Mathematic Slovaca

Ján Jakubík
On Carathéodory vector lattices

Mathematica Slovaca, Vol. 53 (2003), No. 5, 479--503

Persistent URL: http://dml.cz/dmlcz/128777

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 2003

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

ON CARATHÉODORY VECTOR LATTICES

JÁn Jakubík
(Communicated by Anatolij Dvurečenskij)

Abstract

To each generalized Boolean algebra B there corresponds a vector lattice V; this correspondence goes back to Gofman. In general, B cannot be uniquely reconstructed from V. In this paper we investigate pairs of generalized Boolean algebras B and B^{\prime} which generate the same vector lattice V. Further, we deal with the relations between the internal direct product decompositions of V and B.

1. Introduction

Gofman [4] investigated the elementary Carathéodory functions corresponding to a Boolean algebra B; the author [5] applied this notion for dealing with cardinal properties of lattice ordered groups.

The elementary Carathéodory functions corresponding to a Boolean algebra B are defined in [4] to be forms

$$
a_{1} b_{1}+\cdots+a_{n} b_{n}
$$

where a_{i} are reals and b_{i} are elements of $B(i=1,2, \ldots, n)$ with appropriately defined operations and relations.

In the same way we can define the elementary Carathéodory functions corresponding to a generalized Boolean algebra B (for the sake of completeness the definition is recalled in Section 2 below). These were applied by the author [7] for studying sequential convergences on generalized Boolean algebras. We denote by $C(B)$ the vector lattice of all elementary Carathéodory functions corresponding to B. The relations between higher degrees of distributivity of B and of $C(B)$ were considered by the author [10].

[^0]Supported by grant VEGA 2/1131/22.

Let \mathcal{C} be the class of all vector lattices V such that there exists a generalized Boolean algebra B with $V \simeq C(B)$. The elements of \mathcal{C} will be called Carathéodory vector lattices.

In Section 2 we show that a Carathéodory vector lattice V can be characterized by the following condition:
(α) There exists a generalized Boolean algebra B such that
(i) B is a sublattice of the underlying lattice $\ell(V)$ of V;
(ii) the least element of B coincides with the neutral element 0 of V;
(iii) each nonzero element x of V can be represented as

$$
x=a_{1} b_{1}+\cdots+a_{n} b_{n}
$$

where a_{i} are nonzero reals and b_{i} are nonzero elements of B.
If the above conditions are satisfied, then we say that (V, B) is a correct pair. There can exist a generalized Boolean algebra $B^{\prime} \neq B$ such that (V, B^{\prime}) is a correct pair as well. The description of all such B^{\prime} is given in Section 3.

If the condition (iii) is modified in such a way that all a_{i} are assumed to be integers, then we obtain the notion of the Specker lattice ordered group corresponding to B; let us denote it by $S(B)$. Specker lattice ordered groups were investigated by Conrad and Darnel [2]; cf. also Conrad and Martinez [3], and the author [8].

In Section 4 we prove that each direct product decomposition of a Carathéodory vector lattice has only a finite number of nonzero direct factors. The same result holds for Specker lattice ordered groups.

The relations between internal direct product decompositions of $B, C(B)$ and $S(B)$ are dealt with in Section 5.

2. The class \mathcal{C}_{1}

For the notation and the terminology concerning lattices, lattice ordered groups and vector lattices, cf. Birkhoff [1], and Luxemburg and Zaanen [11].

We start by recalling the definition of elementary Carathéodory functions corresponding to a generalized Boolean algebra B (cf. [1], [3], [4]).

We denote by $C(B)$ the system consisting of all forms

$$
f=a_{1} b_{1}+\cdots+a_{n} b_{n}
$$

(where a_{i} are nonzero reals, $b_{i} \in B, b_{i}>0, b_{i(1)} \wedge b_{i(2)}=0$ for any $i(1), i(2) \in$ $\{1,2, \ldots, n\}, i(1) \neq i(2)$, and of the "empty form". If g is another such form,

$$
g=a_{1}^{\prime} b_{1}^{\prime}+\cdots+a_{m}^{\prime} b_{m}^{\prime}
$$

then f and g are considered as equal if $\bigvee_{i=1}^{n} b_{i}=\bigvee_{j=1}^{m} b_{j}^{\prime}$ and if $a_{i}=a_{j}^{\prime}$ whenever
$b_{i} \wedge b_{j}^{\prime}>0$.
For $b, b^{\prime} \in B$ let $b-{ }_{1} b^{\prime}$ be the relative complement of $b \wedge b^{\prime}$ in the interval $[0, b]$. If f and g are as above, then we put

$$
f+g=\sum_{i=1}^{n} \sum_{j=1}^{m}\left(a_{i}+a_{j}^{\prime}\right)\left(b_{i} \wedge b_{j}^{\prime}\right)+\sum_{i=1}^{n} a_{i}\left(b_{i}-1 \bigvee_{j=1}^{m} b_{j}^{\prime}\right)+\sum_{j=1}^{m} a_{j}^{\prime}\left(b_{j}^{\prime}-{ }_{1} \bigvee_{i=1}^{n} b_{i}\right)
$$

where in the summations only those terms are taken into account in which $a_{i}+a_{j}^{\prime} \neq 0$ and the elements $b_{i} \wedge b_{j}^{\prime}, b_{i}-{ }_{1} \bigvee_{j=1}^{m} b_{j}^{\prime}, b_{j}^{\prime}-{ }_{1} \bigvee_{i=1}^{n} b_{i}$ are nonzero. The empty form is considered to be the neutral element of $C(B)$ (with respect to the operation +) and it is identified with the element 0 of B. If b is the neutral element of $C(B)$ and $a \in \mathbb{R}$, then we put $a b=b$. If $0 \in \mathbb{R}$ and $b \in B$, we set $0 b=0 \in C(B)$. Each element $b \in B$ is identified with $1 b \in C(B)$; hence $B \subseteq C(B)$. If f is as above and $a \in \mathbb{R}$, then we put $a f=\left(a a_{1}\right) b_{1}+\cdots+\left(a a_{n}\right) b_{n}$. Under this definition, $C(B)$ is a vector lattice; its elements are called elementary Carathéodory functions corresponding to B.

Let us remark that we have the same symbol for the zero element of \mathbb{R}, the least element of B and the neutral element of $C(B)$; the meaning of this symbol will be always clear from the context.

Now let us denote by \mathcal{C}_{1} the class of all vector lattices V satisfying the condition (α) from Section 1. Further, let \mathcal{C} be as in Section 1. The aim of the present section is to verify that $\mathcal{C}_{1}=\mathcal{C}$.

For $V \in \mathcal{C}_{1}$ we apply the above formulated remark concerning the different meanings of the symbol 0 .

An indexed system $\left\{x_{i}\right\}_{i \in I}$ of elements of a vector lattice V is called orthogonal (or disjoint) if $x_{i} \geqq 0$ for each $i \in I$ and $x_{i(1)} \wedge x_{i(2)}=0$ whenever $i(1)$ and $i(2)$ are distinct elements of I.

Lemma 2.1. Assume that $V \in \mathcal{C}_{1}$ and let $0 \neq x \in V$. Then there are $n \in \mathbb{N}$, $0 \neq a_{i} \in \mathbb{R}, 0 \neq b_{i} \in B(i=1,2, \ldots, n)$ such that

$$
\begin{equation*}
x=a_{1} b_{1}+\cdots+a_{n} b_{n} \tag{1}
\end{equation*}
$$

and the system $\left\{b_{i}\right\}_{i=1,2, \ldots, n}$ is orthogonal.
Proof. In view of the assumption, the element x can be expressed in the form

$$
x=a_{1}^{\prime} b_{1}^{\prime}+\cdots+a_{m}^{\prime} b_{m}^{\prime}
$$

where a_{j}^{\prime} are nonzero reals and b_{j}^{\prime} are nonzero elements of B for $j=1,2, \ldots, m$.

We proceed by induction on m. For $m=1$, our assertion is valid. Suppose that $m>1$ and that the assertion is valid for $m-1$. Put

$$
y=a_{1}^{\prime} b_{1}^{\prime}+\cdots+a_{m-1}^{\prime} b_{m-1}^{\prime}
$$

If $y=0$, then the assertion under consideration holds. Suppose that $y \neq 0$. Thus y can be expressed as

$$
y_{1}=a_{1}^{\prime \prime} b_{1}^{\prime \prime}+\cdots+a_{t}^{\prime \prime} b_{t}^{\prime \prime}
$$

where $0 \neq a_{k}^{\prime \prime} \in \mathbb{R}, 0 \neq b_{k}^{\prime \prime} \in B$ for $k=1,2, \ldots, t$ and the system $\left(b_{k}^{\prime \prime}\right)_{1 \leqq k \leqq t}$ is orthogonal. Put

$$
b=b_{1}^{\prime \prime} \vee \cdots \vee b_{t}^{\prime \prime}, \quad b \wedge b_{n}=b_{n 1}
$$

and let $b_{n 2}$ be the complement of $b_{n 1}$ in the interval $\left[0, b_{n}\right]$ of B. This complement exists, since b, b_{n} and $b_{n 1}$ belong to B. We have

$$
b \wedge b_{n 2}=b \wedge\left(b_{n 2} \wedge b_{n}\right)=\left(b \wedge b_{n}\right) \wedge b_{n 2}=b_{n 1} \wedge b_{n 2}=0
$$

Thus $b_{1}^{\prime \prime} \wedge b_{n 2}=0, \ldots, b_{t}^{\prime \prime} \wedge b_{n 2}=0$ and hence the system $\left\{b_{1}^{\prime \prime}, \ldots, b_{t}^{\prime \prime}, b_{n 2}\right\}$ is orthogonal. Further,

$$
b_{n 1}=b_{n 1} \wedge b=b_{n 1} \wedge\left(b_{1}^{\prime \prime} \vee \cdots \vee b_{t}^{\prime \prime}\right)=\left(b_{n 1} \wedge b_{1}^{\prime \prime}\right) \vee \cdots \vee\left(b_{n 1} \wedge b_{t}^{\prime \prime}\right)
$$

For $k \in\{1,2, \ldots, t\}$ put $b_{k}^{*}=b_{n 1} \wedge b_{k}^{\prime \prime}$ and let $b_{k 1}^{\prime \prime}$ be the complement of b_{k}^{*} in the interval $\left[0, b_{k}^{\prime \prime}\right]$ of B. Hence

$$
\begin{gather*}
b_{k}^{\prime \prime}=b_{k}^{*} \vee b_{k 1}^{*}=b_{k}^{*}+b_{k 1}^{*} \\
y=\sum_{k=1}^{t} a_{k}^{\prime \prime} b_{k}^{*}+\sum_{k=1}^{t} a_{k}^{\prime \prime} b_{k 1}^{*} \\
a_{n} b_{n}=a_{n}\left(b_{n 1}+b_{n 2}\right)=a_{n} b_{n 1}+a_{n} b_{n 2}=\sum_{k=1}^{t} a_{n} b_{k}^{*}+a_{n} b_{n 2} \\
x=y+a_{n} b_{n}=\sum_{k=1}^{t}\left(a_{k}^{\prime \prime}+a_{n}\right) b_{k}^{*}+\sum_{k=1}^{t} a_{k}^{\prime \prime} b_{k 1}^{*}+a_{n} b_{n 2} \tag{2}
\end{gather*}
$$

The system $\left(b_{1}^{*}, \ldots, b_{t}^{*}, b_{11}^{*}, \ldots, b_{t 1}^{*}, b_{n 2}\right)$ is orthogonal. Now it suffices to omit all members on the right side of (2) with $a_{k}^{\prime \prime}+a_{n}=0, b_{k}^{*}=0, b_{k 1}^{*}=0$ or $b_{n 2}=0$. We obtain the desired expression for x.

For any vector lattice V and any element x of V we denote, as usual, $x^{+}=$ $x \vee 0,-x^{-}=x \wedge 0$. The following assertion can be verified by a simple calculation; we omit the proof.

LEMMA 2.2. Let $I=\{1,2, \ldots, n\}$ and let $\left(x_{i}\right)_{i \in I}$ be an orthogonal system of elements of a vector lattice V. For each $i \in I$ let $y_{i} \in V$ such that either $y_{i}=x_{i}$ or $y_{i}=-x_{i}$. Put $I_{1}=\left\{i \in I: y_{i}=x_{i}\right\}, I_{2}=\left\{i \in I: y_{i}=-x_{i}\right\}$, $y=y_{1}+\cdots+y_{n}$. Then

$$
y^{+}=\sum_{i \in I_{1}} y_{i}, \quad-y^{-}=\sum_{i \in I_{2}} y_{i}, \quad|y|=\sum_{i \in I} x_{i}
$$

In the remaining part of this section we assume that V is a vector lattice belonging to \mathcal{C}_{1}.

Under the notation as above, we say that (1) is a regular representation of the element x. Let y be another nonzero element of V having a regular representation

$$
y=a_{1}^{\prime} b_{1}^{\prime}+\cdots+a_{m}^{\prime} b_{m}^{\prime}
$$

Put $I=\{1,2, \ldots, n\}, J=\{1,2, \ldots, m\}$.
Lemma 2.3. Assume that $x=y$. Then
(i) $\bigvee_{i \in I} b_{i}=\bigvee_{j \in J} b_{j}^{\prime}$;
(ii) if $b_{i} \wedge b_{j}^{\prime}>0$ for some $i \in I, j \in J$, then $a_{i}=a_{j}^{\prime}$.

Proof. In view of the assumption we have $|x|=|y|$. Hence according to 2.2 we get

$$
\left|a_{1} b_{1}\right|+\cdots+\left|a_{n} b_{n}\right|=\left|a_{1}^{\prime} b_{1}^{\prime}\right|+\cdots+\left|a_{m}^{\prime} b_{m}^{\prime}\right|
$$

Since $\left|a_{i} b_{i}\right|=\left|a_{i}\right| b_{i},\left|a_{j}^{\prime} b_{j}^{\prime}\right|=\left|a_{j}^{\prime}\right| b_{j}^{\prime}$, we obtain

$$
\begin{equation*}
\left|a_{1}\right| b_{1}+\cdots+\left|a_{n}\right| b_{n}=\left|a_{1}^{\prime}\right| b_{1}^{\prime}+\cdots+\left|a_{m}^{\prime}\right| b_{m}^{\prime} \tag{3}
\end{equation*}
$$

(i) Put $\bigvee_{j=1}^{m} b_{j}^{\prime}=b^{\prime}$. Let $i \in I$. Denote $b^{\prime} \wedge b_{i}=c_{1}$ and let c_{2} be the complement of c_{1} in the interval $\left[0, b_{i}\right]$ of B. Then $0=c_{1} \wedge c_{2}=b^{\prime} \wedge c_{2}$, whence $b_{j}^{\prime} \wedge c_{2}=0$ for each $j \in J$. This yields $\left|a_{i}\right| c_{2} \wedge\left|a_{j}^{\prime}\right| b_{j}^{\prime}=0$ for each $j \in J$. Hence $\left|a_{i}\right| c_{2} \wedge|y|=0$. On the other hand, $0 \leqq\left|a_{i}\right| c_{2} \leqq\left|a_{i}\right| b_{i}$ and thus $\left|a_{i}\right| c_{2} \leqq|x|$. Since $|y|=|x|$, we get $c_{2}=0$, whence $b_{i} \leqq b^{\prime}$. Thus $\bigvee_{i \in I} b_{i} \leqq \bigvee_{j \in J} b_{j}^{\prime}$. Similarly we obtain the dual relation.
(ii) We denote

$$
\begin{array}{ll}
I_{1}=\left\{i \in I: a_{i}>0\right\}, & \\
I_{2}=\left\{i \in I: a_{i}<0\right\}, \\
J_{1}=\left\{j \in J: a_{j}^{\prime}>0\right\}, & J_{2}=\left\{j \in J: a_{j}^{\prime}<0\right\} .
\end{array}
$$

In view of 2.2 we have

$$
x^{+}=\sum_{i \in I_{1}} a_{i} b_{i}, \quad-x^{-}=\sum_{i \in I_{2}} a_{i} b_{i}, \quad y^{+}=\sum_{j \in J_{1}} a_{j}^{\prime} b_{j}^{\prime}, \quad-y^{-}=\sum_{j \in J_{2}} a_{j}^{\prime} b_{j}^{\prime}
$$

Since $x=y$, we get $x^{+}=y^{+}, x^{-}=y^{-}$. It is well known that $x^{+} \wedge\left(x^{-}\right)=0$. This yields that whenever $i \in I_{1}$ and $j \in J_{2}$, then $b_{i} \wedge b_{j}^{\prime}=0$. Similarly, if $i \in I_{2}$ and $j \in J_{1}$, then $b_{i} \wedge b_{j}^{\prime}=0$.

Let $i(1) \in I_{1}$ and $j(1) \in J_{1}$; assume that $b_{i(1)} \wedge b_{j(1)}^{\prime}>0$. Denote $c_{1}=$ $b_{i(1)} \wedge b_{j(1)}^{\prime}$. There exists $c_{2} \in B$ such that c_{2} is the complement of c_{1} in the interval $\left[0, b_{j(1)}^{\prime}\right]$ of B. We get

$$
\begin{gathered}
a_{i(1)} c_{1} \leqq a_{i(1)} b_{i(1)} \leqq x^{+}=y^{+}, \\
a_{i(1)} c_{1}=a_{i(1)} c_{1} \wedge y^{+}=a_{i(1)} c_{1} \wedge\left(\sum_{j \in J_{1}} a_{j}^{\prime} b_{j}^{\prime}\right) \\
=a_{i(1)} c_{1} \wedge\left(\bigvee_{j \in J_{1}} a_{j}^{\prime} b_{j}^{\prime}\right)=\bigvee_{j \in J_{1}}\left(a_{i(1)} c_{1} \wedge a_{j}^{\prime} b_{j}^{\prime}\right) .
\end{gathered}
$$

Since $c_{1} \leqq b_{j(1)}^{\prime}$, we obtain $c_{1} \wedge b_{j}^{\prime}=0$ whenever $j \in J_{1}, j \neq j(1)$; for such j we have also

$$
a_{i(1)} c_{1} \wedge a_{j}^{\prime} b_{j}^{\prime}=0
$$

Hence $a_{i(1)} c_{1}=a_{i(1)} c_{1} \wedge a_{j(1)}^{\prime} b_{j(1)}^{\prime}$. From the definition of c_{2} we get

$$
b_{j(1)}^{\prime}=c_{1} \vee c_{2}, \quad c_{1} \wedge c_{2}=0
$$

therefore

$$
a_{i(1)} c_{1}=a_{i(1)} c_{1} \wedge\left(a_{j(1)}^{\prime} c_{1} \vee a_{j(1)}^{\prime} c_{2}\right)=a_{i(1)} c_{1} \wedge a_{j(1)}^{\prime} c_{1}
$$

since $a_{i(1)} c_{1} \wedge a_{j(1)}^{\prime} c_{2}=0$. Thus $a_{i(1)} c_{1} \leqq a_{j(1)}^{\prime} c_{1}$ and so $a_{i(1)} \leqq a_{j(1)}^{\prime}$. Analogously we obtain the dual relation, whence $a_{i(1)}=a_{j(1)}^{\prime}$.

By the same method we can deal with the situation when $i(1) \in I_{2}, j(1) \in J_{2}$, $b_{i(1)} \wedge b_{j(1)}^{\prime}>0$.
Lemma 2.4. Let $x, y \in V$ be expressed as above. Assume that the conditions (i) and (ii) from 2.3 are satisfied. Then $x=y$.

Proof. Let $i \in I$. In view of the condition (i) we have

$$
b_{i}=b_{i} \wedge\left(\bigvee_{j \in J} b_{j}^{\prime}\right)=\bigvee_{j \in J}\left(b_{i} \wedge b_{j}^{\prime}\right)=\sum_{j \in J}\left(b_{i} \wedge b_{j}^{\prime}\right)
$$

Analogously, for each $j \in J$

$$
b_{j}^{\prime}=b_{j}^{\prime} \wedge\left(\bigvee_{i \in I} b_{i}\right)=\bigvee_{i \in I}\left(b_{j}^{\prime} \wedge b_{i}\right)=\sum_{i \in I}\left(b_{i} \wedge b_{j}^{\prime}\right)
$$

Hence we obtain

$$
x=\sum_{i \in I} \sum_{j \in J} a_{i}\left(b_{i} \wedge b_{j}^{\prime}\right), \quad y=\sum_{j \in J} \sum_{i \in I} a_{j}^{\prime}\left(b_{j}^{\prime} \wedge b_{i}\right) .
$$

Thus in view of the condition (ii) we get $x=y$.

LEMMA 2.5. Let x and y be as above. For $i \in I$ let c_{i} be the complement of the element $c_{i 1}=b_{i} \wedge\left(\bigvee_{j \in J} b_{j}^{\prime}\right)$ in the interval $\left[0, b_{i}\right]$ of B. Similarly, for $j \in J$ let c_{j}^{\prime} be the complement of the element $c_{j 1}^{\prime}=b_{j}^{\prime} \wedge\left(\bigvee_{i \in I} b_{i}\right)$ in the interval $\left[0, b_{j}^{\prime}\right]$ of B. Then

$$
\begin{equation*}
x+y=\sum_{i \in I} \sum_{j \in J}\left(a_{i}+a_{j}^{\prime}\right)\left(b_{i} \wedge b_{j}^{\prime}\right)+\sum_{i \in I} a_{i} c_{i}+\sum_{j \in J} a_{j}^{\prime} c_{j}^{\prime} \tag{4}
\end{equation*}
$$

Proof. For each $i \in I$ we have $b_{i}=c_{i 1} \vee c_{i}=c_{i 1}+c_{i}$. Further

$$
\begin{aligned}
c_{i 1} & =\bigvee_{j \in J}\left(b_{i} \wedge b_{j}^{\prime}\right)=\sum_{j \in J}\left(b_{i} \wedge b_{j}^{\prime}\right) \\
a_{i} b_{i} & =a_{i}\left(c_{i 1}+c_{i}\right)=\sum_{j \in J} a_{i}\left(b_{i} \wedge b_{j}^{\prime}\right)+a_{i} c_{i} \\
x & =\sum_{i \in I} \sum_{j \in J} a_{i}\left(b_{i} \wedge b_{j}^{\prime}\right)+\sum_{i \in I} a_{i} c_{i}
\end{aligned}
$$

Similarly we obtain

$$
y=\sum_{j \in J} \sum_{i \in I} a_{j}^{\prime}\left(b_{j}^{\prime} \wedge b_{i}\right)+\sum_{j \in J} a_{j}^{\prime} c_{j}^{\prime}
$$

Therefore the formula (4) is valid.

LEMMA 2.6. Let x be as in (1). Then $x>0$ if and only if $a_{i}>0$ for $i=$ $1,2, \ldots, n$.

Proof. If $a_{i}>0$ for $i=1,2, \ldots, n$, then clearly $x>0$. The converse assertion is a consequence of 2.2 .

Proposition 2.7. We have $\mathcal{C}=\mathcal{C}_{1}$.
Proof. Assume that $V_{1} \in \mathcal{C}$. Then from the definition of \mathcal{C} we immediately obtain that the conditions (i), (ii) and (iii) from Section 1 are satisfied.

Conversely, assume that V belongs to \mathcal{C}_{1}. From 2.1, 2.3-2.6 and from the definition of elementary Carathéodory functions corresponding to the generalized Boolean algebra B we obtain that V belongs to \mathcal{C}.

3. Correct pairs

In this section we assume that V is a vector lattice belonging to the class \mathcal{C}_{1} and that B is a generalized Boolean algebra such that (V, B) is a correct pair.

Our aim is to characterize all generalized Boolean algebras B^{\prime} such that $\left(V, B^{\prime}\right)$ is a correct pair as well.

The case $B=\{0\}$ being trivial, we will suppose that B is not a one-element set. Hence also $V \neq\{0\}$.

Let T be a nonempty set of indices and for each $t \in T$ let X_{t} be an ideal of B such that the following conditions are satisfied:
(a) Whenever $t(1), t(2) \in T, t(1) \neq t(2)$, then $X_{t(1)} \cap X_{t(2)}=\{0\}$.
(b) If $0<b \in B$, then there are distinct elements $t_{1}, \ldots, t_{n} \in T$ and nonzero elements $b_{1}^{\prime}, \ldots, b_{n}^{\prime}$ with $b_{i}^{\prime} \in X_{t_{i}}(i=1,2, \ldots, n)$ such that $b=b_{1}^{\prime} \vee$ $\cdots \vee b_{n}^{\prime}$.

LEMMA 3.1. If $0<b \in B$, then the representation of b in the form described in the condition (b) is uniquely determined.

Proof. Assume that T_{1} and T_{2} are nonempty finite subsets of T such that

$$
\begin{aligned}
& b=\bigvee_{t \in T_{1}} b_{t}, \quad 0<b_{t} \in X_{t} \quad \text { for each } t \in T_{1} \\
& b=\bigvee_{s \in T_{2}} b_{s}^{\prime}, \quad 0<b_{s}^{\prime} \in X_{s} \quad \text { for each } s \in T_{2}
\end{aligned}
$$

Let $t(1) \in T_{1}$. Then

$$
b_{t(1)}=b_{t(1)} \wedge b=\bigvee_{s \in T_{2}}\left(b_{t(1)} \wedge b_{s}^{\prime}\right)
$$

Hence there exists $s \in T_{2}$ with $b_{t(1)} \wedge b_{s}^{\prime}>0$. Then we must have $s=t(1)$, $s^{\prime} \neq t(1)$ for $s^{\prime} \in T_{2}, s^{\prime} \neq s$. Thus $b_{t(1)} \wedge b_{s^{\prime}}^{\prime}=0$ and

$$
b_{t(1)}=b_{t(1)} \wedge b_{s}^{\prime}
$$

whence $b_{t(1)} \leqq b_{s}^{\prime}$. Further, we proved that $T_{1} \subseteq T_{2}$. By analogous argument we obtain $T_{2} \subseteq T_{1}$ and $b_{s}^{\prime} \leqq b_{t(1)}$.

For each $t \in T$ let c_{t} be a positive real such that $c_{t(1)} \neq c_{t(2)}$ if $t(1)$ and $t(2)$ are distinct elements of T. Put

$$
Y_{t}=\left\{c_{t} x_{t}: x_{t} \in X_{t}\right\}
$$

Hence we have

$$
Y_{t_{1}} \cap Y_{t_{2}}=\{0\} \quad \text { whenever } \quad t_{1}, t_{2} \in T, t_{1} \neq t_{2}
$$

ON CARATHÉODORY VECTOR LATTICES

We denote by B^{\prime} the set of all elements $x \in V$ such that either $x=0$ or x can be expressed in the form

$$
\begin{equation*}
x=y_{1} \vee \cdots \vee y_{n}, \tag{*}
\end{equation*}
$$

where $y_{1} \in Y_{t(1)}, \ldots, y_{n} \in Y_{t(n)}$, and $t(1), \ldots, t(n)$ are elements of T.
Lemma 3.2. Let $t \in T$. Then Y_{t} is a sublattice of $\ell(V)$ isomorphic to X_{t}.
Proof. Let $y_{1}, y_{2} \in Y_{t}$. There exist $x_{1}, x_{2} \in X_{t}$ with $y_{i}=c_{t} x_{i}(i=1,2)$. Then $y_{1} \vee y_{2}=c_{t}\left(x_{1} \vee x_{2}\right) \in Y_{t}$ and $y_{1} \wedge y_{2}=c_{t}\left(x_{1} \wedge x_{2}\right) \in Y_{t}$. The mapping $x \mapsto c_{t} x$ is an isomorphism of X_{t} onto Y_{t}.

In view of $3.2, Y_{t}$ is a generalized Boolean algebra.
Lemma 3.3. B^{\prime} is a sublattice of $\ell(V)$.
Proof. Let $x, x^{\prime} \in B^{\prime}$. Hence there are $t(1), \ldots, t(n), s(1), \ldots, s(m) \in T$, and elements $y_{1} \in Y_{t(1)}, \ldots, y_{n} \in Y_{t(n)}, y_{1}^{\prime} \in Y_{s(1)}, \ldots, y_{m}^{\prime} \in Y_{s(m)}$ such that

$$
x=y_{1} \vee \cdots \vee y_{n}, \quad x^{\prime}=y_{1}^{\prime} \vee \cdots \vee y_{m}^{\prime} .
$$

Then $x \vee x^{\prime}=y_{1} \vee \cdots \vee y_{n} \vee y_{1}^{\prime} \vee \cdots \vee y_{m}^{\prime}$ belongs to B^{\prime}. Further,

$$
x \wedge x^{\prime}=\bigvee_{i \in I, j \in J}\left(y_{i} \wedge y_{j}^{\prime}\right)
$$

where $I=\{1,2, \ldots, n\}, J=\{1,2, \ldots, m\}$. If $t(i) \neq s(j)$, then $y_{i} \wedge y_{j}^{\prime}=0$. If $t(i)=s(j)$, then in view of 3.2 we have $y_{i} \wedge y_{j}^{\prime} \in Y_{t(i)}$. Therefore $x \wedge x^{\prime}$ belongs to B^{\prime}.

Lemma 3.4. Let $t \in T$. Then Y_{t} is an ideal of B^{\prime}.
Proof. The relation $Y_{t} \subseteq B^{\prime}$ is obvious. Further, in view of 3.2 and 3.3, Y_{t} is a sublattice of B^{\prime}. Let $y \in Y_{t}$ and $z \in B^{\prime}, z \leqq y$. Hence there are $t(1), \ldots, t(n) \in T$ and $z_{1} \in Y_{t(1)}, \ldots, z_{n} \in Y_{t(n)}$ with $z=z_{1} \vee \cdots \vee z_{n}$. We obtain

$$
z=z \wedge y=\left(z_{1} \wedge y\right) \vee \cdots \vee\left(z_{n} \wedge y\right)
$$

If $i \in\{1,2, \ldots, n\}$ and $t(i) \neq t$, then $z_{i} \wedge y=0$; if $t(i)=t$, then in view of 3.2 we have $z_{i} \wedge y \in Y_{t}$. Therefore $z \in Y_{t}$.

Lemma 3.5. The lattice B^{\prime} is a generalized Boolean algebra.
Proof. In view of 3.3 and of the relation $0 \in B^{\prime}$ it suffices to verify that whenever $0<x \in B^{\prime}$ and $x_{1} \in B^{\prime}, x_{1} \leqq x$, then x_{1} has a complement in the interval $[0, x]$ of B^{\prime}.

Let x and x_{1} satisfy the mentioned assumptions. Let x be as in (*). Hence

$$
x_{1}=x_{1} \wedge x=\left(x_{1} \wedge y_{1}\right) \vee \cdots \vee\left(x_{1} \wedge y_{n}\right) .
$$

According to 3.4 we have $x_{1} \wedge y_{1} \in Y_{t(1)}, \ldots, x_{1} \wedge y_{n} \in Y_{t(n)}$.
Without loss of generality we can suppose that the elements $t(1), \ldots, t(n)$ are mutually distinct. Let $i \in\{1,2, \ldots, n\}=I$. Since $Y_{t(i)}$ is a generalized Boolean algebra, there exists $z_{i} \in Y_{t(i)}$ such that z_{i} is the complement of $x_{1} \wedge y_{i}$ in the interval $\left[0, y_{i}\right]$ of the lattice $Y_{t(i)}$. Put

$$
x_{1}^{\prime}=z_{1} \vee \cdots \vee z_{n} .
$$

An easy calculation shows that x_{1}^{\prime} is a complement of x_{1} in the interval $[0, x]$ of the lattice B^{\prime}.

If $v_{1}, \ldots, v_{n} \in V, a_{1}, \ldots, a_{n} \in \mathbb{R}$, then we say, as usual, that $a_{1} v_{1}+\cdots+a_{n} v_{n}$ is a linear combination of elements v_{1}, \ldots, v_{n}.

Let $v \in V, v \neq 0$. Since the pair (V, B) is correct, the element v can be expressed as a linear combination of some elements b_{1}, \ldots, b_{m} of B. Let $j \in\{1,2, \ldots, m\}$. In view of the above conditions (a) and (b), there are $t(1), \ldots, t(n) \in T$ and $b_{1}^{\prime} \in X_{t(1)}, \ldots, b_{n}^{\prime} \in X_{t(n)}$ such that $b_{j}=b_{t(1)}^{\prime} \vee$ $\cdots \vee b_{t(n)}^{\prime}$. Since all X_{t} are ideals in B, we can assume without loss of generality that the elements $t(1), \ldots, t(n)$ are mutually distinct. Then the system $\left\{b_{t(1)}^{\prime}, \ldots, b_{t(n)}^{\prime}\right\}$ is orthogonal, whence $b_{j}=b_{t(1)}^{\prime}+\cdots+b_{t(n)}^{\prime}$. In view of the definition of Y_{t} for $t \in T$ we get

$$
c_{t(1)}^{-1} b_{t(1)}^{\prime} \in Y_{t(1)}, \ldots, c_{t(n)}^{-1} b_{t(n)}^{\prime} \in Y_{t(n)},
$$

whence $c_{t(1)}^{-1} b_{t(1)}^{\prime}, \ldots, c_{t(n)}^{-1} b_{t(n)}^{\prime}$ are elements of B^{\prime}.
Summarizing, we conclude that each element of V is a linear combination of some elements of B^{\prime}. Hence (by applying 3.3 and 3.5) we have:

Proposition 3.6. (V, B^{\prime}) is a correct pair.
The fact that the generalized Boolean algebra B^{\prime} was obtained by the above described construction from the indexed system of ideals $\left(X_{t}\right)_{t \in T}$ of B and the indexed system $\left(c_{t}\right)_{t \in T}$ of reals will be expressed by writing

$$
B^{\prime}=f\left(\left(X_{t}, c_{t}\right)_{t \in T}\right) \text {. }
$$

Lemma 3.7. Let $V \in \mathcal{C}_{1}$ and let (V, B) be a correct pair. Assume that $0<b$ $\in B$ and that x, y are elements of V such that $x \wedge y=0, x \vee y=b$. Then x and y belong to B.

Proof. The cases when $x=0$ or $y=0$ are trivial; suppose that $x>0$ and $y>0$. There exist $0<a_{i} \in \mathbb{R}, 0<a_{j}^{0} \in \mathbb{R}, 0<b_{i} \in B, 0<b_{j}^{0} \in B$ $(i \in\{1,2, \ldots, n\}=I, j \in\{1,2, \ldots, m\}=J)$ such that the systems $\left(b_{i}\right)_{i \in I}$ and $\left(b_{j}^{0}\right)_{j \in J}$ are orthogonal and

$$
x=a_{1} b_{1}+\cdots+a_{n} b_{n}, \quad y=a_{1}^{0} b_{1}^{0}+\cdots+a_{m}^{0} b_{m}^{0} .
$$

We have $a_{i} b_{i} \leqq x$ and $a_{j}^{0} b_{j}^{0} \leqq y$, whence $a_{i} b_{i} \wedge a_{j}^{0} b_{j}^{0}=0$. This yields that $a_{i} \wedge b_{j}^{0}=0$ for each $i \in I$ and $j \in J$. Thus the system $\left\{b_{1}, \ldots, b_{n}, b_{1}^{0}, \ldots, b_{m}^{0}\right\}$ is orthogonal. We have

$$
b=x \vee y=x+y=a_{1} b_{1}+\cdots+a_{n} b_{n}+a_{1}^{0} b_{1}^{0}+\cdots+a_{n}^{0} b_{m}^{0} .
$$

In view of 2.3 we obtain the relations

$$
\begin{gathered}
b=b_{1} \vee \cdots \vee b_{n} \vee b_{1}^{0} \vee \cdots \vee b_{m}^{0}, \\
1=a_{1}=\cdots=a_{n}=a_{1}^{0}=\cdots=a_{m}^{\prime} .
\end{gathered}
$$

Thus we get

$$
\begin{aligned}
& x=b_{1}+\cdots+b_{n}=b_{1} \vee \cdots \vee b_{n}, \\
& y=b_{1}^{0}+\cdots+b_{m}^{0}=b_{1}^{0} \vee \cdots \vee b_{m}^{0} .
\end{aligned}
$$

Therefore x and y belong to B.
Now let us assume that $\{0\} \neq V \in \mathcal{C}_{1}$ and that B, B^{\prime} are generalized Boolean algebras such that (V, B) and (V, B^{\prime}) are correct pairs.

Let $0<b^{\prime} \in B^{\prime}$. Since $b^{\prime} \in V$, in view of 2.1 there exist $0<a_{i} \in \mathbb{R}$ and $0<b_{i} \in B$ (for $i \in\{1,2, \ldots, n\}=I$) such that the system $\left(b_{i}\right)_{i \in I}$ is orthogonal and

$$
b^{\prime}=\sum_{i \in I} a_{i} b_{i} .
$$

We can also assume that if $i(1)$ and $i(2)$ are distinct elements of I, then $a_{i(1)} \neq a_{i(2)}$. Namely, if, e.g., $a_{1}=a_{2}$, then $a_{1} b_{1}+a_{2} b_{2}$ can be replaced by $a_{1} b_{1}+a_{1} b_{2}=a_{1}\left(b_{1} \vee b_{2}\right)$ and $b_{1} \vee b_{2} \in B$.

Further, for each $i \in I$ there exist a finite set $J_{i} \neq \emptyset$ and elements $0<c_{i j} \in \mathbb{R}, 0<b_{i j}^{\prime} \in B^{\prime}\left(j \in J_{i}\right)$ such that

$$
b_{i}=\sum_{j \in J_{i}} c_{i j} b_{i j}^{\prime}
$$

Moreover, in view of 2.1 we can assume that all the systems $\left(b_{i}\right)_{i \in I},\left(b_{i j}^{\prime}\right)_{j \in J_{i}}$ ($i \in I$) are orthogonal. Without loss of generality we can suppose that

JÁN JAKUBÍK

$J_{i(1)} \cap J_{i(2)}=\emptyset$ whenever $i(1)$ and $i(2)$ are distinct elements of I. Put $J=\bigcup_{i \in I} J_{i}$. Then the system $\left(b_{j}^{\prime}\right)_{j \in J}$ is orthogonal as well. We obtain

$$
\begin{equation*}
b^{\prime}=\sum_{j \in J_{1}} a_{1} c_{1 j} b_{1 j}^{\prime}+\cdots+\sum_{j \in J_{n}} a_{n} c_{n j} b_{n j}^{\prime} \tag{+}
\end{equation*}
$$

According to Lemma 2.3 (applied for B^{\prime}) we conclude that $a_{1} c_{1 j}=1$ for each $j \in J_{1}, \ldots, a_{n} c_{n j}=1$ for each $j \in J_{n}$. Hence there are $0<c_{i} \in \mathbb{R}(i \in I)$ such that $c_{1}=c_{1 j}$ for each $j \in J_{1}, \ldots, c_{n}=c_{n j}$ for each $j \in J_{n}$. Thus

$$
b_{1}=c_{1} \sum_{j \in J_{1}} b_{1 j}^{\prime}, \ldots, b_{n}=c_{n} \sum_{j \in J_{n}} b_{n j}^{\prime}
$$

We denote

$$
\sum_{j \in J_{1}} b_{1 j}^{\prime}=b_{1}^{\prime \prime}, \ldots, \sum_{j=J_{n}} b_{n j}=b_{n}^{\prime \prime}
$$

Since, in view of the orthogonality,

$$
\sum_{j \in J_{1}} b_{1 j}^{\prime}=\bigvee_{j \in J_{1}} b_{1 j}^{\prime}, \ldots, \sum_{j \in J_{n}} b_{n j}^{\prime}=\bigvee_{j \in J_{n}} b_{n j}^{\prime}
$$

we get that all elements $b_{1}^{\prime \prime}, \ldots, b_{n}^{\prime \prime}$ belong to B^{\prime}. We have

$$
\begin{equation*}
b_{1}=c_{1} b_{1}^{\prime \prime}, \ldots, b_{n}=c_{n} b_{n}^{\prime \prime} \tag{1}
\end{equation*}
$$

For $0<r \in \mathbb{R}$ we denote by B_{r} the set of all elements $b \in B$ such that $r b \in B^{\prime}$. In view of (1), there exist $0<r \in \mathbb{R}$ with $B_{r} \neq \emptyset$; let R_{0} be the set of all such reals r.

LEMMA 3.8. Let $r \in R_{0}, b \in B_{r}$ and $b_{1}^{0} \in B, 0<b_{1}^{0}<b$. Then $b_{1}^{0} \in B_{r}$.
Proof. There exists $b_{1}^{1} \in B$ such that $b_{1}^{0} \wedge b_{1}^{1}=0, b_{1}^{0} \vee b_{1}^{1}=b$. Then we have

$$
r b_{1}^{0} \wedge r b_{1}^{1}=0, \quad r b_{1}^{0} \vee r b_{1}^{1}=r b \in B^{\prime}
$$

According to 3.7 (applied for B^{\prime}) we get $r b_{1}^{0} \in B^{\prime}$, whence $b_{1}^{0} \in B_{r}$.
Lemma 3.9. Let $r \in R_{0}, b \in B_{r}, b^{0} \in B_{r}$. Then $b \vee b^{0} \in B_{r}$.
Proof. Since $r b \in B^{\prime}$ and $r b^{0} \in B^{\prime}$ we get $r\left(b \vee b^{\prime}\right)=r b \vee r b^{0} \in B^{\prime}$. Thus $b \vee b^{0} \in B_{r}$.

Put $B_{r}^{0}=B_{r} \cup\{0\}$. In view of 3.8 and 3.9 we get:
Lemma 3.10. Let $r \in R_{0}$. Then B_{r}^{0} is an ideal of B.
From the definition of B_{r} we immediately obtain:

ON CARATHÉODORY VECTOR LATTICES

LEMMA 3.11. Let $r_{1}, r_{2} \in R_{0}, r_{1} \neq r_{2}$. Then $B_{r_{1}}^{0} \cap B_{r_{2}}^{0}=\{0\}$.
For each $r \in R_{0}$ we denote

$$
Z_{r}=\left\{r b_{r}: b_{r} \in B_{r}^{0}\right\}
$$

If r_{1}, r_{2} are distinct elements of R_{0}, and $b_{r_{1}} \in B_{r_{1}}, b_{r_{2}} \in B_{r_{2}}$, then in view of 3.10 and 3.11 we have $b_{r_{1}} \wedge b_{r_{2}}=0$, whence $r_{1} b_{r_{1}} \wedge r_{2} b_{r_{2}}=0$. Therefore $Z_{r_{1}} \cap Z_{r_{2}}=\{0\}$.

Let $b^{\prime} \in B^{\prime}$ be as above. Since the elements a_{1}, \ldots, a_{n} are distinct, the elements c_{1}, \ldots, c_{n} are distinct as well and so are the elements $r_{1}=c_{1}^{-1}, \ldots$, $r_{n}=c_{n}^{-1}$. In view of (1), $\left\{r_{1}, \ldots, r_{n}\right\} \subseteq R_{0}$ and $b_{1}^{\prime \prime} \in B_{r_{1}}, \ldots, b_{n}^{\prime \prime} \in B_{r_{n}}$. Hence, under the notation as above we have (cf. the relation (+))

$$
\begin{equation*}
b^{\prime}=y_{1}^{\prime \prime}+\cdots+y_{n}^{\prime \prime}=y_{1}^{\prime \prime} \vee \cdots \vee y_{n}^{\prime \prime} \tag{2}
\end{equation*}
$$

This is analogous to the relation (*).
We will speak about a positive linear combination meaning a linear combination with positive coefficients.

LEMMA 3.12. Let $0<b \in B$. There exist distinct elements r_{1}, \ldots, r_{n} of R_{0}, nonzero elements $b_{i}^{0} \in B_{r_{i}}$ such that $b=b_{1}^{0} \vee \cdots \vee b_{n}^{0}$.

Proof. The element b can be expressed as a positive linear combination of a system S of nonzero elements of B^{\prime} such that the system S is orthogonal. Further, each element b^{\prime} of S can be expressed as a positive linear combination of an orthogonal system of nonzero elements belonging to $\bigcup_{r \in R_{0}} B_{r}=Y$.

In view of the orthogonality and of the fact that all elements of Y belong to B, by using Lemma 2.3 we infer that all the coefficients in the expression of b obtained in this way must be equal to 1 . Applying again the orthogonality we get that the sum can be replaced by the operation of join. According to 3.9 we obtain the desired result.

PROPOSITION 3.13. Let $V \in \mathcal{C}_{1}$ and suppose that (V, B) is a correct pair. If $\left(V, B^{\prime}\right)$ is an another correct pair, then under the notation as above, we have $B^{\prime}=f\left(\left(B_{r}, r\right)_{r \in R_{0}}\right)$.

Proof. This is a consequence of 3.10, 3.11 and 3.12.
In other words, given a correct pair (V, B), each generalized Boolean algebra B^{\prime} yielding a correct pair $\left(V, B^{\prime}\right)$ can be obtained by the construction f.

Proposition 3.14. Let $V \in \mathcal{C}_{1}$. Assume that (V, B) and $\left(V, B^{\prime}\right)$ are correct pairs. Then $B \simeq B^{\prime}$.

Proof. We apply $3.10-3.13$ and the notation as above. Let $b \in B$. For $b=0$ we put $\varphi(b)=0$. Let $0<b$. Consider the representation of b described in 3.12. Put $R_{1}=\left\{r_{1}, \ldots, r_{n}\right\}$. Hence

$$
\begin{equation*}
b=\bigvee_{r \in R_{1}} b_{r}^{0} \tag{3}
\end{equation*}
$$

We put

$$
\begin{equation*}
\varphi(b)=\bigvee_{r \in R_{1}} r b_{r}^{0} \tag{4}
\end{equation*}
$$

Then we have $r b_{r}^{0} \in B^{\prime}$ for each $r \in R_{1}$, whence $\varphi(b) \in B^{\prime}$.
In view of 3.1 , the expression of b in the form (3) is unique, thus the mapping φ is correctly defined. Further, from the properties of $Z_{r}\left(r \in R_{0}\right)$ and from (2) we obtain (by using 3.1 again) that φ is a monomorphism. Next, in view of (2) we conclude that the mapping φ is surjective. It is easy to verify that for $b^{\prime} \in B$ we have

$$
b \leqq b^{\prime} \Longleftrightarrow \varphi(b) \leqq \varphi\left(b^{\prime}\right)
$$

We also remark that if $V_{1}, V_{2} \in \mathcal{C}_{1}$ and $\left(V_{1}, B_{1}\right),\left(V_{2}, B_{2}\right)$ are correct pairs such that $B_{1} \simeq B_{2}$, then $V_{1} \simeq V_{2}$. The proof will be omitted.

4. Direct product decompositions

The direct product of vector lattices is defined in the usual way. We apply the notation $\prod_{i \in I} V_{i}$ (or $V_{1} \times V_{2} \times \cdots \times V_{n}$ if the number of direct factors is finite). Let V and $V_{i}(i \in I)$ be vector lattices. If

$$
\begin{equation*}
V \simeq \prod_{i \in I} V_{i} \tag{1}
\end{equation*}
$$

then we say that the relation (1) is a direct product decomposition of V.
The consideration of this section would be trivial in the case $V=\{0\}$. Thus we suppose that V has more than one element. Also, the one-element direct factors in (1) can be omitted. The expression "direct factor" below will mean a non-zero direct factor.

The aim of the present section is to show that each direct product decomposition of a vector lattice belonging to \mathcal{C} has only a finite number of direct factors.

ON CARATHÉODORY VECTOR LATTICES

Proposition 4.1. Let V and $V_{1}, V_{2}, \ldots, V_{n}$ be vector lattices, $V \simeq V_{1} \times$ $\cdots \times V_{n}$. Then the following conditions are equivalent:
(i) $V \in \mathcal{C}$.
(ii) All $V_{i}(i=1,2, \ldots, n)$ belong to \mathcal{C}.

Proof. There exists an isomorphism φ of V onto $V_{1} \times \cdots \times V_{n}$. For $x \in V$ and $i \in\{1,2, \ldots, n\}=I$ we denote by x_{i} the component of $\varphi(x)$ in V_{i}.
a) Assume that $V \in \mathcal{C}$. Without loss of generality we can suppose that there is a generalized Boolean algebra B such that $V=C(B)$. For $i \in I$ put $B_{i}=\left\{b_{i}: b \in B\right\}$. It is easy to verify that B_{i} is a generalized Boolean algebra. Moreover, the zero element of V_{i} belongs to B_{i}; also, B_{i} is a sublattice of V_{i}. Let $0 \neq y \in V_{i}$. There exists $0 \neq x \in V$ with $x_{i}=y$. Further, there are $0 \neq a_{j} \in \mathbb{R}$ and $0 \neq b_{j} \in B(j=1,2, \ldots, m)$ such that

$$
x=a_{1} b_{1}+\cdots+a_{m} b_{m}
$$

Then

$$
y=x_{i}=a_{1}\left(b_{1}\right)_{i}+\cdots+a_{m}\left(b_{m}\right)_{i}
$$

Therefore V_{i} is equal (up to isomorphism) to $C\left(B_{i}\right)$ and hence $V_{i} \in \mathcal{C}$.
b) Conversely, assume that V_{i} belong to \mathcal{C} for each $i \in I$. Hence we may suppose that there are generalized Boolean algebras B_{i} with $V_{i}=C\left(B_{i}\right)$. We denote by B the set of all elements $z \in V$ such that $z_{i} \in B_{i}$ for each $i \in I$. Then B is a generalized Boolean algebra, $0 \in B$ and B is a sublattice of the lattice V.

For each $i \in I$ and $y \in V_{i}$ we denote by \bar{y} the element of V with $\bar{y}_{i}=y$ and $y_{i(1)}=0$ for $i(1) \in I, i(1) \neq i$.

Let $z \in V$. Then we have

$$
z=\bar{z}_{1}+\cdots+\bar{z}_{n}
$$

For each $i \in I$ there are $a_{1}^{i}, \ldots, a_{m(i)}^{i} \in \mathbb{R}, b_{1}^{i}, \ldots, b_{m(i)}^{i} \in B_{i}$ such that

$$
z_{i}=a_{1}^{i} b_{1}^{i}+\cdots+a_{m(i)}^{i} b_{m(i)}^{i} .
$$

Hence

$$
\bar{z}_{i}=a_{1}^{i} \overline{b_{1}^{i}}+\cdots+a_{m(i)}^{i} \overline{b_{m(i)}^{i}} .
$$

We obtain

$$
z=a_{1}^{1} \overline{b_{1}^{1}}+\cdots+a_{m(1)}^{1} \overline{b_{m(1)}^{1}}+\cdots+a_{1}^{n} \overline{b_{1}^{n}}+\cdots+a_{m(n)}^{n} \overline{b_{m(n)}^{n}} .
$$

All elements $\overline{b_{1}^{1}}, \ldots, \overline{b_{m(n)}^{n}}$ belong to B. Hence V is isomorphic to $C(B)$.

Lemma 4.2. Let $0<x \in C(B)$. There exists $m \in \mathbb{N}$ such that for each $0<b \in B$ we have $m b \not \equiv x$.

Proof. The element x can be expressed in the form

$$
x=a_{1} b_{1}+\cdots+a_{n} b_{n}
$$

such that $0<a_{i} \in \mathbb{R}, 0<b_{i} \in B$ for each $i \in\{1,2, \ldots, n\}=I$ and that the systems $\left\{b_{i}\right\}_{i \in I}$ is orthogonal. Let $0<b \in B$. Choose $m \in \mathbb{N}$ such that $m>a_{i}$ for each $i \in I$.

Denote $\left(b_{1} \vee b_{2} \vee \cdots \vee b_{n}\right) \wedge b=b_{0}$ and let b_{01} be the complement of b_{0} in the interval $[0, b]$ of B.

For $i \in I$ put $b_{i}^{1}=b_{i} \wedge b$ and let b_{i}^{2} be the complement of b_{i}^{1} in the interval $\left[0, b_{i}\right]$ of B. Then we have
$b=b_{0} \vee b_{01}, \quad b_{0}=\left(b_{1} \vee \cdots \vee b_{n}\right) \wedge b=b_{1}^{1} \vee \cdots \vee b_{n}^{1}, \quad b_{i}=b_{i}^{1} \vee b_{i}^{2}=b_{i}^{1}+b_{i}^{2}$.
Hence we obtain

$$
\begin{aligned}
x & =a_{1} b_{1}^{1}+a_{1} b_{1}^{2}+\cdots+a_{n} b_{n}^{1}+a_{n} b_{n}^{2}+0 b_{01} \\
b & =1 b_{1}^{1}+0 b_{1}^{2}+\cdots+1 b_{n}^{1}+0 b_{n}^{2}+1 b_{01} \\
m b & =m b_{1}^{1}+0 b_{1}^{2}+\cdots+m b_{n}^{1}+0 b_{n}^{2}+m b_{01}
\end{aligned}
$$

If $m b \leqq x$, then according to 2.6 we would have $m \leqq a_{1}, \ldots, m \leqq a_{n}$, which is a contradiction.

Lemma 4.3. Let $0<x \in C(B), C(B)=V_{1} \times V_{2}, x\left(V_{2}\right)=0$. Let $x=$ $a_{1} b_{1}+\cdots+a_{n} b_{n}, 0<b_{i} \in B, 0<a_{i} \in \mathbb{R}$ and suppose that the system $\left(b_{i}\right)_{i=1,2, \ldots, n}$ is orthogonal. Then $b\left(V_{2}\right)=0$ for $i=1,2, \ldots, n$.

Proof. By way of contradiction, assume that $b_{i}\left(V_{2}\right) \neq 0$ for some $i \in$ $\{1,2, \ldots, n\}=I$. Then $b_{i}\left(V_{2}\right)>0$. Also, $\left(a_{i} b_{i}\right)\left(V_{2}\right)=a_{i}\left(b_{i}\left(V_{2}\right)\right)>0$. Since $\left(a_{j} b_{j}\right)\left(V_{2}\right) \geqq 0$ for each $j \in I, j \neq i$, we get $x\left(V_{2}\right)>0$, which is a contradiction.

Proposition 4.4. Let $V \in \mathcal{C}$. Then V cannot be expressed as a direct product of infinitely many direct factors.

Proof. Without loss of generality we can assume that $V=C(B)$, where B is a generalized Boolean algebra. By way of contradiction, suppose that the relation (1) is valid and that the set I is infinite. We apply the analogous notation as in the proof of 4.1 . We can write

$$
V \simeq V_{1} \times V_{2} \times \cdots \times V^{\prime}
$$

For each $n \in \mathbb{N}$ there exists $y^{n} \in V_{n}$ with $0<y^{n}$. Then $0<\overline{y^{n}} \in V$ and the system $\left(\overline{y^{n}}\right)_{n \in \mathbb{N}}$ is orthogonal. We recall that if $m \in \mathbb{N}, m \neq n$, then the
component of $\overline{y^{n}}$ in V_{m} is 0 ; also, the component of $\overline{y^{n}}$ in V^{\prime} is equal to 0 . The component of $\overline{y^{n}}$ in V_{n} is y^{n}.

The element $\overline{y^{n}}$ can be expressed in the form

$$
\overline{y^{n}}=a_{1}^{n} b_{1}^{n}+\cdots+a_{m(n)}^{n} b_{m(n)}^{n}
$$

such that $0<a_{1}^{n} \in \mathbb{R}, \ldots, 0<a_{m(n)}^{n} \in \mathbb{R}, 0<b_{1}^{n} \in B, \ldots, 0<b_{m(n)}^{n} \in B$ and the system $\left\{b_{1}^{n}, \ldots, b_{m(n)}^{n}\right\}$ is orthogonal.

Thus from 4.3 we conclude that $b_{1}^{n}\left(V^{\prime}\right)=0$ and $b_{1}^{n}\left(V_{m}\right)=0$ for each $m \in \mathbb{N}$, $m \neq n$. Therefore we must have $b_{1}^{n}\left(V_{n}\right)>0$. Further, the system $\left(b_{1}^{n}\right)_{n \in \mathbb{N}}$ is orthogonal.

Since $n\left(b_{1}^{n}\right)\left(V_{n}\right)=\left(n b_{1}^{n}\right)\left(V_{n}\right)$ we infer that there exists $x \in V$ such that

$$
x\left(V_{n}\right)=n b_{1}^{n}\left(V_{n}\right) \quad \text { for } \quad n=1,2, \ldots, \quad \text { and } \quad x\left(V^{\prime}\right)=0
$$

Let m be as in 4.2; choose $n>m$ and let $b=b_{1}^{n}$. Then

$$
\begin{gathered}
(m b)\left(V_{n}\right)=m b_{1}^{n}\left(V_{n}\right)<n b_{1}^{n}\left(V_{n}\right)=x\left(V_{n}\right), \\
m b\left(V^{\prime}\right)=0=x\left(V^{\prime}\right),
\end{gathered}
$$

and for $k \in \mathbb{N}, k \neq n$, we have $m b\left(V_{k}\right)=0, x\left(V_{k}\right)>0$. Thus $m b \leqq x$, which is a contradiction.

By an analogous method (using only integer coefficients) we can prove
Proposition 4.5. Let G be a Specker lattice ordered group. Then G cannot be expressed as a direct product of infinitely many nonzero direct factors.

5. Internal direct product decompositions

Internal direct product decompositions of lattice ordered groups and lattices were dealt with, e.g., in [6] and [9].

For vector lattices, the notion of an internal direct product decomposition can be defined as follows.

Assume that V is a vector lattice and let the relation (1) from the previous section be valid. Also, let φ be as above and let $i \in I$. We denote by $V^{i 0}$ the set of all $y \in V$ such that $\varphi(y)_{j}=0$ for each $j \in I, j \neq i$. Then, in view of the induced operations, $V^{i 0}$ is a vector lattice. For $x_{i} \in V_{i}$ let $x^{i 0}$ be the element of $V^{i 0}$ such that $\left(\varphi\left(x^{i 0}\right)\right)_{i}=x_{i}$. Then the mapping

$$
\begin{equation*}
\varphi_{i}: V_{i} \rightarrow V^{i 0} \tag{*}
\end{equation*}
$$

defined by $\varphi_{i}\left(x_{i}\right)=x^{i 0}$ is an isomorphism of V_{i} onto V_{i}^{0}. For each $x \in V$ we put

$$
\varphi_{0}(x)=\left(\varphi_{i}\left(x_{i}\right)\right)_{i \in I}
$$

Then, in view of (1), the mapping

$$
\varphi_{0}: V \rightarrow \prod_{i \in I} V_{i}^{0}
$$

is a direct product decomposition of V. We say that φ_{0} is an internal direct product decomposition.

Thus to each direct decomposition φ of V there corresponds an internal direct product decomposition φ_{0} of V such that, up to isomorphism, φ and φ_{0} are not essentially different.

All direct factors in an internal direct product decomposition are subsets of V. This yields that the collection of all internal direct product decompositions of V is a set. On the other hand, the collection of all direct product decompositions of V is a proper class.

The definition of the internal direct product decompositions for lattice ordered groups and for lattices having the least element are analogous.

For a vector lattice V we denote by $s(V)$ the system of all nonempty subsets X of V such that, whenever $x, y \in X$ and $r \in \mathbb{R}$, then all the elements $x-y$, $x \wedge y, x \vee y$ and $r x$ belong to X. Under the operations induced from V, each $X \in s(V)$ is a vector lattice.

From the definition of the internal direct product decomposition we infer that (1) is internal if and only if the following conditions are satisfied:
(i) all V_{i} belong to $s(V)$;
(ii) whenever $i \in I$ and $x \in V_{i}$, then $x_{i}=x$ and $x_{j}=0$ for $j \in I, j \neq i$.

In view of 4.4 and 4.5 , we are interested in finite internal direct product decompositions of elements of \mathcal{C}. If $V \in \mathcal{C}$, then without loss of generality we can suppose that $V=C(B)$, where B is a generalized Boolean algebra.

Lemma 5.1. Let V be a vector lattice and let V_{1}, \ldots, V_{n} be nonzero elements of $s(V)$. Then the following conditions are equivalent:
(i) V is an internal direct product of V_{1}, \ldots, V_{n}.
(ii) If $x \in V$, then x can be uniquely expressed in the form $x=x_{1}+\cdots+x_{n}$ with $x_{1} \in V_{1}, \ldots, x_{n} \in V_{n}$. If y is another element of V having the analogous expression $y=y_{1}+\cdots+y_{n}$, then $x \leqq y$ if and only if $x_{1} \leqq y_{1}$, $\ldots, x_{n} \leqq y_{n}$.

Proof.
a) Assume that (i) holds. Let φ be the corresponding isomorphism of V onto $V_{1} \times \cdots \times V_{n}$. From the definition of the internal direct product decomposition we conclude that whenever $i \in\{1,2, \ldots, n\}=I$ and $z \in V_{i}$, then $\varphi(z)_{i}=z$ and $\varphi(z)_{j}=0$ for $j \in I, j \neq i$.

Let $x \in V, \varphi(x)=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. Denote $x^{\prime}=x_{1}+\cdots+x_{n}$. We have $\varphi\left(x_{1}\right)=\left(x_{1}, 0, \ldots, 0\right), \ldots, \varphi\left(x_{n}\right)=\left(0, \ldots, 0, x_{n}\right)$, whence

$$
\varphi\left(x^{\prime}\right)=\varphi\left(x_{1}\right)+\cdots+\varphi\left(x_{n}\right)=\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\varphi(x)
$$

Therefore $x=x_{1}+\cdots+x_{n}$.
Assume that, at the same time, $x=x^{1}+\cdots+x^{n}$ with $x^{1} \in V_{1}, \ldots, x^{n} \in V_{n}$. Then

$$
\varphi(x)=\varphi\left(x^{1}\right)+\cdots+\varphi\left(x^{n}\right)=\left(x^{1}, \ldots, x^{n}\right)
$$

Hence $x^{1}=x_{1}, \ldots, x^{n}=x_{n}$ and thus the expression of x under consideration is unique.

Let $y \in V$ have an analogous expression $y=y_{1}+\cdots+y_{n}$. If $x_{1} \leqq y_{1}, \ldots$, $x_{n} \leqq y_{n}$, then clearly $x \leqq y$. Conversely, assume that $x \leqq y$. Thus $x \vee y=y$. From

$$
\varphi(x)=\left(x_{1}, \ldots, x_{n}\right), \quad \varphi(y)=\left(y_{1}, \ldots, y_{n}\right)
$$

we obtain

$$
\varphi(y)=\varphi(x \vee y)=\left(x_{1} \vee y_{1}, \ldots, x_{n} \vee y_{n}\right)
$$

whence $y_{1}=x_{1} \vee y_{1}, \ldots, y_{n}=x_{n} \vee y_{n}$. Therefore $x_{1} \leqq y_{1}, \ldots, x_{n} \leqq y_{n}$. We verified that (i) \Longrightarrow (ii).
b) Assume that (ii) is valid. Let $x \in V$. There exists uniquely determined elements x_{1}, \ldots, x_{n} with $x_{1} \in V_{1}, \ldots, x_{n} \in V_{n}$ such that $x=x_{1}+\cdots+x_{n}$. Put $\varphi(x)=\left(x_{1}, \ldots, x_{n}\right)$. Hence $\varphi(x) \in V_{1} \times \cdots \times V_{n}$ and φ is a bijection. Then $r x_{i} \in V_{i}$ for each $i \in I$, whence $\varphi(r x)=r \varphi(x)$. Further, if $x, y \in V$, then $\varphi(x+y)=\varphi(x)+\varphi(y)$. Therefore (i) holds.

For a lattice ordered group G we denote by $s(G)$ the system of all ℓ-subgroups of G. Then the result analogous to 5.1 is valid for G (with the same idea of the proof).

Let B be a generalized Boolean algebra. We denote by $s(B)$ the system of all sublattices X of B such that $0 \in X$ and X is a Boolean algebra. If B is expressed as an internal direct product of a system $\left(B_{i}\right)_{i \in I}$, then clearly $B_{i} \in s(B)$ for each $i \in I$.
LEMMA 5.2. Let B_{1}, \ldots, B_{n} be nonzero elements of $s(B)$. The following conditions are equivalent:
(i) B is an internal direct product of B_{1}, \ldots, B_{n}.
(ii) If $x \in B$, then x can be uniquely expressed in the form $x=x_{1} \vee \cdots \vee x_{n}$ with $x_{1} \in B_{1}, \ldots, x_{n} \in B_{n}$.

Proof.
a) Let (i) be valid and suppose that φ is corresponding isomorphism. Let $x \in B$ and $\varphi(x)=\left(x_{1}, \ldots, x_{n}\right)$. We have

$$
\varphi\left(x_{1}\right)=\left(x_{1}, 0, \ldots, 0\right), \ldots, \varphi\left(x_{n}\right)=\left(0, \ldots, 0, x_{n}\right)
$$

Thus we obtain

$$
\varphi\left(x_{1} \vee \cdots \vee x_{n}\right)=\varphi\left(x_{1}\right) \vee \cdots \vee \varphi\left(x_{n}\right)=\left(x_{1}, \ldots, x_{n}\right)=\varphi(x)
$$

Therefore $x=x_{1} \vee \cdots \vee x_{n}$.
If $x^{1} \in B_{1}, \ldots, x^{n} \in B_{n}$ and $x=x^{1} \vee \cdots \vee x^{n}$, then we obtain

$$
\varphi(x)=\varphi\left(x^{1}\right) \vee \cdots \vee \varphi\left(x^{n}\right)=\left(x^{1}, \ldots, x^{n}\right)
$$

whence $x^{1}=x_{1}, \ldots, x^{n}=x_{n}$, and so the condition (ii) is satisfied.
b) Assume that (ii) holds. At first we verify that whenever $i, j \in I, i \neq j$, then $B_{i} \cap B_{j}=\{0\}$. Obviously, $0 \in B_{i} \cap B_{j}$. By way of contradiction, assume that there exists $0<z \in B_{i} \cap B_{j}$. Put $x^{i}=z, x^{j}=z$ and $x^{k}=0$ for $k \in I$, $i \neq k \neq j$. Further, we set $y^{i}=z$ and $y^{k}=0$ for $k \in I, k \neq i$. Then we obtain $z=x^{1} \vee \cdots \vee x^{n}=y^{1} \vee \cdots \vee y^{n}$, which is a contradiction.

Under the notation as in (ii) we put $\varphi(x)=\left(x_{1}, \ldots, x_{n}\right)$. Then the set $\left\{x_{1}, \ldots, x_{n}\right\}$ is orthogonal. The mapping φ is a bijection of B onto $B_{1} \times \cdots \times B_{n}$.

Let $y \in B, \varphi(y)=\left(y_{1}, \ldots, y_{n}\right)$. If $x_{1} \leqq y_{1}, \ldots, x_{n} \leqq y_{n}$, then $x \leqq y$. Suppose that $x \leqq y$ and let $i \in I$. Then

$$
\begin{aligned}
& x_{i} \leqq x \leqq y=y_{1} \vee \cdots \vee y_{n} \\
& x_{i}=x_{i} \wedge y=\left(x_{i} \wedge y_{1}\right) \vee \cdots \vee\left(x_{i} \wedge y_{n}\right)
\end{aligned}
$$

Let $j \in I$. If $j \neq i$, then $x_{i} \wedge y_{j}=0$. Thus $x_{i}=x_{i} \wedge y_{i}$ and therefore $x_{i} \leqq y_{i}$. This yields that the mapping φ is an isomorphism.

Let $i \in I, x \in B_{i}$. Put $y^{i}=x, y^{j}=0$ for $j \in I, j \neq i$. Then $x=$ $y^{1} \vee \cdots \vee y^{n}$, whence $x_{i}=x$ and $x_{j}=0$ for $j \in I, j \neq i$. Therefore the mapping φ determines an internal direct product decomposition of B; hence (i) is valid.

Remark 5.2.1. Looking at the proof of the implication (ii) \Longrightarrow (i) in 5.2 we see that the internal direct product decomposition mentioned in (i) is given by the mapping $\varphi(x)=\left(x_{1}, \ldots, x_{n}\right)$, where $x=x_{1} \vee \cdots \vee x_{n}$ (under the notation as in (ii)).

Lemma 5.3. Let B be a generalized Boolean algebra. Assume that

$$
\varphi: C(B) \rightarrow V_{1} \times \cdots \times V_{n}
$$

is an internal direct product decomposition of $C(B)$. Put $\varphi_{1}=\left.\varphi\right|_{B}$ (the corresponding partial mapping defined on $B)$ and $B_{i}=V_{i} \cap B$ for $i \in I=$ $\{1,2, \ldots, n\}$. Then

$$
\varphi_{1}: B \rightarrow B_{1} \times \cdots \times B_{n}
$$

is an internal direct product of B.

ON CARATHÉODORY VECTOR LATTICES

Proof. Let $i \in I$. In view of φ we infer that V_{i} is a convex sublattice of V containing the element 0 . Thus $0 \in B_{i}$ and B_{i} is a convex sublattice of B. Hence B_{i} is a generalized Boolean algebra. Further, from the definition of φ we easily obtain that $V_{i} \cap V_{j}=\{0\}$ whenever i and j are distinct elements of I; hence in such case we also have $B_{i} \cap B_{j}=\{0\}$.

Let $x \in B, x>0$. If $\varphi_{1}(x)=\left(x_{1}, \ldots, x_{n}\right)$, then $x=x_{1}+\cdots+x_{n}$ and $x_{1} \geqq 0, \ldots, x_{n} \geqq 0$. Since the set $\left\{x_{1}, \ldots, x_{n}\right\}$ is orthogonal, we obtain $x=$ $x_{1} \vee \cdots \vee x_{n}$. If $x^{1} \in B_{1}, \ldots, x^{n} \in B^{n}$ and $x=x^{1} \vee \cdots \vee x^{n}$, then $x=$ $x^{1}+\cdots+x^{n}$. In view of the properties of φ we get $x^{1}=x_{1}, \ldots, x^{n}=x_{n}$.

Thus according to 5.2 and 5.2.1, φ_{1} determines an internal direct product decomposition of B.

Let X be a subset of a vector lattice V. We put

$$
X^{\delta}=\{y \in V:|y| \wedge|x|=0 \text { for each } x \in X\}
$$

Then X^{δ} is a polar of V. It is well-known that $X^{\delta} \in s(V)$.
Again, let B be a generalized Boolean algebra. For $\emptyset \neq X \subseteq B$ we denote by \bar{X} the set of all elements $x \in C(B)$ which can be expressed in the form $x=a_{1} b_{1}+\cdots+a_{n} b_{n}$, where $a_{i} \in \mathbb{R}$ and $b_{i} \in X$ for $i=1,2, \ldots, n$.

Assume that $\psi: B \rightarrow B_{1} \times \cdots \times B_{n}$ is an internal direct product decomposition of B.
LEMMA 5.4. Let $i \in\{1,2, \ldots, n\}$. Then $\overline{B_{i}}=B_{i}^{\delta \delta}$.
Proof. We have $B_{i} \subseteq B_{i}^{\delta \delta}$. Since $B_{i}^{\delta \delta} \in s(C(B))$, we get $\overline{B_{i}} \subseteq B_{i}^{\delta \delta}$.
In view of ψ we have

$$
\begin{equation*}
B_{j} \subseteq B_{i}^{\delta} \quad \text { for each } \quad i \in\{1,2, \ldots, n\}, \quad j \neq i \tag{*}
\end{equation*}
$$

Let $0 \neq x \in B_{i}^{\delta \delta}$. The element x can be expressed in the form $x=a_{1} b_{1}^{\prime}+$ $\cdots+a_{m} b_{m}^{\prime}$, where $b_{1}^{\prime}, \ldots, b_{m}^{\prime}$ are nonzero elements of B, a_{1}, \ldots, a_{m} are nonzero elements of \mathbb{R} and (in view of 2.1) the system $\left\{b_{1}^{\prime}, \ldots, b_{m}^{\prime}\right\}$ is orthogonal. Then we have

$$
|x|=\left|a_{1}\right| b_{1}^{\prime}+\cdots+\left|a_{m}\right| b_{m}^{\prime}=\left(\left|a_{1}\right| b_{1}^{\prime}\right) \vee \cdots \vee\left(\left|a_{m}\right| b_{m}^{\prime}\right)
$$

Consider the element $\left|a_{1}\right| b_{1}^{\prime}$. We obtain $\left|a_{1}\right| b_{1}^{\prime} \leqq|x|$, thus $\left|a_{1}\right| b_{1}^{\prime} \in B_{i}^{\delta \delta}$. Since $B_{i}^{\delta \delta} \in s(C(B))$, we get $b_{1}^{\prime} \in B_{i}^{\delta \delta}$.

In view of ψ and $5.2, b_{1}^{\prime}$ can be expressed in the form

$$
b_{1}^{\prime}=b_{1}^{0} \vee \cdots \vee b_{n}^{0}
$$

where $b_{1}^{0} \in B_{1}, \ldots, b_{n}^{0} \in B_{n}$. If $j \in I=\{1,2, \ldots, n\}, j \neq i$ and $b_{j}^{0}>0$, then in view of (*) we arrive at a contradiction. Thus $b_{1}^{\prime}=b_{i}^{0} \in B_{i}$. Analogously we have $b_{2}^{\prime} \in B_{i}, \ldots, b_{m}^{\prime} \in B_{i}$. Hence $x \in \overline{B_{i}}$. Therefore $B_{i}^{\delta \delta} \subseteq \overline{B_{i}}$.

Corollary 5.4.1. Let $i \in I$. Then $\overline{B_{i}} \in s(C(B))$.
LEMMA 5.5. $C(B)$ is an internal direct product of $\overline{B_{1}}, \ldots, \overline{B_{n}}$.
Proof. Let $0 \neq x \in C(B)$. Then there are $a_{1}, \ldots, a_{m} \in \mathbb{R}$ and b_{1}, \ldots, b_{m} $\in B$ such that $x=a_{1} b_{1}+\cdots+a_{m} b_{m}$. Put $J=\{1,2, \ldots, m\}$ and let $j \in J$. In view of ψ, b_{j} can be expressed in the form $b_{j}=\bigvee_{i \in I} b_{j i}$, where $b_{j i} \in B_{i}$ for $i \in\{1,2, \ldots, n\}=I$. The system $\left(b_{j i}\right)_{i \in I}$ is orthogonal, whence $\bigvee_{i \in I} b_{j i}=\sum_{i \in I} b_{j i}$. Thus we obtain

$$
x=\sum_{j \in J} a_{j} b_{j}=\sum_{j \in J} \sum_{i \in I} a_{j} b_{j i}=\sum_{i \in I} \sum_{j \in J} a_{j} b_{j i} .
$$

Put $\sum_{j \in J} a_{j} b_{j i}=x_{i}$. Then $x_{i} \in \overline{B_{i}}$ for each $i \in I$ and $x=x_{1}+\cdots+x_{n}$.
If $x>0$, then in view of 3.2 .1 we have $a_{1}>0, \ldots, a_{m}>0$. This yields that $x_{1} \geqq 0, \ldots, x_{n} \geqq 0$.

For any $x \in V$ we put $\psi_{1}(x)=\left(x_{1}, \ldots, x_{n}\right)$. Hence ψ is a mapping of $C(B)$ into $\prod_{i \in I} \overline{B_{i}}, I=\{1,2, \ldots, n\}$.

Assume that $x_{1}^{\prime} \in \overline{B_{1}}, \ldots, x_{n}^{\prime} \in \overline{B_{n}}$ such that, at the same time, we have $x=x_{1}^{\prime}+\cdots+x_{n}^{\prime}$. Then

$$
x_{1}-x_{1}^{\prime}=\left(x_{2}^{\prime}-x_{2}\right)+\cdots+\left(x_{n}^{\prime}-x_{n}\right)
$$

and $x_{1}-x_{1}^{\prime} \in \overline{B_{1}}, x_{2}^{\prime}-x_{2} \in \overline{B_{2}}, \ldots, x_{n}^{\prime}-x_{n} \in \overline{B_{n}}$. By applying the facts known from proof of 5.4 we obtain

$$
x_{1}-x_{1}^{\prime} \in B_{1}^{\delta \delta}, \quad x_{2}^{\prime}-x_{2} \in B_{1}^{\delta}, \ldots, x_{n}^{\prime}-x_{n} \in B_{1}^{\delta}
$$

Then $\left(x_{2}^{\prime}-x_{2}\right)+\cdots+\left(x_{n}^{\prime}-x_{n}\right) \in B_{1}^{\delta}$. Since $B_{1}^{\delta \delta} \cap B_{1}^{\delta}=\{0\}$, we get $x_{1}-x_{1}^{\prime}=0$, thus $x_{1}=x_{1}^{\prime}$. Similarly we obtain $x_{2}=x_{2}^{\prime}, \ldots, x_{n}=x_{n}^{\prime}$.

Let y be another element of $C(B)$ and $\psi_{1}(y)=\left(y_{1}, \ldots, y_{n}\right)$. Thus $y=$ $y_{1}+\cdots+y_{n}$. If $x_{1} \leqq y_{1}, \ldots, x_{n} \leqq y_{n}$, then clearly $x \leqq y$. Conversely, suppose that $x \leqq y$. Put $z=y-x$. Let $\psi_{1}(z)=\left(z_{1}, \ldots, z_{n}\right)$. Then $z_{i}=y_{i}-x_{i}$ for $i \in I$. Since $z \geqq 0$, we must have (in view of the case $x>0$ considered above) $z_{1} \geqq 0, \ldots, z_{n} \geqq 0$. Hence $y_{i} \geqq x_{i}$ for $i \in I$.

Now according to $5.1, \psi_{1}$ determines an internal direct product decomposition of $C(B)$.

Let φ and φ_{1} be as in 5.3. The basic idea in constructing φ_{1} from φ can be described by the correspondence

$$
\begin{equation*}
V_{1} \xrightarrow{a} B_{1}=V_{1} \cap B, \tag{a}
\end{equation*}
$$

where V_{1} is an internal direct factor of $V=C(B)$ and B_{1} is an internal direct factor of B.

Further, the main idea of 5.5 consists in applying the correspondence

$$
\begin{equation*}
B_{1} \xrightarrow{b} \overline{B_{1}}, \tag{b}
\end{equation*}
$$

where B_{1} is an internal direct factor of B and $\overline{B_{1}}$ is an internal direct factor of $C(B)$.

By applying the correspondence (a) for $\overline{B_{1}}$ we get

$$
\overline{B_{1}} \xrightarrow{a} \overline{B_{1}} \cap B .
$$

Lemma 5.6. Under the denotation as above, we have $\overline{B_{1}} \cap B=B_{1}$.
Proof. We have clearly $B_{1} \subseteq \overline{B_{1}} \cap B$. Let $x \in \overline{B_{1}} \cap B$. Thus $x \in B$ and hence $x \geqq 0$. The case $x=0$ yields $x \in B_{1}$. Let $x>0$. We have $x \in \overline{B_{1}}$ thus there are nonzero mutually orthogonal elements b_{1}, \ldots, b_{n} of B_{1} and nonzero elements $a_{1}, \ldots, a_{n} \in \mathbb{R}$ such that

$$
x=a_{1} b_{1}+\cdots+a_{n} b_{n} .
$$

According to 2.3 we have $x=b_{1} \vee \cdots \vee b_{n}$. Thus $x \in B_{1}$. Therefore $\overline{B_{1}} \cap B \subseteq B_{1}$.

From 5.6 we immediately obtain:
Corollary 5.7. There exists a one-to-one correspondence between internal direct factors of B and internal direct factors of $C(B)$.

Summarizing, 5.3, 5.5 and 5.7 yield:
Proposition 5.8. Let B be a generalized Boolean algebra. There exists a one-to-one correspondence between internal direct product decompositions of the vector lattice $C(B)$ and finite internal direct product decompositions of B.

By the same method as in 5.1 we obtain:
Lemma 5.9. Let G_{1}, \ldots, G_{n} be nonzero ℓ-subgroups of a lattice ordered group G. The following conditions are equivalent:
(i) G is an internal direct product of G_{1}, \ldots, G_{n}.
(ii) If $x \in G$, then x can be uniquely expressed in the form $x=x_{n}+\cdots+x_{n}$ with $x_{1} \in G_{1}, \ldots, x_{n} \in G_{n}$. Whenever $y=y_{1}+\cdots+y_{n}$ is such an expression for $y \in G$, then $x \leqq y$ if and only if $x_{1} \leqq y_{1}, \ldots, x_{n} \leqq y_{n}$.

Now let us consider the lattice ordered group $S(B)$, where B is a generalized Boolean algebra. Several results on $S(B)$ can be proved by methods analogous to those which were applied for $C(B)$. We have: If

$$
\varphi: S(B) \rightarrow G_{1} \times \cdots \times G_{n}
$$

is an internal direct product of $S(B)$ and $B_{i}=G_{i} \cap B(i=1,2, \ldots, n)$, then

$$
\varphi_{0}: B \rightarrow B_{1} \times \cdots \times B_{n}
$$

is an internal direct product decomposition of B. (Cf. 5.3.)
For each internal direct factor B_{1} of B we denote by B_{1}^{*} the set of all $x \in S(B)$ which can be expressed in the form

$$
x=a_{1} b_{1}+\cdots+a_{n} b_{n}
$$

where $b_{1}, \ldots, b_{n} \in B_{1}$ and a_{1}, \ldots, a_{n} are integers. If

$$
\psi: B \rightarrow B_{1} \times \cdots \times B_{n}
$$

is an internal direct product decompositions of B, then

$$
\psi_{1}: S(B) \rightarrow B_{1}^{*} \times \cdots \times B_{n}^{*}
$$

is an internal direct product decomposition of $S(B)$. (Cf. 5.5 ; the corresponding coefficients in the proof are now assumed to be integers.)

If B_{1} is an internal direct factor of B, then $B_{1}^{*} \cap B=B_{1}$. (Cf. 5.6; again, we have to apply integral coefficients.)

Therefore, similarly as in 5.8 , we conclude that there exists a one-to-one correspondence between internal direct decompositions of $S(B)$ and finite internal direct product decompositions of B.

As a consequence we obtain that there is a one-to-one correspondence between internal direct product decompositions of $C(B)$ and internal direct product decompositions of $S(B)$.

REFERENCES

[1] BIRKHOFF, G.: Lattice Theory (3rd ed.) Amer. Math. Soc. Colloq. Publ. 25, Amer. Math. Soc., Providence, RI, 1967.
[2] CONRAD, P. F.-DARNEL, M. R.: Subgroups and hulls of Specker lattice-ordered groups, Czechoslovak Math. J. (To appear).
[3] CONRAD, P. F.-MARTINEZ, J.: Signatures and S-discrete lattice ordered groups, Algebra Universalis 29 (1992), 521-545.
[4] GOFMAN, C.: Remarks on lattice ordered groups and vector lattices. I. Carathéodory functions, Trans. Amer. Math. Soc. 88 (1958), 107-120.

ON CARATHÉODORY VECTOR LATTICES

[5] JAKUBÍK, J.: Cardinal properties of lattice ordered groups, Fund. Math. 74 (1972), 85-98.
[6] JAKUBÍK, J. : Direct product decompositions of MV-algebras, Czechoslovak Math. J. 44 (1994), 725-739.
[7] JAKUBÍK, J. : Sequential convergences on generalized Boolean algebras, Math. Bohemica 127 (2002), 1-14.
[8] JAKUBÍK, J.: Torsion classes of Specker lattice ordered groups, Czechoslovak Math. J. 52 (2002), 469-482.
[9] JAKUBÍK, J.: On direct and subdirect decompositions of partially ordered sets, Math. Slovaca 52 (2002), 377-395.
[10] JAKUBÍK, J.: On vector lattices of elementary Caratheódory functions, Czechoslovak Math. J. (To appear).
[11] LUXEMBURG, W. A. J.-ZAANEN, A. C.: Riesz Spaces, I. North-Holland Math. Library, North-Holland Publ. Comp., Amsterdam-London, 1971.

Received November 26, 2002
Matematický ústav SAV
Gres̆ákova 6
SK-040 01 Košice SLOVAKIA
E-mail: kstefan@saske.sk

[^0]: 2000 Mathematics Subject Classification: Primary 46A40, 06F20.
 Keywords: elementary Carathéodory function, vector lattice, generalized Boolean algebra, Specker lattice ordered group, direct product decomposition.

