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b-EQUIVALENT MULTILATTICES

OLGA KLAUCOVA

The aim of this paper is to investigate the b-equivalence of multilattices.
The b-equivalence is a generalization of the m-equivalence, investigated by
M. Kolibiar [4] and also 8 generalization of the graphic isomorphism, studied
by J. Jakubik [3]. The method of this paper is a modification of the methods
used in [3] and [4]. The main result of the paper is the following theorem:
Directed distributive multilattices M, M’ are b-equivalent iff there exist
multilattices My, M2 such that M is isomorphic with M; X Ms, and M’ is
isomorphic with M; x M, .

Basic concepts and properties

A multilattice [1] is a poset M in which the conditions (i) and its dual (ii}
are satisfied: (i) If a,b,he M and a < h, b £ h, then there exists ve M
such that (a) v < h,v =2 a,v =2 b,and (b)zeM z £ v,z 2 a,z = b implies
2 = ’

Analogously as in [1] denote by (a v b)+ the set of all elements v € M from (i)
and by (a A b); the set of all elements v € M from (ii) and define the sets:

aVb:U(aVb),’;, aAbZU(a/\b)J.

a=h d=a
b=h asb

Let A and B be nonvoid subsets of M, then we define
AvB=(@vd), ArB=J(anrd),

where a € 4 aad b € B. In the whole paper we denote [(av z) A (bV x)]z =
= z([(@arz) v brx)ly = ) if a,bx e M and [(aVv z) A (bV 2)] =
= (@} (@ r @) v (b2 2)]e = {a)).

A poset 4 is called upper (lower) directed if for each pair elements a, b € A
there exists an element h € 4 (d € A) such that ¢ £ h,b < h(d £ a,d £ b).
The upper and lower directed poset 4 is called directed.

A multilattice M is modular [1] iff for every a, b, b, d, h € M satisfying the
conditions d S a2 h, d b <b' £h, (avbp=~h, (arb)s=d we have

=1b.
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A multilattice A7 is distributive [1] iff for every a, b, b’, d, h € M satisfying
the conditionsd < «,0,0" £ h, (@ v b)p — (@ \ b )y = h, (@’ b)a (¢ b')q

d we have b — b'.

TLet A be a mult lattice and N a nonvoid subset of /. N ¢ called a sub-
multilattice [1] of M iff NN(avbdp #0C and NN (a b)y =0 for every
a,b,d,h e satisfying a < h. b £ h, a 2 d, b 2 d. It is obvious that each
interval is a submultilattice.

The following definition and results are in [4]:

The multilattices M and M’ are said to be isomorphic (denoted as J[ ~ ")
if there exists a bijection fof M onto M’ satisfying: x < yiff f(x) < f(y) (x,y € M).

Let M be a Cartesian product of two posets My, Ms. M is upper (lower)
directed iff M; and M, is upper (lower) directed. M is a multilattice iff .1/,
and .My are multilattices. Let a1, @2 (x; € M;) be Cartesian coordinates of any
element xr e M. For all a,b,h,veM, ve(avb),(ve(a b)) if and only
if v; € (ag v by),, (vs € (a5 + by),) for ¢ =1, 2.

b-equivalence of multilattices

Let M be a directed multilattice and a, b, x € 3. We say that x is between
a and b and write axb if

() [(l@arx)yv (b x)a=2, (arz)r (brax)ca D).

Definition. Directed multilattices M, M’ are said to be b-equivalent if therc
exists a bijection f of M onto M’ satisfying axb iff f(a)f(x)f(D). The bijection f is
called a b-equivalence.

Let M, M’ be directed b-equivalent multilattices and @ € 3/. An element
2’ € M’ denotes the image of the element x under the given b- equiva-
Ience. We denote a partial ordering and multioperations in the mul-
tilattice M by =<, r, v and in M’ by =, N, U.

In Lemma 1 and Lemma 2 M denotes a directed multilattice.

Proof. Evidently, from a < « < b it follows that axb. Conversely, let
a £b, axtb, ueanz, z€(brx). From axb it follows that (v /z),
urnzcarb Since uvz=z we get z=2x, xebnrx and a < b. Since
uArz=u, we get u€anrb=a, hence u=a and a < .

Lemma 1. Let a,b,x € M. If a < b, then azxb iff a < x < ).

Lemma 2. Let a,b,xeM. If 2 <a,x =b(a £ 2,b = 2), then axb iff
xeanb(xeavbd).

Proof. Evidently, from x € a A b it follows that axb. Conversely, if * =< «,
x £ b, axb, then from () it follows that x = xnax=(anrx) (brzx) < a b,
hence x € a A b. Next we show the validity of the dual assertion. Evidently,
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from x € a v b it follows that axb. Conversely ifa < x,b < #, axb, thena r x =

a, bax=>5. From (b) it follows that x = [(ar z) Vv (b A 2)]z = (aV D),
hence x ea v b.

We say that the interval {u, v>, v < v, u, v € M is preserved (is reversed)
[3)if w" < v'(v" < w’) in M’; the one-element interval {u} = {u, u) is preserved
and reversed at the same time.

In Lemma 3, Lemma 4 and Lemma 5 M and M’ denote directed b-equivalent
multilattices.

Lemma 3. Let a,b,u,ve M. If u < a < b £ v and the interval {u,v) is
preserved (is reversed), then the interval {a, b) is preserved (is reversed).

Proof. By Lemma 1 ubv, uab. Hence w'b'v’, w'a’b’ and by Lemma 1 v’ < b" <
c v, u < a’ = b. We have proved that the interval <{a, b) is preserved. The
assertion in the brackets can be proved analogously.

band ¥’ €a’ Nb'(x' €ea’ VD),
s b (@ ca,b <), then

’

Lemma 4. Let a,x,b € M. Then (1) if a
. S

then a < x <b; (2) if a<x=<b
¥'ea’ ' Nb (¥ ea’ VD).

Proof. (1) a’a’b’ follows from Lemma 2. Consequently azb. By Lemma 1
a = x =b.(2) We get axb by Lemma 1. Hence a’2’b’. The relation ' e a’ N b’
follows by Lemma 2.

The other statements follow by duality.

=
a’,

Lemma 5. Let a,be M, ucanb, veavb. If the wnterval
a, vy ({u, b)) is preserved and the interval
(b, vy (Ku, @)) is reversed, then the interval
u, b) ({a, v)) is preserved and the interval
u, ay (<b, v>) is reversed.

Proof. If (a, v) is preserved and (b, v> is reversed, then we get a’ < v’ < b’.
Since aub, a’u'b’, weget @’ < ' < b’ by Lemma 1. Hence, the interval (u, a)
1s reversed and the interval {(u, b) is preserved. The proof of the second part
of Lemma 5 is analogous.

In Lemma 6, Lemma 7, Lemma 8 and Lemma 9 M and M’ denote directed
distributive b-equivalent multilattices.

Lemma 6. Let a,be M, ueanrb, veav b. If the intervals {a,v), <{b,v)
or the intervals {u,a), {u,b> are preserved (are reversed), then the interval
{u, vy is preserved (is reversed).

Proof. Let <a,v), <b,v)> be preserved, " ea’ Nu', s eb’ Nnu'. By (1)
of Lemma 4 u <7 £ a, v £ s £ b, hence {u,r), {(u,s) are reversed and
{r, vy, {s, vy are preserved. Let

(3) te(rv s)y.



By Lemma 3 the intervals {(r,t), <s,t> are preserved. Let w' et’' U u’. We
have t'w'n’, twuw and by Lemma 1 u £ w < t. Hence the interval Ju,w is
preserved and the irterval {w, t) is reversed. Since u € @ » %, then

(4) UETAS.

Since r"ct'cu’, r=t wst r
of Lemma 4

cuwcw, u=sr u=sw then by (2)

(5) tervw, UET\W.

Since A and M’ are distributive, from (3), (4), (3) we get w = s, hence w’ — «
and from ¢’ < v’ < w’ we get s.= u. We have proved that the interval {u, v
is preserved. Analogously we can verify that if {u, @) and {u, b) are preserved,
then (u, v) is preserved. The assertion in the brackets can be proved analogously
(we replace MM’ by the dual multilattice).

Lemma 7. Let a,b e M. We define a relation Bi(R3) on M as follows: al1b
(aRab) if and only if there exists an element v € M, v € a v b such that the intervals
(a, vy, <b, vy are reversed (are preserved). The relations Ri and Rs are equi-
valences. '

Proof. Evidently R;: is reflexive and symmetric. Thus it remains to prove
the transitivity. Let aR1b, bRic, hence there exist r ea v b, s € b v ¢ such that
the intervals <c, r), (b, r>, (b, s), {c, s) are reversed. Letwerv s,u e (r  s).
Sinece the intervals (b, ), <b, s> are reversed, then by Lemma 3 the intervals
{u, sy and {u, r) are reversed too. By Lemma 3 and Lemma 6 the intervals
{r,w) and (s, w) are reversed, hence (@, w), (¢, w)> are reversed too. Let
v € (a v ¢)w. By Lemma 3 the intervals (a, v), (¢, v> are reversed, hence ¢ f;c
and the 1e’ation 12 _is transitive. Analogously it can be proved that the relation
R: is an equivalence.

Lemma 8. Let ¢,be M, uea b, veav b, aRb (eR:b). Then the interval
lu, vy 18 reversed (is preserved).

Proof. Let aR,b, then there exists v; et v b such that the intervals (e, v
“b, vy are reversed. Let u € ¢ » b, then the interval {(u, v;> is reversed by
Lemma 6. Hence by Lemma 3 the intervals (u, @), {u, b> are reversed. Let
veavb. The interval {u, v) is reversed by Lemma 6. Thn assertion in the
brackets can be proved analogously.

Lemma 9. Let By and Rs be the equivalences from Lemme 7 and 0 (1) denotes
the least (the greatest) element of the la'tice of oll equivalence relations on M.
Then

(i) R.R>= R,R;.
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(11) P U Rs I, RlﬂRz——O.
@ity if a,b,ce M, a £ ¢, aR\b, bRxc, then a < b,

C.

IIA

(iv) if @, b,c,d € M, aRib, cRid, GRsc, bRod, then from « < b it follows thal
¢ £ d and from a £ ¢ it follows that b < d.

Proof. (i) Let @, b € 3, aR R»b, hence there exists an element r € .M such
that aRy;r and rRsb. Hence there exist elements u,v e M, with webd 1,
v € @ v r such that the intervals {a, v>, {(r, v) are reversed and the intervals

b, w , {r,uy are preserved. Let w ew v v. Since v = r'" = ', r < u, r =< v,
then r € w A v by (2) of Lemma 4. By Lemma 5 the interval (v, w) is preserved
and the interval (u, w) is reversed. Let »’ € b’ N w’ and m' € ¢’ U w'. Since
bniw and aemw, we get b < n < w and ¢ < m £ w by Lemma 1. Because
nebcu,necwcu,vecwem,veca scm,o2wm < wn 2w,
Uu<w, a v, a £m b=n, b=u, then bennru, ¢ evam, wevvm,
wenvu by (2) of Lemma 4. By Lemma 5 the intervals {a, m)>, (n, w are
pres-rved and the intervals <b, n), {m, w) are reversed. Let s € m a n. Since
n'cw < m,n 2w m =< w, thenw €n v mand the interval (s, n) is reversed
and the interval (s, m) is preserved by Lemma 5. Letp € (@ $)n,q€ (b ).
Evidently the intervals <{a, p>, {s, p° are preserved and the intervals (b, q ,
<s, q> are reversed. Hence aRRzs, sR1b and R:R> < RsR,. The assertion ReR; <
< RyRz can be proved analogously.

(ii) Let a,b € M, aR; N R3b. Then aRib, aR:b, hence there exist u, v € M,
weavb,veavbsuch that the intervals {a, u>, <b, u> are reversed and the
intervals «,v , (b, v) are preserved. Using Lemma 8 and Lemma 3 we get
that the intervals {a, u), <b, ) are pr:served and (a, v>, (b, v) arereve s d.
1t follows that @ = v = b and R; N R, = 0.

Let a,b € M. We shall show that aR; U R2b. Let veav b, ' €a U,
web VY. By Lemma 1 @ < u < v and b £ w < v. Hence the intervals
ca,wy, b,w)y are preserved and the intervals {u,v), (w, v) are reserved.
Hence aRsu, bRaw. Evidently v e v w and uR w. From this it follows that

aR, U Bb and R, U Ry = I.

(iii) Let wecvb, ve(avb)y. From cRyb it follows that the interval

b, w) is preserved. Using Lemma 3 we get that the interval <b, v) is preserved

too. From aRb it follows that the interval (b, v)> is reversed. Hence b v
and a £ b. The assertion b < ¢ can be proved analogously.

(iv) First we prove the assertion: o < b implies ¢ = d. Let vea /e,
uebvw te((bnrv)g. The interval {a, b)> is reversed and the interval {u, v)>
is preserved and since the interval <{a, t) is a part of these intervals, we get
a t. By Lemma 5 the interval (b, ) is preserved and the interval “v, u

is reversed. Let rebvd, seuvr, ne(unrr)y. The intervals (b, ), <b,u
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are preserved, hence the intervals (n,r , n,u are preserved too (Lemma 3).
From this it follows, by Lemma 6 and Lemma 3, that the interval »r,s

is preserved. Since the intervals {d, r), {r, s) are preserved it follows that
the interval <{d, s> is preserved too. Let w € (¢ / d)s. By Lemma 3 it follows
that {d, w) is preserved. Since cR\d it follows that {d, w, is reversed. This
implies w = d and ¢ £ d. The validity of the assertion “a £ ¢ implies b < d"’
can be proved analogously.

In the following theorem we shall use the theorem [5, Thm, 3.4.2]:

Theorem K. Let A be a quasiordered set. There exists a one-one correspondence
between the non-trivial direct decompositions of the quasiordered set A into two
factors and couples (R1, R2) of non-trivial equivalence relations on A satisfying
the properties (i), (i), (iii), (iv) from Lemma 9. To each couple (Ry, Rs) fulfilling
these conditions there corresponds the direct decomposition A ~ A[R; < A B»
and to each element o € A there corresponds the element (a;, as), where a; is
the equivalence class under R; (i = 1, 2) containing a.

Theorem 1. Let M and M’ be directed distributive multilattices. Let ¢ be
& b-equivalence of M onto M'. Then there exist multilattices My, Mo such that
M~M: x My, M' ~ My X M, and the image (x1, x2) of the element x € M
under the first isomorphism is the same as the image of the element ' € M,
x' = @(x) under the second isomorphism.

Proof. Let B, and R; be the equivalences from Lemma 7. From Lemma 9
it follows that the equivalences R; and Rs satisfy the conditions of the Theo-
rem K. Let us denote M|R; = M,, M|R; = Ms. By Theorem K there exists
an isomorphism ¢ : M~ M; x My (M, My, M; are quasiordered sets). Since )/
is a multilattice, then M7 x My is a multilattice and Ay, Ms are multilattices
too. Similarly there exists an isomorphism o’ : M' ~ M, . M, (M; M R,
where R, (¢ = 1, 2) are equivalences defined on M’ in the same way as R; on M
and clearly o' Rb iff aR:b). Let X = y'qp~1. It is obvious that X is the b-equi-
valence of M1 X Mz onto M; X M,.

We shall show that M; and M, are isomorphic, Mz and D, are anti-iso-
morphic.

Let (my, ms) € M1 x Ms. Let us denote X(mi, ms) — (m,, m,). Let us
construct My x As (M, x A,), where 45 (4,) is a multilattice with one and
only one element ms (m,). 1t is obvious that M; x Az (M, X A,) is a sub
multilattice of M; x Mz (M, x M,) and the mapping f: M; < ds - M,
(f: My x Ay - M;), which maps a pair (a1, ms) ((a;, m;)) onto an element
a1 (a;) is an isomorphism. The mappings

f 1 Z ’ ’ j-, ’
M, > My x A =~ ]”] X AZ e J”l
give a b-equivalence b = f'Xf 1 = f'yp'pp~1f~1 of the multilattice M, onto
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the multilattice M, which each z; € M; maps onto z; € M, where p~1f~1(z;) —
—x,veM and x ex, xEms, ¢p(x) =, ' € M’, v'(z') = (x;, m,), &' €y,
o’ € my and f'(x}, m,) = x,. We shall prove that % is an isomorphism Clearly A
is a bijection. Let a1, by € My, a; £ b. We have p~1f1(a;) = a and a € ms,
v If 1(by) = b and b € mz. Since f and y are isomorphisms, then a < b holds.
From a € ma, b € mg it follows that aRsb, hence the interval <{a, b) is preserved
and it implies a’ < b’. Since ¢’ and f’ are isomorphism, then a; < b] holds.
The assertion: “a; < b; implies a; < b,'" —can be proved analogously. Hence
the multilattices M, M are isomorphic.

Analogously we construct a mapping &k : Ms — M,, k = g'y’pyp~1g~1, where
g: A1 X My — Mz and g': A, x M, - M, are isomorphisms (41(d4;) is a multi-
lattice with one and only one element m;(m,)). We shall show that k is an
anti-isomorphism. Evidently £ is a bijection. Let ¢z, d2 € M2, c2 < dz2. We have
p 1g Ycz) — ¢ and c e my, plg1(ds) = d and d € m;. Since g and y are iso-
morphisms, then ¢ £ d holds. From ¢ € m;, d € m; it follows that cR;d, hence
the interval {c, d) isreversed therefore d’ < ¢’. Since " and g’ are isomorphisms
then d, < ¢, holds. The assertion: “d, < c, implies ¢z < dz”, can be proved
analogously. Hence the multilattices Mz, M, are anti-isomorphic. Conse-

quently
h=1 x k1:M; x My~ M, x My

is an isomorphism (JI,_? is the dual multilattice of Mz) and we get
ﬂlNﬂ[].Xﬂlz, M’Nﬂ[]_ XIW;.

From the construction of A and % it follows that p(x) = (21, x2) = (A~! X
X k~l)y'(x’), where x € M, y € My, x2 € Mz, 2" € M, 2’ = g(z).
In Lemma 10, Lemma 11, Lemma 12 and Lemma 13 M denotes a distri-

butive multilattice.

Lemma 10. Let a, be M, wear b, vea v b, then there exist isomorphisms:
u, ay — b, v) with f(x) = (bv ), for x €u, ay;
b, v> —<u, ay with g(y) = (a r y)u for y € b, v)>;
u, by — {a,v) with h(r) = (rv a), for r € {u, b);
a,v - {u, by with k(s) = (b A 8)y for s €la, v).
The proof of Lemma 10 follows from 6.4, §6 of paper [1].

R

Lemma 11. Let a,b e M, u €arb, v ea v b, then there exist isomorphisms:
m: u, vy > <{a, vy X <{b, v> with m(x) = ((a v x),, (b Vv x)»)
Jor x € wu,v);
n: {a, vy ¥ <{b, vy - {u, vy with n(x1, x2) = (¥1 A X2)u
Jor x1 € a,v> and a2 € <b, v).
This Lemma is a corollary of 3.2, 3.4, 3.7 of paper [2].
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Lemma 12. If «,bedM, nwea b, veavd wu=ux=rv, €. ),

Y E (@1 A b)y, then y < a < .
Proof. Let us denote 23 € (z v b),. By Lemma 11 x = (a3 © @2),, where

y a1,y £ a2, uw £ Y, hence y < o

Lemma 13. Let a,b,c,d,e,feM. If feevd,cees d, dec\ b, ace I,

a = c,thenfeevb.
Proof. Let r e (bv e)s, s€ (b Vv ¢)y. From the isomorphism of the intervals

<a, ey, {b, r> (Lemma 10) it follows that (s A e); = ¢, hence

(6) cesne.

Let us choose w e (r a d).. From the isomorphism of the intervals {e, d

{e, f> it follows that (w v e); = r, hence

(7) rewve.

By Lemma 12 we get w < s < 7. Hence there holds

(8) c<wss<r.

From (6), (7), (8) and frcm the mcdularity it follows that w = s, hence ¢ <
<s=d Sincedebve, we getd=s. Because e < r < fand d = r, by (8)
we get f = r. Hence feev b.

Lemma 14. Let M be a directed distritutive multilattice, a, b, x € M. Then the
Sfollowing conditions are equivalent:

(b) [(lerz)v (bnrz)]=2, (arnz)rn (brax)=arb,
(b') [(@avaz)a(bva)l,=a, (avazyvbva)cavhd.

Proof. Let 5 eara, 22 €b r 2, u €21 A 22. Let (b) be valid. Let y; e v a,
Y€V, YyE(Y1AY2)z, v EYLV Y. It isobvious, that u € 27 A b. By Lemma 13
we get from this
(9) Y2 €X1 vV b.

Let us choose 7 € (a A y2),,. There holds u € 7 A b. From this and from (9)
it follows that » = x;. Hence
(10) XL EQA A Ye
and z; € @ A y too. From this and frcm y; e a v  we get x = y by modularity.
Hence we have proved that [(a v @) A (bv x)]; = 2. By Lemma 13 it follows
from (10) that v € @ v y2. From this and from (9), (10), v €@ A b by Lemma 13
we get v €a v b. Thus we have obtained (av ) v (bv x) < a v b, too. Hence
we have proved that (b) implies (0'). The implication (b’) = (b) can be obtained
by duality.
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Lemma 13. Let M, My, My bo directed multilattices and let ¢ be an iso-
morphism of M onto My < My. For we M we denste @(x) = (21, x2). Let
«, b, x € M. Then the elements a, b, x satisfy the condition (b) iff a;, by, ;€ My
(i 1, 2) satisfy this condition.

The proof of this assertion follows from the isomorphism.

Lemma 16. Let M be a distributive directed multilattice and let M~ be the

Jual of M. The elements a, b, »» € M <ttisfy the condition (b) iff they satisfy
this conditicn in M~ .

Proof. It suffices to use Leimma 14.

Theorem 2. Let M, M’ be dirccted distributive multilattices and M ~ My x M,
M~ My x M5 . Then M and M’ are b-equivalent.

Proof. Let f be an isomorp™ism of M onto M; x M. and let ¢ be an iso-
morpaism of My X M3 cnty M. Furthor let h: My ~ Ms — My < My bethe
identical mapping. Hence ¢ = ghf is a bijection. Let «, b,z € M. We shall

how that axb iff ¢ (a)q (x)p(b). Using Lemma 15 and Lemma 16 we get: axd
T f(a) f() f(b), fa) fl@) fb) ifE D(f(@) BUf) BFB)), (fla)) Bifia) RB)) iff
gl fla))] glh(f(x))] glR(f(0))]. Consequently axb iff ¢(a) ¢(x) ¢(b).

The following theorem is a corrollary of Theorem 1 and Theorem 2.

Theorem 3. Let M, M’ be directed distributive multilattices. M, M’ are
b-equivalent if and only if there exist multilattices My, Ms sub that M ~ My X M»
and M~ My x M.

In paper [4] the notion of the m-equivalence is d=fined as follows: The metric
multilattices M, /" are m-equivalent if th=re exists a bijection ¢ of M onto M’
such that for each a, b, « € 1, the following conditions ere cquivalent:

(i) o(a,x) o>, b) ola,b)

(i) olg (@), (@) 4 eolp(@), @) — olg(w), ¢(b)) .

Lemmea ¥7. Let M, M’ be directed disiributie. metrie multilatiices. M, M’ are
b-cquivalent if and only if M, M’ are in-equivalent.

Th~ proof of this Lemma follows from 2.2 [{].
Us .1 Lemma 17 and Theorem 3 we get:

Theorem 4. (Thm. 3.3.2 [4]). Directed dis'ributive metric multilattices M, M’
are m-cquivalent if and only if there excst multilattices Ay, As such that M ~ A1 X
code, M~ 4y X A_;
Kolibiar [4] has shown that Thm. 4 fails to hold if we omit the assun ption
that 3 and J’ are distributive, or the assumption that M and M’ are di-
rected: hence also Thm. 3 fails to be valid if we omit some of these assumptions.
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