Mathematic Slovaca

Olga Klaučová
b-equivalent multilattices

Mathematica Slovaca, Vol. 26 (1976), No. 1, 63--72

Persistent URL: http://dml.cz/dmlcz/128779

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1976

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

b-EQUIVALENT MULTILATTICES

OLGA KLAUČOVÁ

The aim of this paper is to investigate the b-equivalence of multilattices. The b-equivalence is a generalization of the m-equivalence, investigated by M. Kolibiar [4] and also a generalization of the graphic isomorphism, studied by J. Jakubik [3]. The method of this paper is a modification of the methods used in [3] and [4]. The main result of the paper is the following theorem: Directed distributive multilattices M, M^{\prime} are b-equivalent iff there exist multilattices M_{1}, M_{2} such that M is isomorphic with $M_{1} \times M_{2}$, and M^{\prime} is isomorphic with $M_{1} \times M_{2}^{\sim}$.

Basic concepts and properties

A multilattice [l] is a poset M in which the conditions (i) and its dual (ii) are satisfied: (i) If $a, b, h \in M$ and $a \leqq h, b \leqq h$, then there exists $v \in M$ such that (a) $v \leqq h, v \geqq a, v \geqq b$, and (b) $z \in M z \leqq v, z \geqq a, z \geqq b$ implies $z=v$.

Analogously as in [1] denote by ($a \vee b$); the set of all elements $v \in M$ from (i) and by $(a \wedge b)_{,}$the set of all elements $u \in M$ from (ii) and define the sets:

$$
a \vee b=\bigcup_{\substack{a \leq n \\ b \leqq n}}(a \vee b)_{: i}, \quad a \wedge b=\bigcup_{\substack{d \leqq a \\ d \leqq b}}(a \wedge b)_{d}
$$

Let A and B be nonvoid subsets of M, then we define

$$
A \vee B=\bigcup(a \vee b), \quad A \wedge B=\bigcup(a \wedge b)
$$

whera $a \in A$ and $b \in B$. In the whole paper we denote $[(a \vee x) \wedge(b \vee x)]_{x}=$ $=x\left([(a \wedge x) \vee(b \wedge x)]_{x}=x\right)$ if $a, b, x \in M$ and $[(a \vee x) \wedge(b \vee x)]_{x}=$ $=\{x\}\left([(a \wedge x) \vee(b \wedge x)]_{x}=\{x\}\right)$.

A poset A is called upper (lower) directed if for each pair elements $a, b \in A$ there exists an element $h \in A(d \in A)$ such that $a \leqq h, b \leqq h(d \leqq a, d \leqq b)$. The upper and lower directed poset A is called directed.

A multilattice M is modular [l] iff for every $a, b, b^{\prime}, d, h \in M$ satisfying the conditions $d \leqq a \leqq h, d \leqq b \leqq b^{\prime} \leqq h,(a \vee b)_{h}=h,\left(a \wedge b^{\prime}\right)_{d}=d$ we have $b=b^{\prime}$.

A multilattice M is distributive [1] iff for every $a, b, b^{\prime}, d, h \in M$ satisfying the conditions $d \leqq a, b, b^{\prime} \leqq h,(a \vee b)_{h}-\left(a \vee b^{\prime}\right)_{h}=h,(a, b)_{d} \quad\left(a \quad b^{\prime}\right)_{d}$
d we have $b-b^{\prime}$.
Let M be a mult lattice and N a nonvoid subset of $M . N$ is called a submultilattice [1] of M iff $N^{\top} \cap(a \vee b)_{h} \neq C$ and $N \cap(a \quad b)_{d} \neq 0$ for ever! $a, b, d, h \in N$ satisfying $a \leqq h . b \leqq h, a \geqq d, b \geqq d$. It is obvious that each interval is a submultilattice.

The following definition and results are in [4]:
The multilattices M and M^{\prime} are said to be isomorphic (denoted as $M \sim M^{\prime}$) if there exists a bijection f of M onto M^{\prime} satisfying: $x \leqq y$ iff $f(x) \leqq f(y)(x, y \in M)$.

Let M be a Cartesian product of two posets $M_{1}, M_{2} . M$ is upper (lower) directed iff M_{1} and M_{2} is upper (lower) directed. M is a multilattice iff M_{1} and I_{2} are multilattices. Let $x_{1}, x_{2}\left(x_{i} \in M_{i}\right)$ be Cartesian coordinates of aṇ
 if $v_{i} \in\left(a_{i} \vee b_{i}\right)_{h_{i}}\left(v_{i} \in\left(a_{i} \wedge b_{i}\right)_{h_{i}}\right)$ for $i=1,2$.

b-equivalence of multilattices

Let M be a directed multilattice and $a, b, x \in M$. We say that x is between a and b and write $a x b$ if

$$
\begin{equation*}
[(a \wedge x) \vee(b \cdot x)]_{x}=x, \quad(a \wedge x) \wedge(b \wedge x) \subset a \quad b \tag{b}
\end{equation*}
$$

Definition. Directed multilattices M, M^{\prime} are said to be b-equivalent if therc exists a bijection f of M onto M^{\prime} satisfying axb iff $f(a) f(x) f(b)$. The bijection f is called a b-equivalence.

Let M, M^{\prime} be directed b-equivalent multilattices and $x \in M$. An element $x^{\prime} \in M^{\prime}$ denotes the image of the element x under the given b - equivalence. We denote a partial ordering and multioperations in the multilattice M by \leqq, \wedge, \vee and in M^{\prime} by \subseteq, \cap, \cup.

In Lemma 1 and Lemma $2 M$ denotes a directed multilattice.
Lemma 1. Let $a, b, x \in M$. If $a \leqq b$, then axb iff $a \leqq x \leqq b$.
Proof. Evidently, from $a \leqq x \leqq b$ it follows that $a x b$. Conversely, let $a \leqq b, a x b, u \in a \wedge x, z \in(b \wedge x)_{u}$. From $a x b$ it follows that $(u / z)_{x} x$, $u \wedge z \subset a \wedge b$. Since $u \vee z=z$, we get $z=x, x \in b \wedge x$ and $x \leqq b$. Since $u \wedge z=u$, we get $u \in a \wedge b=a$, hence $u=a$ and $a \leqq x$.

Lemma 2. Let $a, b, x \in M$. If $x \leqq a, x \leqq b(a \leqq x, b \leqq x)$, then axb iff $x \in a \wedge b(x \in a \vee b)$.

Proof. Evidently, from $x \in a \wedge b$ it follows that $a x b$. Conversely, if $x \leqq a$, $x \leqq b, a x b$, then from (b) it follows that $x=x \wedge x=(a \wedge x) \quad(b \wedge x) \subset a \quad b$, hence $x \in a \wedge b$. Next we show the validity of the dual assertion. Evidently,
from $x \in a \vee b$ it follows that $a x b$. Conversely if $a \leqq x, b \leqq x, a x b$, then $a \wedge x=$
$a, b \wedge x=b$. From (b) it follows that $x=[(a \wedge x) \vee(b \wedge x)]_{x}=(a \vee b)_{x}$, hence $x \in a \vee b$.

We say that the interval $\langle u, v\rangle, u \leqq v, u, v \in M$ is preserved (is reversed) [3] if $u^{\prime} \subseteq v^{\prime}\left(v^{\prime} \subseteq u^{\prime}\right)$ in M^{\prime}; the one-element interval $\{u\}=\langle u, u\rangle$ is preserved and reversed at the same time.

In Lemma 3, Lemma 4 and Lemma $5 M$ and M^{\prime} denote directed b-equivalent multilattices.

Lemma 3. Let $a, b, u, v \in M$. If $u \leqq a \leqq b \leqq v$ and the interval $\langle u, v\rangle$ is preserved (is reversed), then the interval $\langle a, b\rangle$ is preserved (is reversed).

Proof. By Lemma $1 u b v, u a b$. Hence $u^{\prime} b^{\prime} v^{\prime}, u^{\prime} a^{\prime} b^{\prime}$ and by Lemma $1 u^{\prime} \subseteq b^{\prime} \subseteq$ $\subseteq v^{\prime}, u^{\prime} \subseteq a^{\prime} \subseteq b^{\prime}$. We have proved that the interval $\langle a, b\rangle$ is preserved. The assertion in the brackets can be proved analogously.

Lemma 4. Let $a, x, b \in M$. Then (1) if $a \leqq b$ and $x^{\prime} \in a^{\prime} \cap b^{\prime}\left(x^{\prime} \in a^{\prime} \cup b^{\prime}\right)$, then $a \leqq x \leqq b$; (2) if $a \leqq x \leqq b, . x^{\prime} \subseteq a^{\prime}, x^{\prime} \subseteq b^{\prime}\left(a^{\prime} \subseteq x^{\prime}, b^{\prime} \subseteq x^{\prime}\right)$, then $x^{\prime} \in a^{\prime} \cap b^{\prime}\left(x^{\prime} \in a^{\prime} \cup b^{\prime}\right)$.

Proof. (1) $a^{\prime} x^{\prime} b^{\prime}$ follows from Lemma 2. Consequently $a x b$. By Lemma 1 $a \leqq x \leqq b$. (2) We get $a x b$ by Lemma 1. Hence $a^{\prime} x^{\prime} b^{\prime}$. The relation $x^{\prime} \in a^{\prime} \cap b^{\prime}$ follows by Lemma 2.

The other statements follow by duality.
Lemma 5. Let $a, b \in M, u \in a \wedge b, v \in a \vee b$. If the interval
$a, v\rangle(\langle u, b\rangle)$ is preserved and the interval $\langle b, v\rangle(\langle u, a\rangle)$ is reversed, then the interval
$u, b\rangle(\langle a, v\rangle)$ is preserved and the interval
$u, a\rangle(\langle b, v\rangle)$ is reversed.
Proof. If $\langle a, v\rangle$ is preserved and $\langle b, v\rangle$ is reversed, then we get $a^{\prime} \subseteq v^{\prime} \subseteq b^{\prime}$. Since $a u b, a^{\prime} u^{\prime} b^{\prime}$, we get $a^{\prime} \subseteq u^{\prime} \subseteq b^{\prime}$ by Lemma 1 . Hence, the interval $\langle u, a\rangle$ is reversed and the interval $\langle u, b\rangle$ is preserved. The proof of the second part of Lemma 5 is analogous.

In Lemma 6, Lemma 7, Lemma 8 and Lemma $9 M$ and M^{\prime} denote directed distributive b-equivalent multilattices.

Lemma 6. Let $a, b \in M, u \in a \wedge b, v \in a \vee b$. If the intervals $\langle a, v\rangle,\langle b, v\rangle$ or the intervals $\langle u, a\rangle,\langle u, b\rangle$ are preserved (are reversed), then the interval $\langle u, v\rangle$ is preserved (is reversed).

Proof. Let $\langle a, v\rangle,\langle b, v\rangle$ be preserved, $r^{\prime} \in a^{\prime} \cap u^{\prime}, s^{\prime} \in b^{\prime} \cap u^{\prime}$. By (1) of Lemma $4 u \leqq r \leqq a, u \leqq s \leqq b$, hence $\langle u, r\rangle,\langle u, s\rangle$ are reversed and $\langle r, v\rangle,\langle s, v\rangle$ are preserved. Let

$$
\begin{equation*}
t \in(r \vee s)_{v} . \tag{3}
\end{equation*}
$$

By Lemma 3 the intervals $\langle r, t\rangle,\langle s, t\rangle$ are preserved. Let $w^{\prime} \in t^{\prime} \cup u^{\prime}$. W have $t^{\prime} w^{\prime} u^{\prime}$, tuu and by Lemma $1 u \leqq w \leqq t$. Hence the interval $\measuredangle u, u$ is preserved and the in.terval $\langle u, t\rangle$ is reversed. Since $u \in a \wedge h$, then

$$
\begin{equation*}
u \in r \wedge s \tag{4}
\end{equation*}
$$

Since $r^{\prime} \subseteq t^{\prime} \subseteq u^{\prime}, r \leqq t, w \leqq t, r^{\prime} \subseteq u^{\prime} \subseteq w^{\prime}, u \leqq r, u \leqq w$, then by (\because) of Lemma 4

$$
\begin{equation*}
t \in r \vee w, \quad u \in r \backslash w \tag{5}
\end{equation*}
$$

Since M and M^{\prime} are distributive, from (3), (4), (5) we get $w=s$, hence $w^{\prime}-s^{\prime}$ and from $s^{\prime} \subseteq u^{\prime} \subseteq w^{\prime}$ we get $s=u$. We have proved that the interval $\langle u, v$ is preserved. Analogously we can verify that if $\langle u, a\rangle$ and $\langle u, b\rangle$ are preserved, then $\langle u, v\rangle$ is preserved. The assertion in the brackets can be proved analogously (we replace M^{\prime} by the dual multilattice).

Lemma 7. Let $a, b \in M$. We define a relation $R_{1}\left(R_{2}\right)$ on M as follows: a $R_{1} b$ $\left(a R_{2} b\right)$ if and only if there exists an element $v \in M, v \in a \vee b$ such that the interval.s $\langle a, v\rangle,\langle b, v\rangle$ are reversed (are preserved). The relations R_{1} and R_{2} are equivalences.

Proof. Evidently R_{1} is reflexive and symmetric. Thus it remains to prove the transitivity. Let $a R_{1} b, b R_{1} c$, hence th \in ere exist $r \in a \vee b, s \in b \div c$ such that the intervals $\langle a, r\rangle,\langle b, r\rangle,\langle b, s\rangle,\langle c, s\rangle$ are reversed. Let $w \in r \vee s, u \in(r, s)_{b}$. Since the intervals $\langle b, r\rangle,\langle b, s\rangle$ are reversed, then by Lemma 3 the intervals $\langle u, s\rangle$ and $\langle u, r\rangle$ are reversed too. By Lemma 3 and Lemma 6 the intervals $\langle r, w\rangle$ and. $\langle s, w\rangle$ are reversed, hence $\langle c, w\rangle,\langle c, w\rangle$ are reversed too. Let $v \in(a \vee c)_{u}$. By Lemma 3 the intervals $\langle a, v\rangle,\langle c, v\rangle$ are reversed, hence $a \boldsymbol{R}_{1} c$ and the reation \vec{l}. is transitive. Analogously it can be proved that the relation R_{3} is an equivalence.

Lemma 8. Let $c, b \in M, u \in a \wedge b, v \in a \vee b, a \overrightarrow{\boldsymbol{r}_{-}} b\left(c_{2} R_{2} b\right)$. Then the intervar ${ }^{T}$ $\langle u, v\rangle$ is reversed (is preserved).

Proof. Let $a \overrightarrow{\boldsymbol{R}}_{1} b$, then there exists $v_{1} \in c: \vee b$ such that the intervals $\left\langle\omega, v_{1}{ }^{\prime}\right.$ $\left.{ }^{\prime} b, v_{1}\right\rangle$ are reversed. Let $u \in c_{\circ} \upharpoonright b$, then the interval $\left\langle u, v_{1}\right\rangle$ is reversed by Lemma 6. Hence by Lemma 3 the intervals $\langle u, a\rangle,\langle u, b\rangle$ are reversed. Let $v \in a \vee b$. The intcrval $\langle u, v\rangle$ is reversed by Lemma 6. The assertion in the brackets can be proved analogously.

Lemma 9. Let \boldsymbol{R}_{1} cind $\overrightarrow{\boldsymbol{R}}_{2}$ be the equiralences from Lemma $\boldsymbol{7}$ and $0(I)$ denotes the least (the greatest) element of the la'tice of all equivalence relations on $1 / \mathrm{H}$. Then
(i) $\quad R_{1} R_{2}=R_{2} R_{1}$.
(ii) $\quad R_{1} \cup R_{2} \quad I, R_{1} \cap R_{2}-O$.
(iii) if $a, b, c \in M, a \leqq c, a R_{1} b, b R_{2} c$, then $a \leqq b, b \leqq c$.
(iv) if $a, b, c, d \in M, a R_{1} b, c R_{1} d,{ }_{c} R_{2} c, b R_{2} d$, then from $a \leqq b$ it follows that $c \leqq d$ and from $a \leqq c$ it follows that $b \leqq d$.

Proof. (i) Let $a, b \in M, a R_{1} R_{2} b$, hence there exists an element $r \in M$ such that $a R_{1} r$ and $r R_{2} b$. Hence there exist elements $u, v \in M$, with $u \in b \quad r$, $v \in \epsilon \vee r$ such that the intervals $\langle a, v\rangle,\langle r, v\rangle$ are reversed and the intervals $b, u,\langle r, u\rangle$ are preserved. Let $w \in u \vee v$. Since $v^{\prime} \subseteq r^{\prime} \subseteq u^{\prime}, r \leqq u, r \leqq r$, then $r \in u \wedge v$ by (2) of Lemma 4. By Lemma 5 the interval $\langle v, w\rangle$ is preserved and the interval $\langle u, w\rangle$ is reversed. Let $n^{\prime} \in b^{\prime} \cap w^{\prime}$ and $m^{\prime} \in a^{\prime} \cup w^{\prime}$. Since $b n u$ and $a m w$, we get $b \leqq n \leqq w$ and $a \leqq m \leqq w$ by Lemma 1. Because $n^{\prime} \subseteq b^{\prime} \subseteq u^{\prime}, n^{\prime} \subseteq w^{\prime} \subseteq u^{\prime}, v^{\prime} \subseteq w^{\prime} \subseteq m^{\prime}, v^{\prime} \subseteq a^{\prime} \subseteq m^{\prime}, v \leqq w, m \leqq w, n \leqq w^{\prime}$, $u \leq w, a \leqq v, a \leqq m, b \leqq n, b \leqq u$, then $b \in n \wedge u, c \in v \wedge m, w \in v \vee m$, $w \in n \vee u$ by (2) of Lemma 4. By Lemma 5 the intervals $\langle a, m\rangle,\langle n, w$ are pres $\stackrel{r v e d}{ }$ and the intervals $\langle b, n\rangle,\langle m, w\rangle$ are reversed. Let $s \in m \wedge n$. Since $n^{\prime} \subseteq w^{\prime} \subseteq m^{\prime}, n \leqq w, m \leqq w$, then $w \in n \vee m$ and the interval $\langle s, n\rangle$ is reversed and the interval $\langle s, m\rangle$ is preserved by Lemma 5. Let $p \in\left(\begin{array}{lll}a & s\end{array}\right)_{m}, q \in\left(\begin{array}{ll}b & s\end{array}\right)_{n}$. Evidently the intervals $\langle a, p\rangle,\langle s, p\rangle$ are preserved and the intervals $\langle b, q$, $\langle s, q\rangle$ are reversed. Hence $a R_{2} s, s \boldsymbol{R}_{1} b$ and $R_{:} R_{2} \subset R_{2} R_{1}$. The assertion $R_{2} R_{1} \subset$ $\subset R_{1} R_{2}$ can be proved analogously.
(ii) Let $a, b \in M, a \boldsymbol{R}_{1} \cap \boldsymbol{R}_{2} b$. Then $a \boldsymbol{R}_{1} b, a \boldsymbol{R}_{2} b$, hence there exist $u, v \in M$, $u \in a \vee b, v \in a \vee b$ such that the intervals $\langle a, u\rangle,\langle b, u\rangle$ are reversed and the intervals $a, v,\langle b, v\rangle$ are preserved. Using Lemma 8 and Lemma 3 we get that the interva's $\langle a, u\rangle,\langle b, u\rangle$ are preserved and $\langle a, v\rangle,\langle b, v\rangle$ are revess d. It follows that $a=u=b$ and $R_{1} \cap R_{2}=0$.

Lot $a, b \in M$. We shall show that $a R_{1} \cup R_{2} b$. Let $v \in a \vee b, u^{\prime} \in a^{\prime} \cup v^{\prime}$, $w^{\prime} \in b^{\prime} \cup v^{\prime}$. By Lemma $1 a \leqq u \leqq v$ and $b \leqq w \leqq v$. Hence the intervals $\cdot a, u\rangle, \quad b, w\rangle$ are preserved and the intervals $\langle u, v\rangle,\langle w, v\rangle$ are reserved. Hence $a R_{2} u, b R_{2} w$. Evidently $v \in u \quad w$ and $u \boldsymbol{R}_{1} w$. From this it follows that $a R_{1} \cup R_{2} b$ and $R_{1} \cup R_{2}=I$.
(iii) Let $w \in c \vee b, v \in(a \vee b)_{w}$. From $c R_{2} b$ it follows that the interval $b, w\rangle$ is preserved. Using Lemma 3 we get that the interval $\langle b, v\rangle$ is preserved too. From $a R_{1} b$ it follows that the interval $\langle b, v\rangle$ is reversed. Hence $b \quad v$ and $a \leqq b$. The assertion $b \leqq c$ can be proved analogously.
(iv) First we prove the assertion: $a \leqq b$ implies $c \leqq d$. Let $v \in a / c$, $u \in b \vee v, t \in(b \wedge v)_{a}$. The interval $\langle a, b\rangle$ is reversed and the interval $\langle u, v\rangle$ is preserved and since the interval $\langle a, t\rangle$ is a part of these intervals, we get $a \quad t$. By Lemma 5 the interval $\langle b, u\rangle$ is preserved and the interval ${ }^{\prime} v, u$ is reversed. Let $r \in b \vee d, s \in u \vee r, n \in(u \wedge r)_{b}$. The intervals $\langle b, r\rangle,\langle b, u$
are preserved, hence the intervals $\langle n, r, n, u$ are preserved too (Lemma 3). From this it follows, by Lemma 6 and Lemma 3, that the interval r, s is preserved. Since the intervals $\langle d, r\rangle,\langle r, s\rangle$ are preserved it follows that the interval $\langle d, s\rangle$ is preserved too. Let $w \in(c / d)_{s}$. By Lemma 3 it follows that $\langle d, w\rangle$ is preserved. Since $c R_{1} d$ it follows that $\langle d, w\rangle$ is reversed. This implies $w=d$ and $c \leqq d$. The validity of the assertion " $a \leqq c$ implies $b \leq d$ " can be proved analogously.

In the following theorem we shall use the theorem [5, Thm, 3.4.2]:
Theorem K. Let A be a quasiordered set. There exists a one-one correspondence between the non-trivial direct decompositions of the quwsiordered set A into two factors and couples $\left(R_{1}, R_{2}\right)$ of non-trivial equivalence relations on A satisfying the properties (i), (ii), (iii), (iv) from Lemma 9. To each couple ($\boldsymbol{R}_{1}, R_{2}$) fulfilling these conditions there corresponds the direct decomposition $A \sim A / R_{1} \times A R_{2}$ and to each element $a_{b} \in A$ there corresponds the element $\left(a_{1}, a_{2}\right)$, where a_{i} is the equivalence class under $R_{i}(i=1,2)$ containing a.

Theorem 1. Let M and M^{\prime} be directed distributive multilattices. Let q br ab-equivalence of M onto M^{\prime}. Then there exist multilattices M_{1}, M_{2} such that $M \sim M_{1} \times M_{2}, M^{\prime} \sim M_{1} \times M_{2}^{\sim}$ and the image $\left(x_{1}, x_{2}\right)$ of the element $x \in M$ under the first isomorphism is the same as the image of the element $x^{\prime} \in I^{\prime}$, $x^{\prime}=\varphi(x)$ under the second isomorphism.

Proof. Let R_{1} and R_{2} be the equivalences from Lemma 7. From Lemma 9 it follows that the equivalences R_{1} and R_{2} satisfy the conditions of the Theorem K. Let us denote $M / R_{1}=M_{1}, M / R_{2}=M_{2}$. By Theorem K there exists an isomorphism $\psi: M \sim M_{1} \times M_{2}\left(M, M_{1}, M_{2}\right.$ are quasiordered sets). Since $I I$ is a multilattice, then $M_{1} \times M_{2}$ is a multilattice and M_{1}, M_{2} are multilattices too. Similarly there exists an isomorphism $\psi^{\prime}: M^{\prime} \sim M_{1}^{\prime}, M_{2}^{\prime}\left(M_{i}^{\prime} \quad M^{\prime} R_{\imath}^{\prime}\right.$, where $R_{i}^{\prime}(i=1,2)$ are equivalences defined on M^{\prime} in the same way as R_{i} on M and clearly $a^{\prime} R_{i}^{\prime} b^{\prime}$ iff $a R_{i} b$). Let $X=\psi^{\prime} q \psi^{-1}$. It is obvious that X is the b-equivalence of $M_{1} \times M_{2}$ onto $M_{1}^{\prime} \times M_{2}^{\prime}$.

We shall show that M_{1} and M_{1}^{\prime} are isomorphic, M_{2} and M_{2}^{\prime} are anti-isomorphic.

Let $\left(m_{1}, m_{2}\right) \in M_{1} \times M_{2}$. Let us denote $X\left(m_{1}, m_{2}\right)-\left(m_{1}^{\prime}, m_{2}^{\prime}\right)$. Let us construct $M_{1} \times A_{2}\left(M_{1}^{\prime} \times A_{2}^{\prime}\right)$, where $A_{2}\left(A_{2}^{\prime}\right)$ is a multilattice with one and only one element $m_{2}\left(m_{2}^{\prime}\right)$. It is obvious that $M_{1} \times A_{2}\left(M_{1}^{\prime} \times A_{2}^{\prime}\right)$ is a sub multilattice of $M_{1} \times M_{2}\left(M_{1}^{\prime} \times M_{2}^{\prime}\right)$ and the mapping $f: M_{1}<A_{2} \rightarrow M_{1}$ $\left(f^{\prime}: M_{1}^{\prime} \times A_{2}^{\prime} \rightarrow M_{1}^{\prime}\right)$, which maps a pair $\left(a_{1}, m_{2}\right)\left(\left(a_{1}^{\prime}, m_{2}^{\prime}\right)\right)$ onto an element $a_{1}\left(a_{1}^{\prime}\right)$ is an isomorphism. The mappings

$$
M_{1} \xrightarrow{f_{1}^{1}} M_{1} \times A_{2} \xrightarrow{\prime} M_{1}^{\prime} \times A_{2}^{\prime} \xrightarrow{f^{\prime}} M_{1}^{\prime}
$$

give a b-equivalence $h=f^{\prime} X f^{1}=f^{\prime} \psi^{\prime} \varphi \psi^{-1} f^{-1}$ of the multilattice M_{1} onto
the multilattice M_{1}^{\prime}, which each $x_{1} \in M_{1}$ maps onto $x_{1}^{\prime} \in M_{1}^{\prime}$, where $\psi^{-1} f^{-1}\left(x_{1}\right)-$ $-x, x \in M$ and $x \in x_{1}, x \in m_{2}, \varphi(x)=x^{\prime}, x^{\prime} \in M^{\prime}, \psi^{\prime}\left(x^{\prime}\right)=\left(x_{1}^{\prime}, m_{2}^{\prime}\right), x^{\prime} \in x_{1}^{\prime}$, $x^{\prime} \in m_{2}^{\prime}$ and $f^{\prime}\left(x_{1}^{\prime}, m_{2}^{\prime}\right)=x_{1}^{\prime}$. We shall prove that h is an isomorphism. Clearly h is a bijection. Let $a_{1}, b_{1} \in M_{1}, a_{1} \leqq b_{1}$. We have $\psi^{-1} f^{-1}\left(a_{1}\right)=a$ and $a \in m_{2}$, $\psi^{1} f{ }^{1}\left(b_{1}\right)=b$ and $b \in m_{2}$. Since f and ψ are isomorphisms, then $a \leqq b$ holds. From $a \in m_{2}, b \in m_{2}$ it follows that $a R_{2} b$, hence the interval $\langle a, b\rangle$ is preserved and it implies $a^{\prime} \subseteq b^{\prime}$. Since ψ^{\prime} and f^{\prime} are isomorphism, then $a_{1}^{\prime} \subseteq b_{1}^{\prime}$ holds. The assertion: " $a_{1}^{\prime} \subseteq b_{1}^{\prime}$ implies $a_{1} \leqq b_{1}$ " - can be proved analogously. Hence the multilattices M_{1}, M_{1}^{\prime} are isomorphic.

Analogously we construct a mapping $k: M_{2} \rightarrow M_{2}^{\prime}, k=g^{\prime} \psi^{\prime} \varphi \psi^{-1} g^{-1}$, where $g: A_{1} \times M_{2} \rightarrow M_{2}$ and $g^{\prime}: A_{1}^{\prime} \times M_{2}^{\prime} \rightarrow M_{2}^{\prime}$ are isomorphisms $\left(A_{1}\left(A_{1}^{\prime}\right)\right.$ is a multilattice with one and only one element $m_{1}\left(m_{1}^{\prime}\right)$). We shall show that k is an anti-isomorphism. Evidently k is a bijection. Let $c_{2}, d_{2} \in M_{2}, c_{2} \leqq d_{2}$. We have $\psi^{1} g{ }^{1}\left(c_{2}\right)-c$ and $c \in m_{1}, \psi^{-1} g^{-1}\left(d_{2}\right)=d$ and $d \in m_{1}$. Since g and ψ are isomorphisms, then $c \leqq d$ holds. From $c \in m_{1}, d \in m_{1}$ it follows that $c R_{1} d$, hence the interval $\langle c, d\rangle$ is reversed therefore $d^{\prime} \subseteq c^{\prime}$. Since ψ^{\prime} and g^{\prime} are isomorphisms then $d_{2}^{\prime} \subseteq c_{2}^{\prime}$ holds. The assertion: " $d_{2}^{\prime} \subseteq c_{2}^{\prime}$ implies $c_{2} \leqq d_{2}{ }^{\prime}$ ", can be proved analogously. Hence the multilattices M_{2}, M_{2}^{\prime} are anti-isomorphic. Consequently

$$
h^{-1} \times k^{-1}: M_{1}^{\prime} \times M_{2}^{\prime} \rightarrow M_{1} \times M_{2}^{\sim}
$$

is an isomorphism (M_{2}^{\sim} is the dual multilattice of M_{2}) and we get

$$
M \sim M_{1} \times M_{2}, \quad M^{\prime} \sim M_{1} \times M_{2}^{\sim}
$$

From the construction of h and k it follows that $\psi(x)=\left(x_{1}, x_{2}\right)=\left(h^{-1} \times\right.$ $\left.\times k^{-1}\right) \psi^{\prime}\left(x^{\prime}\right)$, where $x \in M, x_{1} \in M_{1}, x_{2} \in M_{2}, x^{\prime} \in M^{\prime}, x^{\prime}=\varphi(x)$.

In Lemma 10 , Lemma 11, Lemma 12 and Lemma $13 M$ denotes a distributive multilattice.

Lemma 10. Let $a, b \in M, u \in a \wedge b, v \in a \vee b$, then there exist isomprphisms:
$f: \quad u, a\rangle \rightarrow\langle b, v\rangle$ with $f(x)=(b \vee x)_{v}$ for $x \in\langle u, a\rangle$;
$g: \quad b, v\rangle \rightarrow\langle u, a\rangle$ with $g(y)=(a \wedge y)_{u}$ for $y \in\langle b, v\rangle$;
$h: \quad u, b\rangle \rightarrow\langle a, v\rangle$ with $h(r)=(r \vee a)_{v}$ for $r \in\langle u, b\rangle$;
$k: \quad a, v \rightarrow\langle u, b\rangle$ with $k(s)=(b \wedge s)_{u}$ for $s \in\langle a, v\rangle$.
The proof of Lemma 10 follows from 6.4, $\S 6$ of paper [1].
Lemma 11. Let $a, b \in M, u \in a \wedge b, v \in a \vee b$, then there exist isomorphisms:
$m: \quad u, v\rangle \rightarrow\langle a, v\rangle \times\langle b, v\rangle$ with $m(x)=\left((a \vee x)_{v},(b \vee x)_{v}\right)$
for $x \in u, v\rangle$;
$n:\langle a, v\rangle>\langle b, v\rangle \rightarrow\langle u, v\rangle$ with $n\left(x_{1}, x_{2}\right)=\left(x_{1} \wedge x_{2}\right)_{u}$ for $\left.x_{1} \in a, v\right\rangle$ and $x_{2} \in\langle b, v\rangle$.

This Lemma is a corollary of $3.2,3.4,3.7$ of paper [2].

Lemma 12. If $a, b \in M, \quad u \in a \therefore b, v \in a \vee b, u \leqq x \leqq r, x_{1} \in(a, x)_{v}$, $y \in\left(x_{1} \wedge b\right)_{u}$, then $y \leqq x \leqq x_{1}$.

Proof. Let us denote $x_{2} \in(x \vee b)_{c}$. By Lemma $11 x=\left(x_{1}, x_{2}\right)_{u}$, where $y \leqq x_{1}, y \leqq x_{2}, u \leqq y$, hence $y \leqq x$.

Lemma 13. Let $a, b, c, d, e, f \in M$. If $f \in e \vee d, c \in e, d, d \in c \backslash b, a \in e \cdot b$, $a \leqq c$, then $f \in e \vee b$.

Proof. Let $r \in(b \vee e)_{f}, s \in(b \vee c)_{r}$. From the isomorphism of the intervals $\langle a, e\rangle,\langle b, r\rangle(\operatorname{Lemma} 10)$ it follows that $(s \wedge e)_{a}=c$, hence

```
c\ins^e.
```

Let us choose $w \in(r \wedge d)_{c}$. From the isomorphism of the intervals $\langle c, d$ $\langle e, f\rangle$ it follows that $(w \vee e)_{f}=r$, hence

$$
\begin{equation*}
r \in w \vee e \tag{7}
\end{equation*}
$$

By Lemma 12 we get $w \leqq s \leqq r$. Hence there holds

$$
\begin{equation*}
c \leqq w \leqq s \leqq r \tag{8}
\end{equation*}
$$

From (6), (7), (8) and frcm the modularity it follows that $w=s$, hence $c \leqq$ $\leqq s \leqq d$. Since $d \in b \vee c$, we get $d=s$. Because $e \leqq r \leqq f$ and $d \leqq r$, by (8) we get $f=r$. Hence $f \in e \vee b$.

Lemma 14. Let M be a directed distritutive multilattice, $a, b, x \in M$. Then the following conditions are equiralent:

$$
\begin{equation*}
[(a \wedge x) \vee(b \wedge x)]_{x}=x, \quad(a \wedge x) \wedge(b \wedge x) \subset a \wedge b \tag{b}
\end{equation*}
$$

$$
[(a \vee x) \wedge(b \vee x)]_{x}=x, \quad(a \vee x) \vee(b \vee x) \subset a \vee b
$$

Proof. Let $x_{1} \in a \wedge x, x_{2} \in b \wedge x, u \in x_{1} \wedge x_{2}$. Let (b) be valicl. Let $y_{1} \in a \vee x$, $y_{2} \in b \vee x, y \in\left(y_{1} \wedge y_{2}\right)_{x}, v \in y_{1} \vee y_{2}^{\prime}$. It is obvious, that $u \in x_{1} \wedge b$. By Lemma 13 we get from this

$$
\begin{equation*}
y_{2} \in x_{1} \vee b . \tag{9}
\end{equation*}
$$

Let us choose $r \in\left(a \wedge y_{2}\right)_{i_{1}}$. There holds $u \in r \wedge b$. From this and from (9) it follows that $r=x_{1}$. Hence

$$
\begin{equation*}
x_{1} \in a \wedge y_{2} \tag{10}
\end{equation*}
$$

and $x_{1} \in a \wedge y$ too. From this and frcm $y_{1} \in a \vee x$ we get $x=y$ by modularity. Hence we have proved that $[(a \vee x) \wedge(b \vee x)]_{x}=x$. By Lemma 13 it follows from (10) that $v \in a \vee y_{2}$. From this and from (9), (10), $u \in a \wedge b$ by Lemma 13 we get $v \in a \vee b$. Thus we have obtained $(a \vee x) \vee(b \vee x) \subset a \vee b$, too. Hence we have proved that (b) implies $\left(b^{\prime}\right)$. The implication $\left(b^{\prime}\right) \Rightarrow(b)$ can be obtained by duality.
 morphism of M onto $M_{1}<M_{2}$. For $x \in M$ we denote $\varphi(x)=\left(x_{1}, x_{2}\right)$. Let $a, b, x \in M$. Then the elements a, b, x satisfy the condition (b) iff $a_{i}, b_{i}, x_{i} \in M_{i}$ (i 1,2) satisfy this condition.

The proof of this assertion follows from the isomorphism.
Lemma 16. Let M be a distributive directed multilattice and let M^{\sim} be the r^{\prime} ual of M. The elemonts $a, b, x \in M$ s.atiafy the condition (b) iff they satisfy this condition in M^{\sim}.

Proof. It suffices to use Lemma 14.
Theorem 2. Let M, M^{\prime} be dirccted distributivo multilattices and $M \sim M_{1} \times M_{2}$, $M^{\prime} \sim M_{1} \times M_{\underline{2}}$. Then M and I^{\prime} are b-equivalent.

Proof. Let f be an isomorpinm of M onto $M_{1} \times M_{2}$ and let g be an isomorpiism of $M_{1} \times M_{2}^{\sim}$ cnto M^{\prime}. Furth.r let $h: M_{1} \quad M_{2} \rightarrow M_{1} \times M_{2}^{\sim}$ be the identical mapping. Hence $\varphi=g h f$ is a bijection. Let $a, b, x \in M$. We shall , how that $a x b$ iff $q(a) q(x) \varphi(b)$. Using Lemma 15 and Lemma 16 we get: $a x b$ iff $f(a) f(x) f(b), f(a) f(x) f(b)$ iff $h(f(a)) h(f(x)) h(f(b)), \quad h(f(a)) h(f(x)) h(f(b))$ iff $g[h(f(a))] g[h(f(x))] g[h(f(b))]$. Consequently $a x b$ iff $\gamma(a) \varphi(x) q(b)$.

The following theorem is a corrollary of Theorem 1 and Thoorem 2.
Theorem 3. Let M, M^{\prime} be directed distributive multilatticos. M, M^{\prime} are b-equiralent if and only if there exist multilattices M_{1}, M_{2} sun ${ }^{2} t^{h}$ at $M \sim M_{1} \times M_{2}$ and $M^{\prime} \sim M_{1} \times M_{2}^{\sim}$.

In paper [4] the notion of the m-equivalence is $\mathrm{d} s$ fined as follows: The metric multilattices M, M^{\prime} are m-equivalent if there exists a bijection q of M onto M^{\prime} such that for each $a, b, x \in M$, the following conditions are equivalent:
(i) $\varrho\left(a, x^{\prime}\right) \quad \varrho(x, b) \quad \varrho(a, b)$
(ii) $\varrho(\gamma((\epsilon), \varphi(x)) \dashv \varrho(\varphi(x), \varphi(b))-Q(\varphi((c), \varphi(b))$.

Lemme 17. Let $M^{\prime} M^{\prime}$ be directed distributir: metric multilattices. M, M^{\prime} are b-cquiralent if and only if M, M^{\prime} are m-equivalent.

Thn proof of this Lemma follows from 2.2 [4].
Us, ; Lemma 17 and Theorem 3 we get:
Theorem 4. (Thm. 3.3.2 [4]). Directel dis'ributive metric multilattices M, M^{\prime} arem-cquivalent if and only if there exist multilatticos A_{1}, A_{2} such that $M \sim A_{1} \times$ $A_{2}, M^{\prime} \sim A_{1} \times A_{2}$.
Kolibiar [4] has shown that Thm. 4 fails to hold if we omit the assun ption that M and M^{\prime} are distributive, or the assumption that M and M^{\prime} are directed hence also Thm. 3 fails to be valid if we omit some of these assumptions.

REFERENC'ES

[1] BENADO, M.: Les ensembles partiellement ordonnées et le théoréme de raffinement de Schreier. II. Czechosl. Math. J., 5, 1955, 308-344.
[2] BENADO, M.: Bemerkungen zur Theorie der Vielverbände IV. Proc. C'ambridge Philos. Soc., 56, 1960, 291-317.
[3] JAKUBÍK, J.: Grafový izomorfizmus multisväzov. Acta Fac. rerum natur. Cniv. Comenianae. Math., 1, 1956, 255-264.
[4] KOLIBIAR, M.: Über metrische Vielverbände I. Acta Fac. rerum natur. Univ. Comenianae. Math., 4, 1959, 187-203.
[5] KOLIBIAR, M.: Über direkte Produkte von Relativen. Acta Fac. rerum natur. Univ. Comenianae. Math., 10, 1965, 1-9.

Received November 19, 1974

> Katedra matematiky a deskriptínej germetrie Strojnickej fakulty Slovenskej vysokej školy technickej
> S80 31 Bratislara
> Gottualdovo nim. 50

