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M a t h . Slovaca 38, 1988, No . 1 , 

ON LATTICES OF GENERALIZED TOPOLOGIES 

JOSEF SLAPAL 

Generalized topologies obtained by replacing the Kuratowski axioms by 
some weaker ones occur in various branches of mathematics (for example in the 
theory of games as shown in [7]). In the present note we investigate some systems 
of these generalized topologies from the point of view of the theory of lattices. 

Under a topology u on a non-empty set P we understand a mapping u: 
expP->expP. These topologies (often called topologies without axioms or 
Koutsky topologies) are studied in [9], [11] and [13]. We shall consider the 
following axioms for topologies on a given set P ^ 0: 

1. uQ = 0 O-axiom ([5]), 
2. X<=P=>X<=uX l-axiom ([5]), 
3. X<=Y<=P=>uX<=uY M-axiom ([5]), 
4. X, Y^P=>u(XuY)^uXuuY A-axiom ([3]), 

5. 0 ^ X c P = > w X c ( J u{x} S-axiom ([10]), 

6. X c P => uuX c UX*G JJ-axiom ([8]). 

I f / is one of the listed axioms, i.e. / e { 0 , 1 , M, A, S, U}, then a topology 
u on P is called an f-topology whenever it fulfils the /-axiom. If also 
ge{0 ,1 , M, A, S, U} and u is both an /-topology and g-topology, then it is 
called anfg-topology, etc. Let us note that every MS-topology is an MA-topol
ogy, and provided that P is finite these two topologies even coincide. Many 
authors deal with topologies fulfilling some of the axioms above considered. 
Thus, OM-topologies occur in [7], IM-topologies are studied in [6], Ol-topolo-
gies in [5], OIM-topologies in [3], [5], [8] and [11], OIMA-topologies in [4], 
OIMU-topologies in [12], OIMAU-topologies in [2], [4] and [9], and OISU-
topologies in [4] and [10]. 

The system of all topologies on P is denoted by SP. By ̂ }we denote the system 
of all /-topologies on P, by &fg the system of all jg-topologies on P, etc. The 
system & as well as every its subsystem will be considered as ordered by the 
relation ±\ defined as usual: u ^ vouX ^ vX for any subset X c P. If u %\ v, 
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then we say that u is weaker than v or that v is stronger than u. It is well known 
(see [9]) that SP is a complete lattice and that for any non-empty system ST<^SP 

its join and meet in SP are defined by (\/^)X = ( J wX and (/\T)X = (~) uX 
ueJ~ uef 

for any subset X ^ P. (Moreover, SP is a completely distributive complete 
Boolean algebra — see [11]). The least and the greatest elements in SP will be 
denoted as u* and v*. Clearly, w*X = 0 and v*X = P for every subset X c P. 

Let N denotes the set of all positive integers. 

The reader can easily prove the following assertion: 

Theorem 1. (1) SPQ, SPX, SPU are complete sublattices ofSP. 
(2) SPk, SP$ are complete join-subsemilattices of SP. 
(3) ^MU is a complete meet-subsemilattice of SP. 

R e m a r k 1. a) In the example 3.4a of [11] it is shown that for any setP 
with card P = 3 the system ^OIMAU *S n ° t a meet-subsemilattice of SP. From this 
it follows that ^OIMSU *S n ° t a meet-subsemilattice of SP whenever 
3 ^ card P < X0. But from the same example it can also be easily seen that 
^OIMAU i s n ° t a join-subsemilattice of SP for any set P with cardP = 3. Thus, in 
consequence of Theorem 1, neither SPk nor SP$ are meet-subsemilattice of SP, and 
SPy^ is not a join-subsemilattice of SP, generally. 

b) The system SPV is neither a join-semilattice nor a meet-semilattice in 
general — see the following example. Let P = {x, y, z, t} and let ux, u2, w3, u4 be 
topologies on P defined as follows: w,{x} = {x}, u2{x} = {y}, u3{x} = {x,y,z}, 
u4{x} = {x,y, t}, ut{x,y} = {z} for i = 1, 2, 3, 4, and X <= P, {x} * X ^ {x,y} =-> 
=> w,X = X for i = 1,2, 3, 4. Evidently, uu u2, w3, W 4 G^ )

U . The topologies w3 and 
u4 are minimal upper bounds of {M„ w2} - n ^ u a n d thus there exists no join of 
{w,, u2} in ^ y . Similarly, w, and u2 are maximal lower bounds of {w3, w4} in SPV and 
thus there exists no meet of {u3, u4} in <?v 

As the proofs of the following three Theorems are somewhat alike we present 
only the last. 

Theorem 2. SPK is a complete lattice. If ST c ^ A is a non-empty system, then its 

meet [\2T in SPK is defined by {f\^)X = [)\Y^ P\Y = \J ( f ) UXXX 
I /= 1 \uef~ J 

( j X, = X, meN> for any subset Xs P. 
/ = i 3 

Theorem 3. ^ s is a complete lattice. IfST = SP$isa non-empty system, then its 

meet f\ST in SP^ is defined by {/\3T)Q = (~) uO and {f\F)X = 
w e J 
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[ и (П "WÍIn П "хм9ФХ = Р. 
LxeX\ueť / J м€_Г 

Theorem 4. _^MU is0 complete lattice. If^ _= £^MU is a non-empty system, then 

its join \jSr in &>MV is defined by (\/^)X = f) \ Y _= P| ( J (wXu t/Y) _= y [for 

any subset X _= P. 

Proof. As i;*e_^MU, from Theorem 1 it follows that _^MU is a complete 
lattice. Let _T _= _^MU be a non-empty system. For any subset X _= P put 

t;X= (J wX and wX= f|{Y_= P|t;Xu t;Y_= Y}. By Theorem 1, t; is an 
U€$~ 

M-topology on P. Let X _= Y _= P be subsets and x e wX a point. Then x e Z for 
any subset Z _= P fulfilling i>Xu t;Z_=Z. Let T_=P be a subset such that 
vYu vT _= _T. As i;X _= t>Y, there holds t;Xu vT _= F, and hence .xeT. Therefore 
xe wYand the inclusion wX _= t;Yis proved. Thus w is an M-topology on P. Let 
X _= P be a subset, xewwX a point. Then jce Y holds for every subset Y _= P 
fulfilling t;wXut;Y_=Y. There holds vwX = v[f){Y= P\vXu vY = Y}] _= 
_= f){i;Y_=P|t;Xui;Y_= Y) ^ f|{Yc= P|t;Xul;Yc Y} = vvX. Now, putting 
Y = wX we get Y _= P, t;wXu t;Y _= Y. Consequently, xeY = wX and the in
clusion wwX _= wXis proved. Hence we0*v, thus WE^MV. It is easy to see that 
v __i w. Let w, e _^MU be a topology on P such that t; — w,. Let X ^ P be a subset 
and x e wX a point. Then x e Y for every subset Y _= P withtLX u t? Y _= Y. From 
f ^ wqx the implication tvXu w, Y _= Y=>t;Xut;Y_= Y follows. Therefore xeY 
for every subset Y_=P with t;Xuw,Y_=Y. Put Y=w,X. Then Y_=P, 
tLXuw,Y_= Y. Thus JCGY=w,X, and consequently wX=wxX. This yields 
w ̂  w,. We have proved that w is the weakest of all MU-topologies on P which 
are stronger than v. Consequently, since t? ^ \J$~, we have w ̂  \ /_r . As 
w ^ v ^ w for every ue _T, there holds \/_T ^ w. Thus \ / _ r = w and the proof 
is complete. 

V A 

Let us introduce the following denotation. By the symbol «-(<-,«-) we 
denote the relation "complete sublattice o f ("complete join-subsemilattice of , 
"complete meet-subsemilattice o f ) . Then we have: 

Theorem 5. There holds Diagram 1 

Proof. Throughout the proof, $~ will be a non-empty system of topolo
gies on P, and by vu v2, w,, w2, w3 we shall denote the topologies on P defined 

as follows: X_= P=>t;,X = f ) uX9 v2X = J uX, W1X=C)\Y=P\Y = 
_e_r ___r (. 

m m ^ 
= U vtX„ U X, = X,meN\, w2X= f ){y s P\v2Xyjv2Y^ Y}, w3X=vlXfoT 

53 



X = 0 and щX = ({J Vì{xH n p,JГ for .V ф 0. 

^MA <- ^A- Let ̂  c ^ M A . There holds vx e &>M by Theorem 1. Let X _= Y c P 
be subsets, xE w,X a point. Let {Ifli = 1, ..., m} be a system of sets such that 

m m 

(J Yx= Y. Put X, = >;nX for each ie{l, ..., m}. Then ( J X,- = X, and hence 
1 = 1 / = i 

n m 

j c e U ^ i ^ i — U r i ^ - Consequently, xewxY. Thus wxX ^ wxY, i.e. wx is an 
1 = 1 / = i 

M-topology on P. Therefore wx e ^ M A . Let /\ and \/ denote the meet and join 
in 0>K. By Theorem 2, wx = l\3~, hence / \ ^ " G ^ M A . From Theorem 1 it follows 
that \Z^e^MA. The relation ^ M A <- ^ A is proved. 

v/ \v 

^ V / 

•>Ьs . - У ^ л 

I * 

Let J ç á » , MAU-

f> .^ Diagram 1 

Let I c ? be a subset. Then v^X = 

= p) (i> P | wX) .= p ( p | rwX) <= P uuX c p MX -= v.X. Hence vx is a U-
i'6.̂ " V ue/y / rG.f Vwei / ue.T ueT 

n 

topology on P. Let X .= P be a subset and x e i v , ^ ! a point. Then xe ( J vx Yt 
i = I 

for any system of sets {Y\i = 1, ..., n} fulfilling \J Y(= w,X. Let{X,|/ = 1, ..., m} 
. = I 

m 

be a system of sets such that \J X, = X. Put Y{ = w,X, for each /e{l, ..., m}. Let 
/ = i 

the meet in ^ M A be denoted by / \ . Since w, = j\2T is an MA-topology on P, 
w w w w 

we have U ^ ~~ U w\Xi = w\ U ^ = ^i^* Therefore xe [J vxYt = 
i= \ / = i / = i i - i 

m m m 

= \J vxwxX{ ^ [J vxvxX, ^ [J vxXt because w, = f\3T = v, and vxeSPL. Conse-
/ = i / i / = i 

quently, xewxX, which implies wxwxX^ wxX. Thus wx is a U-topology on P. 

Hence wx = A ^ ^ M A U , i.e. ^MAU A ^MA. 
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•^MAU " - ""MA-

^MAU +- &Mu- Let 3- «= ^MAU. Let X, Y <= P be subsets. Then 

v2(Xu Y)=\J u(Xu Y) s (J (wJf u MY) = y « I u (J MY = u-JTu v2Y. 
uef~ ue3~ u e J U G ^ 

This implies that v2 is an A-topology on P. Let XE w2 (Xu Y) be a point. Then 
x e Z for every subset Z = P fulfilling r2(X u Y) u u2Z 1= Z. Thus, x e Z for each 
subset Z = P with t;2X u t;2Yu v2Z = Z. Let T, U = P be subsets fulfilling 
v2Xw2T± F, v2Yw2U=\U. Then t;2Xu t;2Yu p 2 (ru £/) c Tu [/. 
Therefore XETKJU, i.e. jce Tor xe U. Consequently, xew2Xor xew2Y. From 
here we get xe w2Xu w2Y, and the inclusion w2(Xu Y) ^ w2Xu w2Yis proved. 
Hence w2e^A. Now, denoting the join in ^MU by \ / , according to Theorem 4 
we have w2 = N/^- This implies \J» e^MAU, SO ^MAU I- &>MV. 

^MS<-^s : Let ^ = &>MS. By Theorem 1, vx is an M-topology on P. Let 
X=Y=Pbe subsets. For X = 0 = Y there holds w3X = t;,X <= vx Y = w3Y. If 

X = 0 and Y # 0, then w3X = t;,X = i>,0 £ ( ( J i;,{x} J nvxY=w3Y. Finally, 

supposing X 7- 0 7* K we have w3X = (J t;,{x} n vxX = U ^iW n t;, Y = w3Y. 
xeX xeY 

Hence w3 is an M-topology on P. Denote the meet and join in &s by f\ and \/. 
According to Theorem 3, w3 = f\&~. Thus /\^e^MS. From Theorem 1 it 
follows that V ^ ^ ^ M S - The relation ^MS <- ̂ s is proved. 

^MSU<- ^MS: Let ST c ^MSu- As ^MSU <= ^MAU> from the proof of the relation 
^MAU<-^MA ^ follows that t;, is a U-topology on P. By Theorem 1, vx is an 
M-topology on P. Thus vx e &>MV. Denote the meet in ̂ MS by / \ . Then w3 = / \^" 
because ^MS^-^S- Let X £ P be a subset. Suppose X = 0. Then w3w3X = w3t;,X. 
If vxX = 0, then w3t;,X = vxvxX = vxX = w3X. Otherwise, let t;,X ^ 0. Then 

w3t;,X = U v\ix}n 1̂̂ 1-̂  --- V\X = wiX- Thus, for the empty set X we have 
X€VlX 

w3w3X =~ w3X. Now, suppose X ^ 0. If w3X = 0, then there is 
w3w3X = w30 £ w3X because w3e&M. Otherwise, let w3X ^ 0. As vxe&>M9 the 

inclusion (J r^x} ;= upholds whenever 0 ^ Y = P. This implies w3Y = (J t;,y 
x e Y x e Y 

for every non-empty subset Y = P. Hence w3w3X = U v\ix] = U r iW = 

xew3X xe\jvx{y} 
yeX 

= U U »-{*}= U ^ i M s U v . W ^ U »iM = U».M = 
>-6X xey.M >GX .VG^ ^ G * >-G* 

t>,{y} -- 0 r ,M -- 0 i>,{y} # 0 »,{y}*0 

= w3X. Consequently, the inclusion w3w3X £ w3Xis valid for any subset X= P. 
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Therefore w3 is a U-topology on P. Thus w3 = / \ ^ e ^ s u , which yields 

^MSU *~~ *AA$' 

^MSU <- ^MU- Let 3T c ^MSU. Let 0 7- X c P be a subset, >>e w2X a point. 

Suppose y $ ( J w2{x}. Then we have y £ w2{x} for every x e X. Consequently, for 

every xeX there exists a subset YX = P such that v2{x} uv2YK= Yx and j £ Yr. 

Put Y = ( J Yx. Now, from v2e^MS it follows that i;2X = (J v2{jt} <= ( J Yr = Y 
xeX xex xeX 

and v2Y = i?2 U -^ = U v2Yx =\JYX=Y- T h J s yields v2Xu v2Y = Y. Hence, 
XGX XGX JCGX 

as y e w2X, we obtain y e Y, which is a contradiction. Therefore ye J w2{x} and 
xeX 

the inclusion w2X = J w2{x} is true. Thus, w2eSPs. By Theorem 4, w2 = \]3~ 
xeX 

where V denotes the join in ^MU. This results in V^" G ^MSU> ie. ^MSU <- SPU. 

Finally, the relation ^MS <- ̂ MA follows from Theorem 1, and ^MSU <- ^MAU 
V V 

is a consequence of ^MSU <- ̂ MU and ^MAU <— ^MU. The proof is complete. 
Corollary 1. Letfe{0,1}. Then there holds 

& rx > V </> 
^MSU«^ ' V M A 

л 

•Җ 
/ м 

&, 

л 

k 

-3 

Proof. By the help of Theorems 2, 3 and 4, the reader can easily prove 
that for/e{0,1} the following three statements hold: 
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(1) If S~ <= 0»/A, then the meet /\T in >̂A fulfils [\2T e&f. 
(2) If 5" c ^ then the meet f\y in 0»s fulfils \J9~ e&f. 
(3) If ^ s ^MU, then the join N / ^ in ^MU fulfils \JF e&f. 
Then, using also Theorem 1, we get Corollary 1 as a consequence of Theorem 
5. 

A 

Remark 2. a) From Corollary 1 it follows that ^OIMAU^^OIMA- But this 
relation is well known — see [4], 31 B.4. 

b) From Theorems 1,3 and Corollary 1 it follows that in the lattice ^MS for 
the meet /\9~ of an arbitrary non-empty system iT _ ^MS there holds 

(/\r)Q = H w0 and (/\F)X = ( J (f) u{x}) whenever 0 # X _ P. 

c) As a consequence of Theorems 1,4 and Corollary 1 it can be easily seen that 
in the lattice ^IMU for the join \]if of an arbitrary non-empty system ST _ ^IMU 

there holds ^J2T)X = f] \Y _ P\X _ Y = ( J UY\ for every subset X _ P. 

d) Corollary 1 implies that for the meet and join in ^OIMAU the formulae 
contained in Theorem 2 and in the section c) of this remark are valid. But these 
formulae for the meet and join in ^OIMAU

 c a n be obtained as consequences of [8] 
(3.2. and 3.7) and [11] (3.6.), too. 

According to Remark 1, 0>A is not a meet-sublattice of 0>. In the following 
theorem it will be shown that even every element of 0> is the meet (in 0>) of a 
certain non-empty subset of 0>A. Similar assertions will be proved for 0>s and ^ . 

Theorem 6. Let ue&> be a topology and let f\ denote the meet in 0>. Then 
u = /\{ve0>A\v = u}. 

Proof. Put 9~ = {ve9>A\v ̂  u}. We have ZT ̂  0 since the topology v de
fined by vO = w0 and 0 # X _ P => vX = P fulfils v e F. Put w = /\*T. Clearly, 
u = w. For every subset Y _ P let us define a topology vY on P in the following 
way: vYX = uX for X = 0 or X = Y, and vYX = P for 0 ^ X # K Evidently, 
t;r ^ w holds for every subset Y _ P. It can be easily shown that i;re 3>A for every 
subset Y _ P. Consequently, i;re«^" for every subset Y _ P. Now, let X _ P be 
an arbitrary subset. Then wX _ t;r = wX. This yields w ̂  w. Therefore t* = w 
and the statement is proved. 

Theorem 7. _e/ ue0>ube a topology and let \] and f\ denote the join and meet 
in 9>. Then 

(1) u = [\{ve0>s\v = u}9 

(2) u = \J{ve&v\v = u}. 

Proof. (1) Put & = {ve&>s\v = u}. We have 9~ # 0 because the topology v 
defined in the proof of Theorem 6 fulfils veiF. Put w = /\9~. Clearly, u ^ w. 
For any subset Y ~ P let us define a topology i;y on P as follows: 
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(uX for X = 0, 
X=P^vYX=<uY{orQ^X= Y, 

[p for X $ Y. 
As u is an M-topology, there holds vY ^ u for every subset Y = P. It can be 
easily seen that vY e &>s for every subset Y .= P. Therefore vY e 3~ for every subset 
Y = P. Now, let X := P be an arbitrary subset. Then wX = vxX = uX. This 
yields w = u. We have u = w, which gives the equality (1). 

(2) Put F = {ve0>v\v = u}. Then ST # 0 because the topology v = u* fulfils 
ve$~. Put w = \J2T. Clearly, w = u. For any subset Y = P let us define a 
topology vY on P in the following way: vyX = 0 for Y $ X, and f KX = uY for 
Y <= X. As w is an M-topology, there holds vY ^ w for every subset Y _= P. The 
reader can easily show that vYe^MlJ for every subset Y = P. Consequently, 
vYe&~ for every subset Y=P. Let X=P be an arbitrary subset. Then 
wX = vxX = wX. This yields u ^ w. Therefore u = w and the proof is complete. 

Theorem 8. Letfe{0,1, M, OI, OM, IM, OIM}. Letue0>fbea topology and 
let \J and /\ denote the join and meet in £P. Then there holds: 
(1) u = /\{ve0>fA\v = u} wheneverfe{0, I, OI, OIM}, 
(2) u = /\{ve^\v = u} whenever fe{M, OM, IM, OIM}, 
(3) u = ylve^v = u} wheneverfe{M, OM, OIM}. 

Proof. F o r / e { 0 , I, OI} the proof of the equality (1) is the same as that 
of Theorem 6 because provided that uegPf'\t can be easily seen that the topolo
gies v and vY defined there fulfil ve<T = {ve^fA\v = u) and vYe2Pf for every 
subset Y =~ P. Analogously, the proof of (2) and for/e{M,OM} the proof of (3) 
are the same as those of (1) and (2) of Theorem 7. F o r / = OIM the equalities 
(1) and (3) follow from [8] (3.1.1. and 3.8.1.). 

Now, let us introduce the following denotation. If ST ^ 3P is a subsystem, 
then by <^~> we denote the complete sublattice of & generated by ST (i.e. the 
least complete sublattice of & containing 2T). From Theorems 6 and 8 it 
immediately follows: 

Corollary 2. There holds 

(1) <^A> = &* and <^/A> = 0>ffor each fe{0, I, OI, OIM}, 
(2) < ^ > = 0>ffor each /e{M, OM, IM, OIM}, 
(3) <£%> = Pffor each fe{M, OM, OIM}. 

Remark 3. a) The equalities <^OIMA> = ^OIM and <^OIMU> = ^OIM con
tained in Corollary 2 follow also from the equality <^0IMAU> = ^OIM proved in 
[10]. 

b) In [4], 31 D.3 it is shown that every topology u e ̂ 0 iM A is the meet in ^biMA 
of a certain non-empty subsystem of ^OIMS. Consequently, denoting by <^>i 
the complete sublattice of ^OIMA generated by a subsystem 2T = 0>omA, we have 
<^OIMS>l = ^OIMA-
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О РЕШЕТКАХ ОБОБЩЕННЫХ ТОПОЛОГИЙ 

1о§еГ§1ара1 

Резюме 

Обобщенной топологией мы понимаем топологию, определенную оператором замыка
ния, выполняющим какие-нибудь аксиомы, которые слабее, чем аксиомы Куратовского. В 
работе изучаются некоторые системы обобщенных топологий на данном множестве, 
являющиеся полными решетками относительно обычного упорядочения этих систем. 
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