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b-EQUIVALENT MULTILATTICES 

OLGA KLAUCOVA 

The aim of this paper is to investigate the b-equivalence of multilattices.. 
The 6-equivalence is a generalization of the m-equivalence, investigated by 
M. K o l i b i a r [4] and also a generalization of the graphic isomorphism, studied 
by J . J a k u b i k [3]. The method of this paper is a modification of the methods 
used in [3] and [4]. The main result of the paper is the following theorem: 
Directed distributive multilattices M, M' are 6-equivalent iff there exist 
multilattices M\, M% such that M is isomorphic with M\ x M2, and M' is 
isomorphic with M± x M% . 

Basic concepts and properties 

A multilattice [1] is a poset M in which the conditions (i) and its dual (ii) 
are satisfied: (i) If a,b,heM and a <> h, b <? h, then there exists veM 
such that (a) v <^ h, v ^ a, v ^ b, and (b) z e M z <? v, z ^ a, z ^ b implies 
z = v. 

Analogously as in [1] denote by (a v b)\ the set of all elements v e M from (i) 
and by (a A b)a the set of all elements u eM from (ii) and define the se ts : 

a v 6 = ( J (a v &);-, a A b = [J (a A b)d. 
a<h d^a 
b<h rt<6 

Let A and B be nonvoid subsets of M, then we define 

A v B = \J(a v b), A AB = \J(a A b), 

where a e A and b e B. In the whole paper we denote [(a v x) A (b v x)]x = 
= x([(a A x) v (6 A X)]X = x) if a,b,x e M and [(a v x) A (b v x)]x = 
= {x} ([(a A x) v (b A x)]x = {x}). 

A poset A is called upper (lower) directed if for each pair elements a,b e A 
there exists an element h e A (d e A) such that a <^h,b <= h (d <? a, d <$ b). 
The upper and lower directed poset A is called directed. 

A multilattice M is modular [1] iff for every a,b,b',d,h e M satisfying the 
conditions d <^ a <^h, d <^b <^b' <^h, (a v b)h = h, (a A b')a = d we have 
b = b'. 
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A multilattice 21 is distributive [1] iff for every a, b, b', d, h e 21 satisfying 
the conditions d ^ a, b, b' ^ h, (a • b)h — (a \ b')h = h, (a t b)a (a b')i 

d we have b — b'. 
Let 21 be a mult lattice and N a nonvoid subset of 21. N > called a sub-

multilattice [1] of 21 iff N n (a v b)h ^ 0 and N n (a b)^ -£ 0 for every 
a, b, a*, A G N satisfying a ^ h. b ^ h, a ^ d, b ^ d. It is obvious that each 
interval is a submultilattice. 

The following definition and results are in [4]: 
The multilattices 21 and 21' are said to be isomorphic (denoted as 21 ^ 21') 

if there exists a bisection/of 21 onto 21' satisfying: x ^ y ifff(x) ^ f(y) (x, y e 21). 
Let 21 be a Cartesian product of two posets Mi, 212. 21 is upper (lower) 

directed iff Mj and 2I2 is upper (lower) directed. 21 is a multilattice iff JIi 
and 212 are multilattices. Let x\, x2 (xt e Mi)be Cartesian coordinates of any 
element x G 21. For all a, b, h, v G 21, v G (a v b)h (v G (a b)fl) if and only 
if vt G (at v b*)^. (vi G (at r 6<)A.) for i = 1,2. 

b-equivalence of multilattices 

Let 21 be a directed multilattice and a,b, x e 21. We say that x is between 
a and b and write axb if 

(b) [(a \ x) v (b " x)]x = x, (a A x) / (b A x) CZ a b. 

Definition. Directed multilattices 21, 21' are said to be b-equivalent if there 
exists a bisection f of 21 onto 21' satisfying axb iff f(a)f(x)f(b). The bisection f is 
called a b-equivalence. 

Let 21, 21' be directed b-equivalent multilattices and x G 21. An element 
x' G 21' denotes the image of the element x under the given b- equiva­
lence. We denote a partial ordering and multioperations in the mul­
tilattice M by ^ , A, v and in 21' by c , n , U. 

In Lemma 1 and Lemma 2 M denotes a directed multilattice. 

Lemma 1. Let a,b, x G 21. If a S b, then axb iff a ^ x ^ b. 
Proof . Evidently, from a ^ x ^ b it follows that axb. Conversely, let 

a ^ b, axb, w G a A x, z e (b A X)U. From axb it follows that (u / z)x x, 
u A z c: a A b. Since u v z = z, we get z = x, x G b A x and x ^ b. Since 
^ A z = u, we get u E a A b = a, hence u = a and a ^ x. 

Lemma 2. Lel a, b, x e l . J/ x ^ a, x ^ b (a g x, b ^ x), then axb iff' 
x G a A b (x G a v b). 

Proof . Evidently, from x G a A b it follows that axb. Conversely, if x ^ a, 
x ^ b, axb, then from (b) it follows that x = x A X = (a A X) (b A x) c a b, 
hence x G a A b. Next we show the validity of the dual assertion. Evidently-, 
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from x e a v b it follows that axb. Conversely if a ^ x, b ^ x, axb, then a A X = 
af b A x = b. From (b) it follows that x = [(a A X) V (b A X)]X = (av b)^, 

hence x e a v b. 
We sa}^ that the interval (u, v), u ^ v, u, v E M is preserved (is reversed) 

[3] if u .== v'(v ^ u') in M'\ the one-element interval {u} = (u, u) is preserved 
and reversed at the same time. 

In Lemma 3, Lemma 4 and Lemma 5 M and M' denote directed b-equivalent 
multilattices. 

Lemma 3. Let a, b, u, v e M. Ifu^a^b^v and the interval (u, v) is 
preserved (is reversed), then the interval (a, b) is preserved (is reversed). 

Proof . By Lemma 1 ubv, uab. Hence u'b'v', u'a'b' and by Lemma 1 u' c= b' c= 
.== v', u' c a' c: b'. We have proved that the interval (a, b) is preserved. The 
assertion in the brackets can be proved analogously. 

Lemma 4. Let a,x,b e M. Then (1) if a ^ b and x' e a' n b'(x' e a' U b'), 
then a ^ x S b; (2) if a ^ x ^ b,. x' c a', a;' c J' (a' c x', b' ^ a/), lAew 
/ e a ' n b' (x' e a' U b'). 

Proof . (1) a'a/b' follows from Lemma 2. Consequently a#b. By Lemma 1 
a g x ^ b. (2) We get a.rb by Lemma 1. Hence a'x'b'. The relation .r'ew'n b' 
follows by Lemma 2. 

The other statements follow by duality. 

Lemma 5. Let a,b e M, u e a A b, v e a v b. If the interval 
a, v) ((u, b)) is preserved and the interval 

(b, v) ((u, a)) is reversed, then the interval 
u, b) ((a, v)) is preserved and the interval 
u, a) ((b, v)) is reversed. 
Proof . If (a, v) is preserved and <b, v) is reversed, then we get a' ^ v' ^ b'. 

Since aub, a'u'b', we get a' .== u' .== b' by Lemma 1. Hence, the interval (u, a) 
is reversed and the interval (u, b) is preserved. The proof of the second part 
of Lemma 5 is analogous. 

In Lemma 6, Lemma 7, Lemma 8 and Lemma 9 M and M' denote directed 
distributive b-equivalent multilattices. 

Lemma 6. Let a,b e M, u e a A b, v e a v b. If the intervals (a, v), (b, v) 
or the intervals (u, a), (u, b) are preserved (are reversed), then the interval 
(u, v) is preserved (is reversed). 

Proof . Let (a, v), (b,v) be preserved, r'ea'nu', s'eb'nu'. By (1) 
of Lemma 4 u ^ r ^ a , u ^ s ^ b , hence (u, r), (u, s) are reversed and 
(r, v), (s, v) are preserved. Let 

(3) te(rvs)v. 
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By Lemma 3 the intervals (r, t), (s, t) are preserved. Let w' E f U u'. We 
have t'w'u', twu and hy Lemma 1 u ^ w ^ t. Hence the interval \u, w is 
preserved and the interval (10, t) is reversed. Since u E a A b, then 

(4) u er A s. 

Since r' ^ t' ^ w', r <, t, w ^ t, r' c u' c *v', u ^ r, u ^ w, then by (2) 
of Lemma 4 

(5) t e r v w, u er \ w. 

Since M and M' are distributive, from (3), (4), (5) we get w = s, hence w' — .*' 
and from s' c= w' c= w' we get 5.= w. We have proved that the interval (u, v 
is preserved. Analogously we can verify that if (u, a) and (u, b) are preserved, 
then (u, v) is preserved. The assertion in the brackets can be proved analogously 
(we replace M' by the dual multilattice). 

Lemma 7. Let a, b e M. We define a relation Bi(B2) on M as follows: a Bib 
(aR2b) if and only if there exists an element v e M, v e a v b such that the intervals 
(a, v), (b, ;̂> are reversed (are preserved). The relations Bi and, B2 are equi­
valences. 

Proof . Evidently B\ is reflexive and symmetric. Thus it remains to prove 
the transitivity. Let aB\b, bB\c, hence there exist r e a \ b, s eb v c such that 
the intervals (0, r), (b, r), <b, s), (c, s) are reversed. Let w E r v s, u e (r * s)&. 
Since the intervals (b,r), (b, s) are reversed, then by Lemma 3 the intervals 
(u, s) and (u, r) are reversed too. By Lemma 3 and Lemma 6 the intervals 
(r, iv) and <<s, w) are reversed, hence (a, w), (c, w) are reversed too. Let 
v e (a v c)w. By Lemma 3 the intervals (a, v), (c, v) are reversed, hence aB\c 
and the lec t ion Bm is transitive. Analogously it can be proved that the relation 
B> is an equivalence. 

Lemma 8. Let a, b e M, u e a A b, v E a v b, aBb (cjB2b). Then the interval 
(u, v) is reversed (is preserved). 

Proof . Let aB\b, then there exists v\ E r- v b such that the intervals (a, ^,LX 

/yb,vi) are reversed. Let uEat b, then the interval (u,v\) is reversed by 
Lemma 6. Hence by Lemma 3 the intervals (u, a), (u, b) are reversed. Let 
v e a v b. The interval (11, v) is reversed by Lemma G. The assertion in the 
brackets can be proved analogously. 

Lemma 9. Let B]_ and B2 be the equivalences from Lemma 7 amd 0 (J) denotes 
the least (the greatest) element of the lattice of all equivalence relations on M„ 
Then 

(i) BiB2 — B2B\. 
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(ii) Bi u I?2 I, Bi n I?2 - 0. 

(iii) if a, b, c E M, a tk c, aBib, bB2c, then a fk b,b <, c. 

(i\) if a, b, c, d E M, aB\b, cB\d, oB>c, bB2d, then from a <, b it follows that 
c <, d and from a <, c it folloivs that b <, d. 

Proof, (i) Let a, b EM, aB\B2b, hence there exists an element r eM such 
that aB\r and rB2b. Hence there exist elements U,VEM, with u Eb ?, 
v E a v r such that the intervals (a, v), (r, v) are reversed and the intervals 

b, u , (r, u) are preserved. Let w e u v/ v. Since v' <=; / c u', r <, u, r <, v, 
then r e u A V by (2) of Lemma 4. B}^ Lemma 5 the interval (v, w) is preserved 
and the interval (u, w) is reversed. Let n' eb' n w' and m' e a' U w'. Since 
bnw and amw, we get b <, n <, w and a <, m <, w by Lemma 1. Because 
n' <= b' <= u', n' ^ w' ^ u', v' <= i«/ c= m', v' c= a' <= m', v <, w, m <. w, n <, w, 
u < w, a <, v, a <, m, b <, n, b <, u, then b E n A u, t e v A m, w E v v m, 
w e n v u by (2) of Lemma 4. By Lemma 5 the intervals (a, m), (n, w are 
preserved and the intervals (b, n), (m, w) are reversed. Let s E m A n. Since 
n c: w' <= m', .>i ^ w, m ^ w, then w En v m and the interval <(s, w> is reversed 
and the interval (s, m) is preserved by Lemma 5. Let^p e (a s)m, q e (b s)n . 
Evidently the intervals (a, p), (s, p^ are preserved and the intervals (b, q , 

< s, q) are reversed. Hence aB2s, sB\b and B<B2 c B2Bi. The assertion B2Tt\ c 
c B\B2 can be proved analogously. 

(ii) Let a,b E M, aBi n R2b. Then $I2ib, aB2b, hence there exist u, v E M, 
it E a v b, v E a v b such that the intervals (a, u), (b, u) are reversed and the 
intervals a, v , (b, v) are preserved. Using Lemma 8 and Lemma 3 we get 
that the intervals (a, u), (b, u) are pr3S3rved and (a, v), (b, v) are reversed. 
I t follows that a = u = b and B\ n B2 = 0. 

L°t a,b E M. We shall show that aBi U B2b. Let v E a v b, u' e a' U v', 
w' eb' U v'. By Lemma 1 a <, u ^ v and b <, w <, v. Hence the intervals 
< a, u), b, w) are preserved and the intervals (u, v), (w, v) are reserved. 
Hence aB2u, bB2w. Evidently v EU W and uB\w. From this it follows that 
aBL u B2b and B±KJ B2 = I. 

(iii) Let wEcvb, vE(avb)w. From cB2b it follows that the interval 
b, w) is preserved. Using Lemma 3 we get that the interval (b, v) is preserved 

too. From aBib it follows that the interval (b, v) is reversed. Hence b v 
and a <, b. The assertion b <, c can be proved analogously. 

(iv) First we prove the assertion: a <, b implies c <, d. Let vEa / c, 
u Eb v v, t E (b A v)a- The interval (a, b) is reversed and the interval (a, v) 
is preserved and since the interval (a, t) is a part of these intervals, we get 
a t. By Lemma 5 the interval (b, u) is preserved and the interval xv, u 
is reversed. Let r Eb v d, s EU V r, n e (u A r)&. The intervals (b, r), (b, u 
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are preserved, hence the intervals (n, r , n, u are preserved too (Lemma 3).. 
From this it follows, by Lemma 6 and Lemma 3, that the interval r, s 
is preserved. Since the intervals (d, r>, (r, s} are preserved it follows that 
the interval (d, s) is preserved too. Let w e (c / d)s. By Lemma 3 it follows 
that (d, w} is preserved. Since cR\d it follows that (d, w) is reversed. This 
implies w = d and c ^ d. The validity of the assertion "a ^ c implies b < d" 
can be proved analogously. 

In the following theorem we shall use the theorem [5, Thm, 3.4.2]: 

Theorem K. Let A be a quasiordered set. There exists a- one-one correspondence 
between the non-trivial direct decompositions of the quasiordered set A into two 
factors and couples (R\, R2) of non-trivial equivalence relations on A satisfying 
the properties (i), (ii), (iii), (iv) from Lemma 9. To each couple (Hi, R2) fulfilling 
these conditions there corresponds the direct decomposition A ~ A/R\ x A R2 

and to each element a e A there corresponds the element (a\, a2), where at is 
the equivalence class under Ri (i = 1, 2) containing a. 

Theorem 1. Let M and M' be directed distributive multilathces. Let q In 
a b-equivalence of M onto M'. Then there exist multilattices M\, M2 siich that 
M ~ M^ X M2, M' r^j M\ x M2 and the image (x\, x2) of the element x e M 
under the first isomorphism is the same as the image of the element x' e M', 
x' = (p(x) under the second isomorphism. 

Proof . Let R\ and R2 be the equivalences from Lemma 7. From Lemma 9 
it follows that the equivalences R\ and R2 satisfy the conditions of the Theo­
rem K. Let us denote MjR\ = M\, M\R2 = M2. By Theorem K there exists 
an isomorphism ip : M~ M\ x M2 (M, M\, M2 are quasiordered sets). Since M 
is a multilattice, then M\ x M2 is a multilattice and Mi, M2 are multilattices 
too. Similarly there exists an isomorphism ip' : M' ~ M[ , M'2 (M\ M' R\, 
where R\ (i = 1,2) are equivalences defined on M' in the same way as Ri on M 
and clearly a'R'p' iff a Rib). Let X = xp'qip-1. I t is obvious that X is the b-equi­
valence of M\ x M2 onto M[x M2. 

We shall show that M\ and M[ are isomorphic, M2 and M'2 are anti-iso-
morphic. 

Let (m\, m2) e Mi x M2. Let us denote X(m±, m2) — (m[, m'2). Let us 
construct M\ x A2 (M[ x A2), where A2 (A2) is a multilattice with one and 
only one element m2 (m2). I t is obvious that Mi x A2 (3I[ X A'.,) is a sub 
multilattice of Mi X M2 (M[ x M2) and the mapping / : Mi < A2 ^ M\ 
(f : M\ x A[> -> Mi), which maps a pair (a±, m2) ((a[, m2)) onto an element 
a\ (a[) is an isomorphism. The mappings 

Mi f - Mi x A2
 z - M; x A2 ''-+ M; 

give a b-equivalence h = f'Xf 1 = / V V v , _ 1 / - 1 °^ the multilattice Mi onto 
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the multilattice M[, which each x\ E M] maps onto x[ E M[, where ^_ 1 /_ 1(^i) — 
— x, x E M and x EX\, x em2, <p(x) = x', x' e M', ^p'(x') = (x[, m'2), x' ex[, 
x' E m2 a n d f ' ^ , m2) = x[. We shall prove that h is an isomorphism. Clearly h 
is a bisection. Let a\, b± EM\, aj ^ bi. We have ^p~1f~1(^l) = & and a Em2, 
W lf 1(bi) = b and b Em2. Since f and ^p are isomorphisms, then a ^ b holds. 
PYom a e m2, b e ra2 it follows that aR2b, hence the interval (a, b) is preserved 
and it implies a' c b'. Since y/ and f are isomorphism, then a[ ^ b[ holds. 
The assertion: "a[ c= b[ implies ai ^ bi" —can be proved analogously. Hence 
the multilattices M±, M[ are isomorphic. 

Analogously we construct a mapping k : M2 -> M'2, k = g^'^-1g~1, where 
g: A\ x M2 -> M2 and g': A[ x M2 -> M2 are isomorphisms (A±(A[) is a multi-
lattice with one and only one element m±(m[)). We shall show that k is an 
anti-isomorphism. Evidently k is a bijection. Let c2,d2 e M2, c2 ^ e/2. We have 
V xg l(c2) — c and c e mi, y^g-1^) = a* and d Em\. Since O- and ^ are iso­
morphisms, then c ^ d holds. From c E m±, d E mi it follows that cR\d, hence 
the interval (c, d) is reversed therefore d' ^ c'. Since y' and g' are isomorphisms 
then d'2 c ĉ  holds. The assertion: "d'2 c c2 implies c2 ^ oV', can be proved 
analogously. Hence the multilattices M2, M2 are anti-isomorphic Conse­
quently 

h-1
 X k-1 : M[x M'2-> M\ x M2 

is an isomorphism (M2 is the dual multilattice of M2) and we get 

M ~ Mi x M2, M' ~ M\ x M2 . 

From the construction of h and k it follows that ^p(x) = (#1, x2) = (A"1 x 
X lc-l)\p'(x'), where # e M, xx E M\, X2 E M2, x' E M', x' = <p(x). 

In Lemma 10, Lemma 11, Lemma 12 and Lemma 13 M denotes a distri­
butive multilattice. 

Lemma 10. Let a, b E M, U E a A b, v E a v b, then there exist isomorphisms: 
f: u, a) -> <b, v) with f(x) = (b v x)0 for x E (U, a); 
g: b, v) -> (u, a) with g(y) = (a A y)u for y E <b, v); 
h: u,b) -> <a, v> wlA /^(r) = (r v a)v fOr r E (U, b); 
k: a, v -> ^ , b> TOlA k(s) = (b A S)U for s E <a, v). 

The proof of Lemma 10 follows from 6.4, §6 of paper [I] . 

Lemma 11. Let a,b E M, U E a A b, v E a v b, then there exist isomorphisms: 
m: u, v) -> <a, z;> x <b, #> with m(x) = ((a v x)v, (b v ^)v) 
fOr x E u,v); 
n: <a, v) y (b, v) -> <w, z;> wilA w(#i, x2) = (x± A .r2)^ 
fOr xi E a, v) and x2 E (b, v). 

This Lemma is a corollary of 3.2, 3.4, 3.7 of paper [2]. 
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Lemma 12. / / a, b e M, u e a : b. v s a v b, u ^ x ^ v, x\ e (a v x)0, 
y e (xi A b)u, then y ^ x ^ xj. 

Proof . Let us denote x2 G (x v b)r. By Lemma ]1 x = (x\ > x2)u, where 
y ^ x\, y ^ x2, ^l ^ ?/, hence ?/ ^ rr. 

Lemma 13. Let a, b, c, d, e,f e M. If f e e v d, c e e / d, d e c \ b, a e e * b, 
a ^ c, then f e evb. 

Proof . Let r G (b v e)f, s G (b v c)r. From the isomorphism of the intervals 
/ a , e), <b, f} (Lemma 10) it follows that (s A e)a = c, hence 

(6) c e s A e . 

Let us choose w e (r A d)(;. F'rom the isomorphism of the intervals <[c,d 
<e,/> it follows that (w v e)f = r, hence 

(7) r G w v e . 

By Lemma 12 we get w ^ s ^ r. Hence there holds 

(8) c ^ ^v S s -^ r . 

From (6), (7), (8) and frcm the modularity it follows that iv = s, hence c ^ 
^ s ^ d. Since d eb v c, we get d = s. Because e ^ r S f and d ^ r, by (8) 

we get / = r. Hence f eev b. 

Lemma 14. Let M be a directed distributive multilattice, a, b, x G M. Then the 
following conditions are equivalent'. 

(b) [(a A x) v (b A x)]x = x , (a A X) A (b A X) a a A b , 
(b') [(a v x) A (b v x)]x = x , (a v x) v (b v x) cz a v b . 

Proof . Let x-\ e a A X, X2 G b A X, U G X± A X2 . Let (b) be valid. Let y± G a v x, 
y2 G b v x} y e (y± A y2)x, v eyiv y2. Jt is obvious, that u e xi A b. By Lemma 13 
we get from this 

(9) y2ex^ v b . 

Let us choose r e (a A y2).(i. There holds u e r A b. From this and from (9) 
it follows that r = x±. Hence 

(10) x\ ea A y2 

and x\ G a A y too. From this and frcm y± e a v x we get x = y by modularity. 
Hence we have proved that [(a v x) A (b v x)]x = x. By Lemma 13 it follows 
from (10) that v G a v y2. From this and from (9), (10), u e a A b by Lemma 13 
we get v G a v b. Thus we have obtained (a v x) v (b v x) c a v b, too. Hence 
we have proved that (b) inches (b'). The implication (b') => (b) can be obtained 
by duality. 
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Lemma 15. Let M, J I i , JI2 b° directed mullilattices and let <p be an iso­
morphism of JI onto All X JI2- For x e JI we denote <p(x) = (xi, X2). Let 
a, b, x e JI. Then the elements a, b, x satisfy the condition (b) iff at, bi, xi e J I i 
(i 1,2) satisfy this condition. 

The proof of this assertion follows from the isomorphism. 

Lemma 16. Let JI be a distributive directed multilattice and let JI~ be the 
dual of JI. The elements a, b, r e JI ^l*itfy the condition (b) iff they satisfy 
th is ccmditic n hi At" . 

Proof . It suffices to use Lemma 14. 

Theorem 2. Let Al, AI' be directed distriburiv° multilattices and AI ~^> Mi X J/2, 
JI ' — JIi x AL; . Then AI and AI' are b-equivalent. 

Proof . L e t / be an isomorphism of JI onto JIi x JI2 and let g be an iso­
morphism of JIi X J I ; cnto Ai'. Further let h: AI1 • JI2 -> JIi X JI2~ be the 
identical mapping. Hence <p = ghf is a bijection. Let a, b, x e JI. We shall 
, how that axb iff q(ct)(f(x)<p(b). Using Lemma 15 and Lemma 16 we get: axb 
iff f(a)f(x)f(b), f(a)f(x)f(b) iff h(f(a))h(f(x))h(f(b)), h(f(a))h(f(x))h(f(b)) iff 
<j[h'f{<*))] g[h(f(x))} g[h(f(b))]. Consequently axb iff <p(a) <p(x) <p(b). 

The following theorem is a corrollary of Theorem 1 and Theorem 2. 

Theorem 3. Let AI, AI' be directed distributive multilattic°s. M, M' are 
b-equivalent if and only if there exist m^dtilattices J I i , JI? sunh that M -^ JIi x JI2 
and AI' ^ Ah x At7. 

In paper [4] the notion of the m-equivalence is defined as follows: The metric 
multilattices JI, JI' are m-equivalent if th°re exists a bijection <p of JI onto Al' 
such l i n t for each a, b, x e JI, the following conditions are equivalent: 

(i) o(a, x) Q(X, b) o(a, b) 

(ii) o(<p(a), <p(x)) H Q(<p(x), <p(b)) - o(cp(a), 99(b)) . 

Lemma 17. Let AI, AI' be directed distributive metric multilattices. M, AI' are 
b-cquivalent if and only if AI, At' are w-equivalent. 

Th" proof of this Lemma follows from 2.2 [4]. 
LTs T. \ Lemma 17 and Theorem 3 we get: 

Theorem 4. (Thm. 3.3.2 [4]). Directed dis'ributive metric mvJtilattices At, AL 
are in-equivalent if and only if there exist multilattices A\, A* such that At — A\ X 

A2, JI ' - Ax x A.;. 
Kolibiar [4] has shown that Thm. 4 fails to hold if we omit the assui. ption 

that JI and JI ' are distributive, or the assumption tha t JI and JI ' are di­
rected* hence also Thm. 3 fails to be valid if we omit some of these assumptions. 
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