{i}$ for each $i \in I-\left\{i_{1}, \ldots, i_{n-1}\right\}$. By the induction hypothesis, there is a $z \in A$ with $\left\langle z, y_{i}\right\rangle \in \theta_{i}$ for all $i \in I$. This ends the proof of (iii). The implication (iii) \Longrightarrow (iv) follows from Lemma 2.

From Lemmas 1 and 3 we have

Proposition 1.

(a) $0_{A}=\prod_{\mathcal{P}(I)}^{\{\emptyset\}}\left\langle\theta_{i}: i \in I\right\rangle$ if and only if $0_{A}=\bigwedge\left\{\theta_{i}: i \in I\right\}$.
(b) $0_{A}=\prod_{\mathcal{L}}^{\{\emptyset\}}\left\langle\theta_{i}: i \in I\right\rangle$ if and only if Θ satisfies (i) and (ii).
(c) $0_{A}=\prod_{\mathcal{\mathcal { L }}}^{\mathcal{F}(I)}\left\langle\theta_{i}: i \in I\right\rangle$ if and only if Θ has properties (i), (ii) and (iv).
(d) $0_{A}=\prod_{\mathcal{P}(I)}^{\mathcal{F}(I)}\left\langle\theta_{i}: i \in I\right\rangle$ if and only if conditions (i) and (iv) are satisfied.

Now we prove the following proposition.

$\left(\mathcal{L}, \mathcal{L}^{\prime}\right)$-PRODUCTS OF ALGEBRAS

Proposition 2. $0_{A}=\prod^{\mathcal{L}}\left\langle\theta_{i}: i \in I\right\rangle$ if and only if Θ satisfies (i), (ii) and the following condition (given in [6; p. 222]):
(v) For every $\emptyset \neq M \in \mathcal{L}$ and for every $\left\langle x_{i}: i \in M\right\rangle \in A^{M}$, if $\left\langle x_{i}, x_{j}\right\rangle \in$ $\theta(M)$ for all $i, j \in M$, then there is a $z \in A$ such that $\left\langle z, x_{i}\right\rangle \in \theta(M-$ $\{i\})$ for all $i \in M$.

Proof. Assume that $0_{A}=\stackrel{\mathcal{L}}{\prod^{\mathcal{L}}}\left\langle\theta_{i}: i \in M\right\rangle$. Clearly, Θ satisfies (i) and (ii). To prove (v), let $\emptyset \neq M \in \mathcal{L}, x_{i}(i \in M)$ be elements of A, and suppose that $\left\langle x_{i}, x_{j}\right\rangle \in \theta(M)$ for all $i, j \in M$. Let i_{0} be an arbitrary element of M.

We set $x=x_{i_{0}}$ and define

$$
y_{i}= \begin{cases}x_{i} & \text { if } i \in M \\ x & \text { if } i \notin M\end{cases}
$$

Obviously, $\left\langle x, y_{i}\right\rangle \in \theta_{i}$ for all $i \in I-M$. By (iii), there exists an element $z \in A$ such that $\left\langle z, y_{i}\right\rangle \in \theta_{i}$ for each $i \in I$.

Let $i \in M$. Then $\left\langle z, y_{i}\right\rangle \in \theta_{i}$, and since $y_{i}=x_{i}$ we also have $\left\langle z, x_{i}\right\rangle \in \theta_{i}$. Observe that

$$
\left\langle z, x_{i}\right\rangle \in \theta(M)
$$

Indeed, if $j \notin M$, then $\langle z, x\rangle=\left\langle z, y_{i}\right\rangle \in \theta_{j}$. Hence $\left\langle z, x_{i_{0}}\right\rangle=\langle z, x\rangle \in \theta(M)$, and by the assumption, $\left\langle x_{i_{0}}, x_{i}\right\rangle \in \theta(M)$. Therefore, $\left\langle z, x_{i}\right\rangle \in \theta(M)$. Consequently, $\left\langle z, x_{i}\right\rangle \in \theta(M-\{i\})$ for each $i \in M$. Thus (v) is true.

Suppose now that conditions (i), (ii) and (v) are satisfied.
We conclude that (iv) holds by using the proof of Lemma 1 in [6]. To prove (iii), let $\emptyset \neq M \in \mathcal{L}$ (if $M=\emptyset$, then it is obvious), and let $x, y_{i} \in A(i \in I)$ such that $\left\langle x, y_{i}\right\rangle \in \theta_{i}$ for $i \in I-M$. From (iv) we deduce that for every $i \in I$, there exists an $x_{i} \in A$ satisfying

$$
\begin{equation*}
\left\langle x_{i}, y_{i}\right\rangle \in \theta_{i} \quad \text { and } \quad\left\langle x_{i}, x\right\rangle \in \bar{\theta}_{i} \tag{1}
\end{equation*}
$$

Hence $\left\langle x_{i}, x_{j}\right\rangle \in \bar{\theta}_{i} \vee \bar{\theta}_{j}$ for any $i, j \in I$. Therefore, $\left\langle x_{i}, x_{j}\right\rangle \in \theta(M)$ for all $i, j \in M$. By (v), there is an element $z \in A$ such that $\left\langle z, x_{i}\right\rangle \in \theta(M-\{i\})$ for each $i \in M$. If $i \in M$, then $\left\langle z, x_{i}\right\rangle \in \theta_{i}$ and, since $\left\langle x_{i}, y_{i}\right\rangle \in \theta_{i}$ (by (1)), we obtain that $\left\langle z, y_{i}\right\rangle \in \theta_{i}$. Let $i \in I-M$. Then $\left\langle z, x_{j}\right\rangle \in \theta_{i}$ for some $j \in M$. From (1) it follows that $\left\langle x_{j}, x\right\rangle \in \bar{\theta}_{j} \leq \theta_{i}$, and by assumption we have $\left\langle x, y_{i}\right\rangle \in \theta_{i}$. Consequently, $\left\langle z, y_{i}\right\rangle \in \theta_{i}$ for each $i \in I$, and therefore, (iii) holds for $\mathcal{L}^{\prime}=\mathcal{L}$. Thus $0_{A}=\stackrel{\mathcal{L}}{\Pi}\left\langle\theta_{i}: i \in I\right\rangle$.

ANDRZEJ WALENDZIAK

Proposition 3. The following three statements are equivalent.
(a) $0_{A}=\prod^{\mathcal{P}(I)}\left\langle\theta_{i}: i \in I\right\rangle$.
(b) Θ satisfies (i), (iv) and (vi) for all elements $x_{i}(i \in I)$ of A satisfying $\left\langle x_{i}, x_{j}\right\rangle \in \bar{\theta}_{i} \vee \bar{\theta}_{j}$ for all $i, j \in I$, there is an element $y \in A$ such that $\left\langle y, x_{i}\right\rangle \in \theta_{i}$ for every $i \in I$ (that is, Θ is consistent, see [1; p. 92]).
(c) Θ satisfies (i) and (vii) for every $\left\langle x_{i}: i \in I\right\rangle \in A^{I}$, there is an element $y \in A$ such that $\left\langle y, x_{i}\right\rangle \in \theta_{i}$ for every $i \in I$.

Proof. Let $0_{A}=\left\langle\theta_{i}: \quad i \in I\right\rangle$. It is obvious that Θ is consistent. By Lemma 2, condition (iv) is fulfilled. Thus statement (b) holds. Therefore, (a) \Longrightarrow (b).

Now assume that conditions (i), (iv) and (vi) are satisfied. To prove that Θ also satisfies (vii), let $x_{i}(i \in I)$ be elements of A. We put $x=x_{i_{0}}$, where i_{0} is an element of I. By (iv), for every $i \in I$, there exists an element $y_{i} \in A$ such that

$$
\begin{equation*}
\left\langle x_{i}, y_{i}\right\rangle \in \theta_{i} \quad \text { and } \quad\left\langle y_{i}, x\right\rangle \in \bar{\theta}_{i} . \tag{2}
\end{equation*}
$$

Hence $\left\langle y_{i}, y_{j}\right\rangle \in \bar{\theta}_{i} \vee \bar{\theta}_{j}$ for arbitrary $i, j \in I$. From (vi) we conclude that there is an element $y \in A$ satisfying $\left\langle y, y_{i}\right\rangle \in \theta_{i}$ for each $i \in I$. Now, from (2) it follows that $\left\langle y, x_{i}\right\rangle \in \theta_{i}$ for all $i \in I$, and therefore (vii) is satisfied. This finishes the proof that $(\mathrm{b}) \Longrightarrow$ (c).

Finally, suppose that Θ satisfies (i) and (vii). Clearly, (iii) holds for $\mathcal{L}^{\prime}=$ $\mathcal{P}(I)$. By Lemma $1,1_{A}=\bigvee(\theta(M): M \in \mathcal{P}(I))$. Thus (c) \Longrightarrow (a).

3. $\left(\mathcal{L}, \mathcal{L}^{\prime}\right)$-representations of algebras

Let I be a nonvoid set and let $\mathcal{L}, \mathcal{L}^{\prime}$ be ideals of $P(I)$. Let A be arbitrary algebra. We say that a system $\left\langle\theta_{i}: i \in I\right\rangle \in(\operatorname{Con}(A))^{I}$ is an $\left(\mathcal{L}, \mathcal{L}^{\prime}\right)$-representation of A if the mapping $f: A \rightarrow \Pi\left\langle A / \theta_{i}: i \in I\right\rangle$ defined by the rule $f(x)(i)=x / \theta_{i}\left(x / \theta_{i}\right.$ is the congruence class containing $\left.x\right)$ is one-to-one and $f(A)=\prod_{\mathcal{L}}^{\mathcal{L}^{\prime}}\left\langle A / \theta_{i}: \quad i \in I\right\rangle$.

For every $i \in I$, we set $A_{i}=A / \theta_{i}$ and denote by p_{i} the i th projection function from $\Pi\left\langle A_{i}: i \in I\right\rangle$ onto A_{i}.

The mapping $f_{i}=p_{i} \circ f$, which is a homomorphism of A onto A_{i} will be referred to as the i th f-projection.

$\left(\mathcal{L}, \mathcal{L}^{\prime}\right)$-PRODUCTS OF ALGEBRAS

If $\left\langle\theta_{i}: i \in I\right\rangle$ is an $\left(\mathcal{L}, \mathcal{L}^{\prime}\right)$-representation of A, then this representation is called:
(a) subdirect, if $\mathcal{L}=\mathcal{P}(I)$ and $\mathcal{L}^{\prime}=\{\emptyset\}$,
(b) \mathcal{L}-restricted subdirect, if $\mathcal{L}^{\prime}=\{\emptyset\}$,
(c) full subdirect, if $\mathcal{L}=\mathcal{P}(I)$ and $\mathcal{L}^{\prime}=\mathcal{F}(I)$,
(d) direct, if $\mathcal{L}=\mathcal{L}^{\prime}=\mathcal{P}(I)$,
(e) \mathcal{L}-restricted direct, if $\mathcal{L}=\mathcal{L}^{\prime}$,
(f) \mathcal{L}-restricted full subdirect, if $\mathcal{L}^{\prime}=\mathcal{F}(I)$,
(g) weak direct, if $\mathcal{L}=\mathcal{L}^{\prime}=\mathcal{F}(I)$.

The next result characterizes $\left(\mathcal{L}, \mathcal{L}^{\prime}\right)$-representations internally.
Theorem 1. Let A be an algebra and let I be a nonvoid set. Let \mathcal{L} and \mathcal{L}^{\prime} be ideals of the Boolean algebra $P(I)$.

Then a system $\left\langle\theta_{i}: \quad i \in I\right\rangle \in(\operatorname{Con}(A))^{I}$ is an $\left(\mathcal{L}, \mathcal{L}^{\prime}\right)$-representation of A if and only if $0_{A}=\prod_{\mathcal{L}}^{\mathcal{L}^{\prime}}\left\langle\theta_{i}: i \in I\right\rangle$.

Proof. We put $A_{i}=A / \theta_{i}$ for $i \in I$ and define the mapping f : $A \rightarrow \Pi\left\langle A_{i}: \quad i \in I\right\rangle$ by setting $f(x)=\left\langle x / \theta_{i}: i \in I\right\rangle$. Let $B=f(A)$, and denote by f_{i} the i th f-projection.

Suppose that f is one-to-one and that $B=\prod_{\mathcal{L}}^{\mathcal{L}^{\prime}}\left\langle A_{i}: \quad i \in I\right\rangle$. Obviously, $0_{A}=\bigwedge\left\{\theta_{i}: i \in I\right\}$, that is, the condition (i) holds. To prove (ii), let $x, y \in A$ and let $M=\left\{i \in I: f_{i}(x) \neq f_{i}(y)\right\}$. By the property (A2), $M \in \mathcal{L}$, and clearly $\langle x, y\rangle \in \theta(M)$. Then $\langle x, y\rangle \in \bigvee(\theta(M): M \in \mathcal{L})$, and hence (ii) is satisfied.

Now we shall prove that (iii) holds. Let M be a set of \mathcal{L}^{\prime} and let x, y_{i} ($i \in I$) be elements of A such that $\left\langle x, y_{i}\right\rangle \in \theta_{i}$ for every $i \in I-M$. Then $\left\{i \in I: \quad x / \theta_{i} \neq y_{i} / \theta_{i}\right\} \subseteq M$. By the definition of ideal we conclude that $\left\{i: x / \theta_{i} \neq y_{i} / \theta_{i}\right\} \in \mathcal{L}^{\prime}$, and hence $I(f(x), y) \in \mathcal{L}^{\prime}$, where $y=\left\langle y_{i} / \theta_{i}: i \in I\right\rangle$. From (A3) it follows that $y \in B$.

Let $z \in A$ such that $f(z)=y$. It is obvious that $f_{i}(z)=f_{i}\left(y_{i}\right)$ for $i \in I$. Hence $\left\langle z, y_{i}\right\rangle \in \theta_{i}$ for every i, and consequently, (iii) holds. Thus $0_{A}=\prod_{\mathcal{L}}^{\mathcal{L}^{\prime}}\left\langle\theta_{i}: \quad i \in I\right\rangle$.

Conversely, assume that $\left\langle\theta_{i}: i \in I\right\rangle$ satisfies conditions (i), (ii) and (iii). The fact that f is an embedding is easy to check. Of course, B is a subdirect product of algebras $A_{i}, i \in I$. Let $x, y \in A$. Now we prove that

$$
\begin{equation*}
I(f(x), f(y)) \in \mathcal{L} \tag{3}
\end{equation*}
$$

By (ii), $\langle x, y\rangle \in \bigvee\{\theta(M): M \in \mathcal{L}\}$. Then there exists a sequence of elements of $A, x=x_{1}, x_{2}, \ldots, x_{n}=y$ and sets $M_{1}, M_{2}, \ldots, M_{n-1} \in \mathcal{L}$ such that $\left\langle x_{i}, x_{i+1}\right\rangle \in \theta\left(M_{i}\right)$, for $i=1,2, \ldots, n-1$.

ANDRZEJ WALENDZIAK

Consequently, $\langle x, y\rangle \in \theta(M)$, where $M=M_{1} \cup M_{2} \cup \cdots \cup M_{n-1} \in \mathcal{L}$. Therefore, $f_{i}(x)=f_{i}(y)$ for every $i \notin M$, and hence $\left\{i: f_{i}(x) \neq f_{i}(y)\right\} \subseteq M$. From this we obtain (3). It follows that B satisfies (A2).

Now let $\bar{x} \in B$ and $y \in \Pi\left\langle A / \theta_{i}: \quad i \in I\right\rangle$. Suppose that $M=I(\bar{x}, y) \in \mathcal{L}^{\prime}$. From the fact that B is a subdirect product of the algebras $A / \theta_{i}, i \in I$ we conclude that there is a system $\left\langle\bar{y}_{i}: i \in I\right\rangle \in B^{I}$ with $\bar{y}_{i}(i)=y(i)$ for $i \in I$.

Take $x, y_{i} \in A, i \in I$, such that $f(x)=\bar{x}$ and $f\left(y_{i}\right)=\bar{y}_{i}$ for $i \in I$. Let $i \in I-M$. Then $\bar{x}(i)=y(i)$, and therefore, $x / \theta_{i}=y_{i} / \theta_{i}$. Hence $\left\langle x, y_{i}\right\rangle \in \theta_{i}$ for $i \in I-M$. By (iii), there is an element $z \in A$ satisfying $\left\langle z, y_{i}\right\rangle \in \theta_{i}$ for every $i \in I$. Let $\bar{z}=f(z) \in B$. We have $\bar{z}(i)=f_{i}(z)=z / \theta_{i}=y_{i} / \theta_{i}=f_{i}\left(y_{i}\right)=$ $\bar{y}_{i}(i)=y(i)$ for $i \in I$. Then $\bar{z}=y$, and since $\bar{z} \in B$ we also have that $y \in B$. Consequently, B satisfies (A3). Thus $\left\langle\theta_{i}: i \in I\right\rangle$ is an ($\mathcal{L}, \mathcal{L}^{\prime}$)-representation of A.

Now we give some applications of Theorem 1.
Let $\Theta=\left\langle\theta_{i}: \quad i \in I\right\rangle$ be a system of congruences of an algebra A. From Theorem 1 and Proposition 1(a) we obtain the following well-known fact:

COROLLARY 1. Θ is a subdirect representation of A if and only if $0_{A}=$ $\bigwedge\left\{\theta_{i}: i \in I\right\}$.

An immediate consequence of Theorem 1 and Propositions $1(\mathrm{~b})$ and 2 is:
Corollary 2. (cf. [6; Corollaries 3 and 4]) Let \mathcal{L} be an ideal of $P(I)$. Then:
(a) Θ is an \mathcal{L}-restricted subdirect representation of A if and only if conditions (i) and (ii) are fulfilled.
(b) Θ is an \mathcal{L}-restricted direct representation of A if and only if conditions (i), (ii), and (v) are satisfied.

By Theorem 1 and Proposition 3 we obtain:
Corollary 3. (see [1; Theorem 11.7] and [5; Theorem 4.31]) Θ is a direct representation of A if and only if Θ satisfies (i), (iv) and (vi) (or: (i) and (vii)).

From Theorem 1 and Proposition 1(c) we get:
Corollary 4. (cf. [7; Theorem 1]) If \mathcal{L} is an ideal of $P(I)$, then Θ is an \mathcal{L}-restricted full subdirect representation of A if and only if conditions (i), (ii) and (iv) hold.

Hence we have:
COROLLARY 5. Θ is a weak direct representation of A if and only if Θ satisfies (i), (iv) and (ii) with $\mathcal{L}=\mathcal{F}(I)$.

$\left(\mathcal{L}, \mathcal{L}^{\prime}\right)$-PRODUCTS OF ALGEBRAS

Finally, we obtain:
Corollary 6. (see [2; Lemma 1.1]) Θ is a full subdirect representation of A if and only if conditions (i) and (iv) are satisfied.

Proof. Follows from Theorem 1 and from Proposition 1(d).

REFERENCES

[1] CRAWLEY, P.-DILWORTH, R. P.: Algebraic Theory of Lattices, Prentice-Hall, Englewood Cliffs, N.J., 1973.
[2] DRAŠKOVIČOVÁ, H.: Weak direct product decomposition of algebras. In: Contributions to General Algebra 5. Proc. of the Salzburg Conference, May 29-June 1, Wien, 1987, pp. 105-121.
[3] GRÄTZER, G.: Universal Algebra, Springer Verlag, New York-Heidelberg-Berlin, 1979.
[4] HASHIMOTO, J.: Direct, subdirect decompositions and congruence relations, Osaka J. Math. 9 (1957), 87-112.
[5] McKENZIE, R.-McNULTY, G.-TAYLOR, W.: Algebras, Lattices, Varieties. Vol. I, Wadsworth \& Brooks, Monterey, 1987.
[6] WALENDZIAK, A.: \mathcal{L}-restricted φ-representations of algebras, Period. Math. Hung. 23 (1991), 219-226.
[7] WALENDZIAK, A.: Full subdirect and weak direct products of algebras, Math. Slovaca. 44 (1994), 45-54.

Received January 30, 1995
Revised December 10, 1996

Institute of Mathematics and Physics Agricultural and Pedagogical University PL-08110 Siedlce POLAND

[^0]: AMS Subject Classification (1991): Primary 08A30; Secondary 06B10.
 Key words: direct product, subdirect product, weak direct product, full subdirect product, ($\mathcal{L}, \mathcal{L}^{\prime}$)-product, congruence relation.

