Mathematic Slovaca

Josef Šlapal
 On lattices of generalized topologies

Mathematica Slovaca, Vol. 38 (1988), No. 1, 51--59

Persistent URL: http://dml.cz/dmlcz/128772

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1988

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

ON LATTICES OF GENERALIZED TOPOLOGIES

JOSEF ŠLAPAL
Generalized topologies obtained by replacing the Kuratowski axioms by some weaker ones occur in various branches of mathematics (for example in the theory of games as shown in [7]). In the present note we investigate some systems of these generalized topologies from the point of view of the theory of lattices.

Under a topology u on a non-empty set P we understand a mapping u : $\exp P \rightarrow \exp P$. These topologies (often called topologies without axioms or Koutsky topologies) are studied in [9], [11] and [13]. We shall consider the following axioms for topologies on a given set $P \neq \emptyset$:

1. $u \emptyset=\emptyset$
2. $X \subseteq P \Rightarrow X \subseteq u X$
3. $X \subseteq Y \subseteq P \Rightarrow u X \subseteq u Y$
4. $X, Y \subseteq P \Rightarrow u(X \cup Y) \subseteq u X \cup u Y$
5. $\emptyset \neq X \subseteq P \Rightarrow u X \subseteq \bigcup_{x \in X} u\{x\} \quad$ S-axiom ([10]),
6. $X \subseteq P \Rightarrow u u X \subseteq u X \quad U$-axiom ([8]).

If f is one of the listed axioms, i.e. $f \in\{\mathrm{O}, \mathrm{I}, \mathrm{M}, \mathrm{A}, \mathrm{S}, \mathrm{U}\}$, then a topology u on P is called an f-topology whenever it fulfils the f-axiom. If also $g \in\{\mathrm{O}, \mathrm{I}, \mathrm{M}, \mathrm{A}, \mathrm{S}, \mathrm{U}\}$ and u is both an f-topology and g-topology, then it is called an f g-topology, etc. Let us note that every MS-topology is an MA-topology, and provided that P is finite these two topologies even coincide. Many authors deal with topologies fulfilling some of the axioms above considered. Thus, OM-topologies occur in [7], IM-topologies are studied in [6], OI-topologies in [5], OIM-topologies in [3], [5], [8] and [11], OIMA-topologies in [4], OIMU-topologies in [12], OIMAU-topologies in [2], [4] and [9], and OISUtopologies in [4] and [10].

The system of all topologies on P is denoted by \mathscr{P}. By \mathscr{P}_{f} we denote the system of all f-topologies on P, by $\mathscr{P}_{f g}$ the system of all $f g$-topologies on P, etc. The system \mathscr{P} as well as every its subsystem will be considered as ordered by the relation \leqq defined as usual: $u \leqq v \Leftrightarrow u X \subseteq v X$ for any subset $X \subseteq P$. If $u \leqq v$,
then we say that u is weaker than v or that v is stronger than u. It is well known (see [9]) that \mathscr{P} is a complete lattice and that for any non-empty system $\mathscr{T} \subseteq \mathscr{P}$ its join and meet in \mathscr{P} are defined by $(\bigvee \mathscr{T}) X=\bigcup_{u \in \mathscr{F}} u X$ and $(\bigwedge \mathscr{T}) X=\bigcap_{u \in \mathscr{\mathscr { T }}} u X$ for any subset $X \subseteq P$. (Moreover, \mathscr{P} is a completely distributive complete Boolean algebra - see [11]). The least and the greatest elements in \mathscr{P} will be denoted as u^{*} and v^{*}. Clearly, $u^{*} X=\emptyset$ and $v^{*} X=P$ for every subset $X \subseteq P$.

Let N denotes the set of all positive integers.
The reader can easily prove the following assertion:
Theorem 1. (1) $\mathscr{P}_{\mathrm{O}}, \mathscr{P}_{\mathrm{I}}, \mathscr{P}_{\mathrm{M}}$ are complete sublattices of \mathscr{P}.
(2) $\mathscr{P}_{\mathrm{A}}, \mathscr{P}_{\mathrm{S}}$ are complete join-subsemilattices of \mathscr{P}.
(3) $\mathscr{P}_{\text {MU }}$ is a complete meet-subsemilattice of \mathscr{P}.

Remark 1. a) In the example 3.4a of [11] it is shown that for any set P with card $P \geqq 3$ the system $\mathscr{P}_{\text {oimau }}$ is not a meet-subsemilattice of \mathscr{P}. From this it follows that $\mathscr{P}_{\text {oimsu }}$ is not a meet-subsemilattice of \mathscr{P} whenever $3 \leqq \operatorname{card} P<\aleph_{0}$. But from the same example it can also be easily seen that $\mathscr{P}_{\text {OIMAU }}$ is not a join-subsemilattice of \mathscr{P} for any set P with card $P \geqq 3$. Thus, in consequence of Theorem 1, neither \mathscr{P}_{A} nor \mathscr{P}_{S} are meet-subsemilattice of \mathscr{P}, and $\mathscr{P}_{\text {MU }}$ is not a join-subsemilattice of \mathscr{P}, generally.
b) The system \mathscr{P}_{U} is neither a join-semilattice nor a meet-semilattice in general - see the following example. Let $P=\{x, y, z, t\}$ and let $u_{1}, u_{2}, u_{3}, u_{4}$ be topologies on P defined as follows: $u_{1}\{x\}=\{x\}, u_{2}\{x\}=\{y\}, u_{3}\{x\}=\{x, y, z\}$, $u_{4}\{x\}=\{x, y, t\}, u_{i}\{x, y\}=\{z\}$ for $i=1,2,3,4$, and $X \subseteq P,\{x\} \neq X \neq\{x, y\} \Rightarrow$ $\Rightarrow u_{i} X=X$ for $i=1,2,3,4$. Evidently, $u_{1}, u_{2}, u_{3}, u_{4} \in \mathscr{P}_{\mathrm{U}}$. The topologies u_{3} and u_{4} are minimal upper bounds of $\left\{u_{1}, u_{2}\right\}$ in \mathscr{P}_{U} and thus there exists no join of $\left\{u_{1}, u_{2}\right\}$ in \mathscr{P}_{U}. Similarly, u_{1} and u_{2} are maximal lower bounds of $\left\{u_{3}, u_{4}\right\}$ in \mathscr{P}_{U} and thus there exists no meet of $\left\{u_{3}, u_{4}\right\}$ in \mathscr{P}_{U}

As the proofs of the following three Theorems are somewhat alike we present only the last.

Theorem 2. \mathscr{P}_{A} is a complete lattice. If $\mathscr{T} \subseteq \mathscr{P}_{\mathrm{A}}$ is a non-empty system, then its meet $\bigwedge \mathscr{T}$ in \mathscr{P}_{A} is defined by $(\bigwedge \mathscr{T}) X=\bigcap\left\{Y \subseteq P \mid Y=\bigcup_{i=1}^{m}\left(\bigcap_{u \in \mathscr{G}} u X_{i}\right)\right.$, $\left.\bigcup_{i=1}^{m} X_{i}=X, m \in N\right\}$ for any subset $X \subseteq P$.

Theorem 3. \mathscr{P}_{S} is a complete lattice. If $\mathscr{T} \subseteq \mathscr{P}_{\mathrm{S}}$ is a non-empty system, then its meet $\bigwedge \mathscr{T}$ in \mathscr{P}_{S} is defined by $(\bigwedge \mathscr{T}) \emptyset=\bigcap_{u \in \mathscr{J}} u \emptyset$ and $(\bigwedge \mathscr{T}) X=$
$=\left[\bigcup_{x \in X}\left(\bigcap_{u \in \mathscr{\mathscr { V }}} u\{x\}\right)\right] \cap \bigcap_{u \in \mathscr{\mathscr { G }}} u X$ for $\emptyset \neq X \subseteq P$.
Theorem 4. $\mathscr{P}_{\mathrm{MU}}$ is a complete lattice. If $\mathscr{T} \subseteq \mathscr{P}_{\mathrm{MU}}$ is a non-empty system, then its join $\bigvee \mathscr{T}$ in $\mathscr{P}_{\text {MU }}$ is defined by $(\bigvee \mathscr{T}) X=\bigcap\left\{Y \subseteq P \mid \bigcup_{u \in \mathscr{G}}(u X \cup u Y) \subseteq Y\right\}$ for any subset $X \subseteq P$.

Proof. As $v^{*} \in \mathscr{P}_{\text {MU }}$, from Theorem 1 it follows that $\mathscr{P}_{\text {MU }}$ is a complete lattice. Let $\mathscr{T} \subseteq \mathscr{P}_{\text {MU }}$ be a non-empty system. For any subset $X \subseteq P$ put $v X=\bigcup_{u \in \mathcal{F}} u X$ and $w X=\bigcap\{Y \subseteq P \mid v X \cup v Y \subseteq Y\}$. By Theorem 1, vis an M-topology on P. Let $X \subseteq Y \subseteq P$ be subsets and $x \in w X$ a point. Then $x \in Z$ for any subset $Z \subseteq P$ fulfilling $v X \cup v Z \subseteq Z$. Let $T \subseteq P$ be a subset such that $v Y \cup v T \subseteq T$. As $v X \subseteq v Y$, there holds $v X \cup v T \subseteq T$, and hence $x \in T$. Therefore $x \in w Y$ and the inclusion $w X \subseteq v Y$ is proved. Thus w is an M-topology on P. Let $X \subseteq P$ be a subset, $x \in w w X$ a point. Then $x \in Y$ holds for every subset $Y \subseteq P$ fulfilling $v w X \cup v Y \subseteq Y$. There holds $v w X=v[\bigcap\{Y \subseteq P \mid v X \cup v Y \subseteq Y\}] \subseteq$ $\subseteq \bigcap\{v Y \subseteq P \mid v X \cup v Y \subseteq Y\} \subseteq \bigcap\{Y \subseteq P \mid v X \cup v Y \subseteq Y\}=w X$. Now, putting $Y=w X$ we get $Y \subseteq P, v w X \cup v Y \subseteq Y$. Consequently, $x \in Y=w X$ and the inclusion $w w X \subseteq w X$ is proved. Hence $w \in \mathscr{P}_{\mathrm{U}}$, thus $w \in \mathscr{P}_{\mathrm{MU}}$. It is easy to see that $v \leqq w$. Let $w_{1} \in \mathscr{P}_{\text {MU }}$ be a topology on P such that $v \leqq w_{1}$. Let $X \leqq P$ be a subset and $x \in w X$ a point. Then $x \in Y$ for every subset $Y \subseteq P$ with $v X \cup v Y \subseteq Y$. From $v \leqq w q_{1}$ the implication $v X \cup w_{1} Y \subseteq Y \Rightarrow v X \cup v Y \subseteq Y$ follows. Therefore $x \in Y$ for every subset $Y \subseteq P$ with $v X \cup w_{1} Y \subseteq Y$. Put $Y=w_{1} X$. Then $Y \subseteq P$, $v X \cup w_{1} Y \subseteq Y$. Thus $x \in Y=w_{1} X$, and consequently $w X \subseteq w_{1} X$. This yields $w \leqq w_{1}$. We have proved that w is the weakest of all MU-topologies on P which are stronger than v. Consequently, since $v \leqq \bigvee \mathscr{T}$, we have $w \leqq \bigvee \mathscr{T}$. As $u \leqq v \leqq w$ for every $u \in \mathscr{T}$, there holds $\bigvee \mathscr{T} \leqq w$. Thus $\bigvee \mathscr{T}=w$ and the proof is complete.

Let us introduce the following denotation. By the symbol $\leftarrow(\leftarrow, \hat{\leftarrow})$ we denote the relation "complete sublattice of" ("complete join-subsemilattice of", "complete meet-subsemilattice of"). Then we have:

Theorem 5. There holds Diagram 1

Proof. Throughout the proof, \mathscr{T} will be a non-empty system of topologies on P, and by $v_{1}, v_{2}, w_{1}, w_{2}, w_{3}$ we shall denote the topologies on P defined as follows: $X \subseteq P \Rightarrow v_{1} X=\bigcap_{u \in \mathscr{F}} u X, \quad v_{2} X=\bigcup_{u \in \mathcal{F}} u X, \quad w_{1} X=\bigcap\{Y \subseteq P \mid Y=$ $\left.=\bigcup_{i=1}^{m} v_{1} X_{i}, \bigcup_{i=1}^{m} X_{i}=X, m \in N\right\}, w_{2} X=\bigcap\left\{Y \subseteq P \mid v_{2} X \cup v_{2} Y \subseteq Y\right\}, w_{3} X=v_{1} X$ for
$X=\emptyset$ and $w_{3} X=\left(\bigcup_{x \in X} v_{1}\{x\}\right) \cap v_{1} X$ for $X \neq \emptyset$.
$\mathscr{P}_{\mathrm{MA}} \leftarrow \mathscr{P}_{\mathrm{A}}$: Let $\mathscr{T} \subseteq \mathscr{P}_{\mathrm{MA}}$. There holds $v_{1} \in \mathscr{P}_{\mathrm{M}}$ by Theorem 1. Let $X \subseteq Y \subseteq P$ be subsets, $x \in w_{1} X$ a point. Let $\left\{Y_{i} \mid i=1, \ldots, m\right\}$ be a system of sets such that $\bigcup_{i=1}^{m} Y_{i}=Y$. Put $X_{i}=Y_{i} \cap X$ for each $i \in\{1, \ldots, m\}$. Then $\bigcup_{i=1}^{m} X_{i}=X$, and hence $x \in \bigcup_{i=1}^{n} v_{1} X_{i} \subseteq \bigcup_{i=1}^{m} v_{1} Y_{i}$. Consequently, $x \in w_{1} Y$. Thus $w_{1} X \subseteq w_{1} Y$, i.e. w_{1} is an M-topology on P. Therefore $w_{1} \in \mathscr{P}_{\mathrm{MA}}$. Let Λ and \bigvee denote the meet and join in \mathscr{P}_{A}. By Theorem $2, w_{1}=\bigwedge \mathscr{T}$, hence $\bigwedge \mathscr{T} \in \mathscr{P}_{\mathrm{MA}}$. From Theorem 1 it follows that $\bigvee \mathscr{T} \in \mathscr{P}_{\mathrm{MA}}$. The relation $\mathscr{P}_{\mathrm{MA}} \leftarrow \mathscr{P}_{\mathrm{A}}$ is proved.

 $=\bigcap_{v \in, \bar{J}}\left(v \bigcap_{u \in, \bar{J}} u X\right) \subseteq \bigcap_{r \in, \mathscr{J}}\left(\bigcap_{u \in, \bar{J}} v u X\right) \subseteq \bigcap_{u \in, \bar{J}} u u X \subseteq \bigcap_{u \in \mathscr{J}} u X=v_{1} X$. Hence v_{1} is a Utopology on P. Let $X \subseteq P$ be a subset and $x \in w_{1} w_{1} X$ a point. Then $x \in \bigcup_{t=1}^{n} v_{1} Y_{t}$ for any system of sets $\left\{Y_{i} \mid \iota=1, \ldots, n\right\}$ fulfilling $\bigcup_{i=1}^{n} Y_{i}=w_{1} X$. Let $\left\{X_{i} \mid i=1, \ldots, m\right\}$ be a system of sets such that $\bigcup_{i=1}^{m} X_{i}=X$. Put $Y_{i}=w_{1} X_{i}$ for each $i \in\{1, \ldots, m\}$. Let the meet in $\mathscr{P}_{\text {MA }}$ be denoted by \bigwedge. Since $w_{1}=\bigwedge \mathscr{T}$ is an MA-topology on P, we have $\bigcup_{i=1}^{m} Y_{t}-\bigcup_{i=1}^{m} w_{1} X_{i}=w_{1} \bigcup_{i=1}^{m} X_{i}=w_{1} X$. Therefore $x \in \bigcup_{i-1}^{m} v_{1} Y_{i}=$ $=\bigcup_{i=1}^{m} v_{1} w_{1} X_{i} \subseteq \bigcup_{1}^{m} v_{1} v_{1} X_{t} \subseteq \bigcup_{i=1}^{m} v_{1} X_{i}$ because $w_{1}=\bigwedge \mathscr{T} \leqq v_{1}$ and $v_{1} \in \mathscr{P}_{L}$. Consequently, $x \in w_{1} X$, which implies $w_{1} w_{1} X \subseteq w_{1} X$. Thus w_{1} is a U-topology on P. Hence $w_{1}=\bigwedge \mathscr{T} \in \mathscr{P}_{\mathrm{MAU}}$, i.e. $\mathscr{P}_{\mathrm{MAU}} \leftarrow \mathscr{P}_{\mathrm{MA}}$.

$$
\begin{aligned}
& \mathscr{P}_{\mathrm{MAU}} \leftarrow \mathscr{P}_{\mathrm{MA}} . \\
& \mathscr{P}_{\mathrm{MAU}} \leftarrow \mathscr{P}_{\mathrm{MU}} \text { Let } \mathscr{T} \subseteq \mathscr{P}_{\mathrm{MAU}} \text {. Let } X, Y \subseteq P \quad \text { be subsets. Then } \\
& v_{2}(X \cup Y)=\bigcup_{u \in \mathcal{F}} u(X \cup Y) \subseteq \bigcup_{u \in \mathcal{F}}(u X \cup u Y)=\bigcup_{u \in \mathcal{F}} u X \cup \bigcup_{u \in \mathcal{F}} u Y=v_{2} X \cup v_{2} Y .
\end{aligned}
$$

This implies that v_{2} is an A-topology on P. Let $x \in w_{2}(X \cup Y)$ be a point. Then $x \in Z$ for every subset $Z \subseteq P$ fulfilling $v_{2}(X \cup Y) \cup v_{2} Z \subseteq Z$. Thus, $x \in Z$ for each subset $Z \subseteq P$ with $v_{2} X \cup v_{2} Y \cup v_{2} Z \subseteq Z$. Let $T, U \subseteq P$ be subsets fulfilling $v_{2} X \cup v_{2} T \subseteq T, \quad v_{2} Y \cup v_{2} U \subseteq U$. Then $\quad v_{2} X \cup v_{2} Y \cup v_{2}(T \cup U) \subseteq T \cup U$. Therefore $x \in T \cup U$, i.e. $x \in T$ or $x \in U$. Consequently, $x \in w_{2} X$ or $x \in w_{2} Y$. From here we get $x \in w_{2} X \cup w_{2} Y$, and the inclusion $w_{2}(X \cup Y) \subseteq w_{2} X \cup w_{2} Y$ is proved. Hence $w_{2} \in \mathscr{P}_{\mathrm{A}}$. Now, denoting the join in $\mathscr{P}_{\text {MU }}$ by \bigvee, according to Theorem 4 we have $w_{2}=\bigvee \mathscr{T}$. This implies $\bigvee \mathscr{P} \in \mathscr{P}_{\mathrm{MAU}}$, so $\mathscr{P}_{\mathrm{MAU}} \leftarrow \mathscr{P}_{\mathrm{MU}}$.
$\mathscr{P}_{\text {ms }} \leftarrow \mathscr{P}_{\mathrm{S}}$: Let $\mathscr{T} \subseteq \mathscr{P}_{\text {мs }}$. By Theorem 1, v_{1} is an M-topology on P. Let $X \subseteq Y \subseteq P$ be subsets. For $X=\emptyset=Y$ there holds $w_{3} X=v_{1} X \subseteq v_{1} Y=w_{3} Y$. If $X=\emptyset$ and $Y \neq \emptyset$, then $w_{3} X=v_{1} X=v_{1} \emptyset \subseteq\left(\bigcup_{x \in Y} v_{\{ }\{x\}\right) \cap v_{1} Y=w_{3} Y$. Finally, supposing $X \neq \emptyset \neq Y$ we have $w_{3} X=\bigcup_{x \in X} v_{1}\{x\} \cap v_{1} X \subseteq \bigcup_{x \in Y} v_{\{ }\{x\} \cap v_{1} Y=w_{3} Y$. Hence w_{3} is an M-topology on P. Denote the meet and join in \mathscr{P}_{s} by \bigwedge and \bigvee. According to Theorem 3, $w_{3}=\bigwedge \mathscr{T}$. Thus $\backslash \mathscr{T} \in \mathscr{P}_{\text {Ms }}$. From Theorem 1 it follows that $\bigvee \mathscr{T} \in \mathscr{P}_{\text {MS }}$. The relation $\mathscr{P}_{\text {MS }} \leftarrow \mathscr{P}_{\text {S }}$ is proved.
$\mathscr{P}_{\text {MSU }} \leftarrow \mathscr{P}_{\text {Ms }}$ Let $\mathscr{T} \subseteq \mathscr{P}_{\text {MSU }}$. As $\mathscr{P}_{\text {MSU }} \subseteq \mathscr{P}_{\text {MAU }}$, from the proof of the relation $\mathscr{P}_{\text {MAU }} \leftarrow \mathscr{P}_{\text {MA }}$ it follows that v_{1} is a U-topology on P. By Theorem $1, v_{1}$ is an M-topology on P. Thus $v_{1} \in \mathscr{P}_{\text {MU }}$. Denote the meet in $\mathscr{P}_{\text {мs }}$ by \bigwedge. Then $w_{3}=\bigwedge \mathscr{T}$ because $\mathscr{P}_{\mathrm{MS}} \leftarrow \mathscr{P}_{\mathrm{s}}$. Let $X \subseteq P$ be a subset. Suppose $X=\emptyset$. Then $w_{3} w_{3} X=w_{3} v_{1} X$. If $v_{1} X=\emptyset$, then $w_{3} v_{1} X=v_{1} v_{1} X \subseteq v_{1} X=w_{3} X$. Otherwise, let $v_{1} X \neq \emptyset$. Then $w_{3} v_{1} X=\bigcup_{x \in v_{1} X} v_{1}\{x\} \cap v_{1} v_{1} X \subseteq v_{1} X=w_{3} X$. Thus, for the empty set X we have $w_{3} w_{3} X \subseteq w_{3} X$. Now, suppose $X \neq \emptyset$. If $w_{3} X=\emptyset$, then there is $w_{3} w_{3} X=w_{3} \emptyset \subseteq w_{3} X$ because $w_{3} \in \mathscr{P}_{\mathrm{M}}$. Otherwise, let $w_{3} X \neq \emptyset$. As $v_{1} \in \mathscr{P}_{\mathrm{M}}$, the inclusion $\bigcup_{x \in Y} v_{1}\{x\} \subseteq v_{1} Y$ holds whenever $\emptyset \neq Y \subseteq P$. This implies $w_{3} Y=\bigcup_{x \in Y} v_{1} Y$ for every non-empty subset $Y \subseteq P$. Hence $w_{3} w_{3} X=\bigcup_{x \in w_{3} X} v_{1}\{x\}=\bigcup_{\substack{x \in \bigcup_{\begin{subarray}{c}{ \\y \in X} }}(\{ \})}\end{subarray}} v_{1}\{x\}=$

$=w_{3} X$. Consequently, the inclusion $w_{3} w_{3} X \subseteq w_{3} X$ is valid for any subset $X \subseteq P$.

Therefore w_{3} is a U-topology on P. Thus $w_{3}=\bigwedge \mathscr{T} \in \mathscr{P}$ SU , which yields $\mathscr{P}_{\text {MSU }} \leftarrow \mathscr{P}_{\text {MS }}$.
$\mathscr{P}_{\text {MSU }} \leftarrow \mathscr{P}_{\mathrm{MU}}$: Let $\mathscr{T} \subseteq \mathscr{P}_{\mathrm{MSU}}$. Let $\emptyset \neq X \subseteq P$ be a subset, $y \in w_{2} X$ a point. Suppose $y \notin \bigcup_{x \in X} w_{2}\{x\}$. Then we have $y \notin w_{2}\{x\}$ for every $x \in X$. Consequently, for every $x \in X$ there exists a subset $Y_{x} \subseteq P$ such that $v_{2}\{x\} \cup v_{2} Y_{x} \subseteq Y_{x}$ and $y \notin Y_{x}$. Put $Y=\bigcup_{x \in X} Y_{x}$. Now, from $v_{2} \in \mathscr{P}_{\text {MS }}$ it follows that $v_{2} X=\bigcup_{x \in X} v_{2}\{x\} \subseteq \bigcup_{x \in X} Y_{x}=Y$ and $v_{2} Y=v_{2} \bigcup_{x \in X} Y_{x}=\bigcup_{x \in X} v_{2} Y_{x} \subseteq \bigcup_{x \in X} Y_{x}=Y$. This yields $v_{2} X \cup v_{2} Y \subseteq Y$. Hence, as $y \in w_{2} X$, we obtain $y \in Y$, which is a contradiction. Therefore $y \in \bigcup_{x \in X} w_{2}\{x\}$ and the inclusion $w_{2} X \subseteq \bigcup_{x \in X} w_{2}\{x\}$ is true. Thus, $w_{2} \in \mathscr{P}_{s}$. By Theorem 4, $w_{2}=\bigvee \mathscr{T}$ where \bigvee denotes the join in $\mathscr{P}_{\mathrm{MU}}$. This results in $\bigvee \mathscr{T} \in \mathscr{P}_{\text {MSU }}$, i.e. $\mathscr{P}_{\text {MSU }} \stackrel{\vee}{\leftarrow} \mathscr{P}_{\mathrm{M}}$.

Finally, the relation $\mathscr{P}_{\text {MS }} \leftarrow \mathscr{P}_{\text {MA }}$ follows from Theorem 1 , and $\mathscr{P}_{\text {MSU }} \stackrel{\vee}{\leftarrow} \mathscr{P}_{\text {MAU }}$ is a consequence of $\mathscr{P}_{\text {MSU }} \stackrel{\vee}{\leftarrow} \mathscr{P}_{\mathrm{MU}}$ and $\mathscr{P}_{\mathrm{MAU}} \stackrel{\vee}{\leftarrow} \mathscr{P}_{\mathrm{MU}}$. The proof is complete.

Corollary 1. Let $f \in\{0, I\}$. Then there holds

Proof. By the help of Theorems 2, 3 and 4, the reader can easily prove that for $f \in\{0, \mathrm{I}\}$ the following three statements hold:
(1) If $\mathscr{T} \subseteq \mathscr{P}_{f \mathrm{~A}}$, then the meet $\bigwedge \mathscr{T}$ in \mathscr{P}_{A} fulfils $\bigwedge \mathscr{T} \in \mathscr{P}_{f}$.
(2) If $\mathscr{T} \subseteq \mathscr{P}_{f}$, then the meet $\bigwedge \mathscr{T}$ in \mathscr{P}_{S} fulfils $\bigvee \mathscr{T} \in \mathscr{P}_{f}$.
(3) If $\mathscr{T} \subseteq \mathscr{P}_{\text {fMU }}$, then the join $\bigvee \mathscr{T}$ in $\mathscr{P}_{\mathrm{MU}}$ fulfils $\bigvee \mathscr{T} \in \mathscr{P}_{f}$.

Then, using also Theorem 1, we get Corollary 1 as a consequence of Theorem 5.

Remark 2. a) From Corollary 1 it follows that $\mathscr{P}_{\text {OIMAU }} \stackrel{\wedge}{ } \mathscr{P}_{\text {OIMA }}$. But this relation is well known - see [4], 31 B .4.
b) From Theorems 1,3 and Corollary 1 it follows that in the lattice $\mathscr{P}_{\mathrm{MS}}$ for the meet $\bigwedge \mathscr{T}$ of an arbitrary non-empty system $\mathscr{T} \subseteq \mathscr{P}_{\text {MS }}$ there holds $(\bigwedge \mathscr{T}) \emptyset=\bigcap_{u \in \mathscr{G}} u \emptyset$ and $(\bigwedge \mathscr{T}) X=\bigcup_{x \in X}\left(\bigcap_{u \in \mathscr{T}} u\{x\}\right)$ whenever $\emptyset \neq X \subseteq P$.
c) As a consequence of Theorems 1,4 and Corollary 1 it can be easily seen that in the lattice $\mathscr{P}_{\text {IMU }}$ for the join $\bigvee \mathscr{T}$ of an arbitrary non-empty system $\mathscr{T} \subseteq \mathscr{P}_{\text {IMU }}$ there holds $(\bigvee \mathscr{T}) X=\bigcap\left\{Y \subseteq P \mid X \subseteq Y=\bigcup_{u \in \mathscr{G}} u Y\right\}$ for every subset $X \subseteq P$.
d) Corollary 1 implies that for the meet and join in $\mathscr{P}_{\text {oimau }}$ the formulae contained in Theorem 2 and in the section c) of this remark are valid. But these formulae for the meet and join in $\mathscr{P}_{\text {OIMAU }}$ can be obtained as consequences of [8] (3.2. and 3.7) and [11] (3.6.), too.

According to Remark $1, \mathscr{P}_{\mathrm{A}}$ is not a meet-sublattice of \mathscr{P}. In the following theorem it will be shown that even every element of \mathscr{P} is the meet (in \mathscr{P}) of a certain non-empty subset of \mathscr{P}_{A}. Similar assertions will be proved for \mathscr{P}_{S} and \mathscr{P}_{U}.

Theorem 6. Let $u \in \mathscr{P}$ be a topology and let \bigwedge denote the meet in \mathscr{P}. Then $u=\bigwedge\left\{v \in \mathscr{P}_{\mathrm{A}} \mid v \geqq u\right\}$.

Proof. Put $\mathscr{T}=\left\{v \in \mathscr{P}_{\mathrm{A}} \mid v \geqq u\right\}$. We have $\mathscr{T} \neq \emptyset$ since the topology v defined by $v \emptyset=u \emptyset$ and $\emptyset \neq X \subseteq P \Rightarrow v X=P$ fulfils $v \in \mathscr{T}$. Put $w=\bigwedge \mathscr{T}$. Clearly, $u \leqq w$. For every subset $Y \subseteq P$ let us define a topology v_{Y} on P in the following way: $v_{Y} X=u X$ for $X=\emptyset$ or $X=Y$, and $v_{Y} X=P$ for $\emptyset \neq X \neq Y$. Evidently, $v_{Y} \geqq u$ holds for every subset $Y \subseteq P$. It can be easily shown that $v_{Y} \in \mathscr{P}_{\mathrm{A}}$ for every subset $Y \subseteq P$. Consequently, $v_{Y} \in \mathscr{T}$ for every subset $Y \subseteq P$. Now, let $X \subseteq P$ be an arbitrary subset. Then $w X \subseteq v_{X}=u X$. This yields $w \leqq u$. Therefore $u=w$ and the statement is proved.

Theorem 7. Let $u \in \mathscr{P}_{\mathrm{M}}$ be a topology and let \bigvee and \bigwedge denote the join and meet in \mathscr{P}. Then
(1) $u=\bigwedge\left\{v \in \mathscr{P}_{\mathbf{S}} \mid v \geqq u\right\}$,
(2) $u=\bigvee\left\{v \in \mathscr{P}_{\mathrm{U}} \mid v \leqq u\right\}$.

Proof. (1) Put $\mathscr{T}=\left\{v \in \mathscr{P}_{\mathbf{s}} \mid v \geqq u\right\}$. We have $\mathscr{T} \neq \emptyset$ because the topology v defined in the proof of Theorem 6 fulfils $v \in \mathscr{T}$. Put $w=\bigwedge \mathscr{T}$. Clearly, $u \leqq w$. For any subset $Y \subseteq P$ let us define a topology v_{Y} on P as follows:
$X \subseteq P \Rightarrow v_{r} X=\left\{\begin{array}{l}u X \text { for } X=\emptyset, \\ u Y \text { for } \emptyset \neq X \subseteq Y, \\ P \text { for } X \nsubseteq Y .\end{array}\right.$
As u is an M-topology, there holds $v_{Y} \geqq u$ for every subset $Y \subseteq P$. It can be easily seen that $v_{Y} \in \mathscr{P}_{\mathrm{s}}$ for every subset $Y \subseteq P$. Therefore $v_{Y} \in \mathscr{T}$ for every subset $Y \subseteq P$. Now, let $X \subseteq P$ be an arbitrary subset. Then $w X \subseteq v_{X} X=u X$. This yields $w \geqq u$. We have $u=w$, which gives the equality (1).
(2) Put $\mathscr{T}=\{v \in \mathscr{P} \mid v \leqq u\}$. Then $\mathscr{T} \neq \emptyset$ because the topology $v=u^{*}$ fulfils $v \in \mathscr{T}$. Put $w=\bigvee \mathscr{T}$. Clearly, $w \leqq u$. For any subset $Y \subseteq P$ let us define a topology v_{Y} on P in the following way: $v_{Y} X=\emptyset$ for $Y \nsubseteq X$, and $v_{Y} X=u Y$ for $Y \subseteq X$. As u is an M-topology, there holds $v_{Y} \leqq u$ for every subset $Y \subseteq P$. The reader can easily show that $v_{Y} \in \mathscr{P}_{\text {MU }}$ for every subset $Y \subseteq P$. Consequently, $v_{Y} \in \mathscr{T}$ for every subset $Y \subseteq P$. Let $X \subseteq P$ be an arbitrary subset. Then $u X=v_{X} X \subseteq w X$. This yields $u \leqq w$. Therefore $u=w$ and the proof is complete.

Theorem 8. Let $f \in\{\mathrm{O}, \mathrm{I}, \mathrm{M}, \mathrm{OI}, \mathrm{OM}, \mathrm{IM}, \mathrm{OIM}\}$. Let $u \in \mathscr{P}_{f}$ be a topology and let \bigvee and \bigwedge denote the join and meet in \mathscr{P}. Then there holds:
(1) $u=\bigwedge\left\{v \in \mathscr{P}_{f \mathrm{~A}} \mid v \geqq u\right\}$ whenever $f \in\{\mathrm{O}, \mathrm{I}, \mathrm{OI}, \mathrm{OIM}\}$,
(2) $u=\bigwedge\left\{v \in \mathscr{P}_{f s} \mid v \geqq u\right\}$ whenever $f \in\{\mathrm{M}, \mathrm{OM}, \mathrm{IM}$, OIM $\}$,
(3) $u=\bigvee\left\{v \in \mathscr{P}_{f} \mid v \leqq u\right\}$ whenever $f \in\{\mathrm{M}, \mathrm{OM}, \mathrm{OIM}\}$.

Proof. For $f \in\{\mathbf{O}, \mathbf{I}, \mathrm{OI}\}$ the proof of the equality (1) is the same as that of Theorem 6 because provided that $u \in \mathscr{P}_{f}$ it can be easily seen that the topologies v and v_{Y} defined there fulfil $v \in \mathscr{T}=\left\{v \in \mathscr{P}_{f \mathrm{~A}} \mid v \geqq u\right\}$ and $v_{Y} \in \mathscr{P}_{f}$ for every subset $Y \subseteq P$. Analogously, the proof of (2) and for $f \in\{\mathrm{M}, \mathrm{OM}\}$ the proof of (3) are the same as those of (1) and (2) of Theorem 7. For $f=$ OIM the equalities (1) and (3) follow from [8] (3.1.1. and 3.8.1.).

Now, let us introduce the following denotation. If $\mathscr{T} \subseteq \mathscr{P}$ is a subsystem, then by $\langle\mathscr{T}\rangle$ we denote the complete sublattice of \mathscr{P} generated by \mathscr{T} (i.e. the least complete sublattice of \mathscr{P} containing \mathscr{T}). From Theorems 6 and 8 it immediately follows:

Corollary 2. There holds
(1) $\left\langle\mathscr{P}_{\mathcal{A}}\right\rangle=\mathscr{P}$, and $\left\langle\mathscr{P}_{f A}\right\rangle=\mathscr{P}_{f}$ for each $f \in\{\mathrm{O}, \mathrm{I}, \mathrm{OI}, \mathrm{OIM}\}$,
(2) $\left\langle\mathscr{P}_{\mathcal{S}}\right\rangle=\mathscr{P}_{f}$ for each $f \in\{\mathrm{M}, \mathrm{OM}, \mathrm{IM}, \mathrm{OIM}\}$,
(3) $\left\langle\mathscr{P}_{f}\right\rangle=\mathrm{P}_{f}$ for each $f \in\{\mathrm{M}, \mathrm{OM}, \mathrm{OIM}\}$.

Remark 3. a) The equalities $\left\langle\mathscr{P}_{\text {IIMA }}\right\rangle=\mathscr{P}_{\text {OIM }}$ and $\left\langle\mathscr{P}_{\text {OIMU }}\right\rangle=\mathscr{P}_{\text {OIM }}$ contained in Corollary 2 follow also from the equality $\left\langle\mathscr{P}_{\text {оІмаU }}\right\rangle=\mathscr{P}_{\text {оІм }}$ proved in [10].
b) In [4], 31 D .3 it is shown that every topology $u \in \mathscr{P}_{\text {OIMA }}$ is the meet in $\mathscr{P}_{\text {OIMA }}$ of a certain non-empty subsystem of $\mathscr{P}_{\text {oIms }}$. Consequently, denoting by $\langle\mathscr{T}\rangle_{1}$ the complete sublattice of $\mathscr{P}_{\text {OIMA }}$ generated by a subsystem $\mathscr{T} \subseteq \mathscr{P}_{\text {OIMA }}$, we have $\left\langle\mathscr{P}_{\text {OIMS }}\right\rangle_{1}=\mathscr{P}_{\text {OIMA }}$.

REFERENCES

[1] BIRKHOFF, G.: Lattice Theory. Third Edition, Providence, Rhode Island, 1967.
[2] BOURBAKI, N.: Topologie générale. p.1., II. ed., Paris, 1951.
[3] ČECH, E.: Topological Papers of Eduard Čech, ch. 28, Academia, Prague, 1968.
[4] CECH, E.: Topologickal Spaces. (Revised by Z. Frolík and M. Katětov.) Academia, Prague, 1966.
[5] CHVALINA, J.: On the number of general topologies on a finite set. Scripta Fac. Sci. Nat. UJEP Brunensis, Math. 1, 3(1973), 7-22.
[6] HAMMER, P. C.: Extended topology: set-valued set-functions, Nieuv Arch. voor Wisk. (3) X(1962), 55-77.
[7] HANÁK, J.: Game-theoretical approach to some modifications of generalızed topologies, Gen. Topology and Its Relations to Modern Analysis and Algebra, Prague, 1971, 173-179.
[8] KOUTSKÝ, K.: O některých modifikacích dané topologıe, Rozpravy II. trídy České Akademie, 48 (1938), n. 22, 1-13.
[9] KOUTSKÝ, K.: Určenost topologických prostorů pomocí úplných systémů okolí bodů. Spisy přir. fak. MU Brno, 374 (1956), 1-11.
[10] LORRAIN, F.: Notes on topological spaces with minimum neighbourhoods, Amer. Math. Monthly 76(1969), 616-627.
[11] SEKANINA, M.: Systems of topologies on a given set (Rus.), Czech. Math. Journ. 15(1965), 9-29.
[12] SIERPIŃSKI, W.: Introduction to General Topology. Toronto, 1934.
[13] ŠLAPAL, J.: On modifications of topologies without axioms, Arch. Math. (Brno), to appear.
Katedra matematiky FS VUT Technická 2
61669 Brno, Czechoslovakia

О РЕШЕТКАХ ОБОБЩЕННЫХ ТОПОЛОГИЙ

Josef Šlapal

Резюме
Обобщенной топологией мы понимаем топологию, определенную оператором замыкания, выполняющим какие-нибудь аксиомы, которые слабее, чем аксиомы Куратовского. В работе изучаются некоторые системы обобщенных топологий на данном множестве, являющиеся полными решетками относительно обычного упорядочения этих систем.

