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ON PSEUDOCOMPLEMENTED SEMILATTICES WITH
STONE CONGRUENCE LATTICES

H. P. SANKAPPANAVAR

§ 1. Introduction

It is known [9] that the congruence lattices of pseudocomplemented semilattices
are pseudocomplemented. In fact, such lattices were the subject of detailed analysis
in [9], [10] and [11] (also see [8]). After characterizing in [11] the pseudocomp-
lemented semilattices whose congruence lattices are Heyting lattices we were led to
study the following question: Under what conditions on a pseudocomplemented
semilattice its congruence lattice is a Stone lattice.

In this paper') we give an answer to this question and derive from it a result due
to Katrinak [7] characterizing the Boolean algebras whose congruence lattices (or
lattices of filters) are Stone lattices. We also describe the pseudocomplemented
semilattices with Boolean congruence lattices.

§ 2. Basic concepts and results

We follow the notation and terminology of [9], [10] and [11] (whose familiarity is
helpful but is not necessary). Recall that a pseudocomplemented semilattice is an
algebra (S; A, *, 0), where (S; A, 0) is a A-semilattice with 0 and * is the
operation of pseudocomplementation (i.e. x Aa =0 iff x <a* in §). 0* is the largest
element in S and is denoted by 1. Let S denote an arbitrary pseudocomplemented
semilattice (PCS) and let B(S) denote the set of closed (i.e. a =a**) elements of S.

') The results of this paper are taken from the author’s Ph. D. thesis. The author is extremely grateful
to his supervisor Professor Stanley Burris for his guidance and to Dr. Bulman—Fleming for his keen
interest in this work as well as to the Government of Ontario for financial support through the Ontario
Graduate Fellowship Programme. The final draft of this paper was prepared in February, 1977 when the
author was visiting the Department of Pure Mathematics, University of Waterloo and was supported by
NRC Grant A7256.
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It is well known [2] that B(S) is both a subalgebra of S and a Boolean algebra
whose meet and complementation are the same as those in S and whose Boolean
join is defined by avb =(a*Ab*)*. Thus a Boolean algebra can be regarded as
a PCS in which every element is closed. For b in B(S) let D,(S) denote the set of
elements a such that a** =5, and we write D;(S) as D(S) and call its elements as
dense. D,(S) is a subsemilattice of S. We let Con S denote the congruence lattice
of S whose least and greatest elements are denoted by As and Vs (or simply A and
V); the congruence @ is defined by

xpy iff x*=y*
For a filter F in S the filter congruence F is defined by
xFy iff xAf=yaf forsome f in F;
similarly for a in S the congruence 4 is defined by
xdy iff xAa=yana.

We need the following facts, the first of which was proved in [9] and the last two
in [11]:
2.1. If y eCon S, then v =([1],)" v(¥ A@).
2.2. The following statesments are equivalent:
i) Con S is distributive,
ii) S satisfies:

(D) VxVy(x<y**—>x<y or y<x),
iii) S satisfies :
(Dw) VxVy(x*=y*—x<y or y<x)

and
(U') VaVy((x=x**&x <y**)>x<y),

iv) Con S is modular.
2.3. The following statesments are equivalent:
i) The interval [A, @] in Con S is distributive,
ii) S satisfies (Dw).
2.4. The congruence @ is the intersection of all maximal elements in Con S.

§ 3. Stone congruence lattices

In this section we give a characterization of the PCS’s whose congruence lattices
are Stone lattices.
We shall begin with a lemma.
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Lemma 3.1. Let 0,, 6, Con S. Then 6,v0,=V iff, for some b € B(S), b €[1]6,
and b* e[1]6,.

Proof. 6,v0,=V iff (1,0)e6,v0, iff (1,0)e(6:v0,)s") iff
(1,0) €[6:]8 v[0.]s iff for some b eB(S), {1,b) €6, and (b, 0) €0,. Then it
follows immediately that b [1]6, and b* €[1]60,.

Now we give a necessary condition on S (which is a first-order sentence) that
Con S be a Stone lattice.

Theorem 3.2. Suppose Con S is a Stone lattice. Then S satisfies
(S1) VxVy((x#x**&y#y**&x#y)—>xAy=0).

Proof. First note that if Con S is Stone, then S satisfies (D), by 2.2.

Suppose x, y € S are such that x <y and x*=y* and let 6 =6(x, y). Then we
have 6 = ([x, y] X [x, y])JUA. Also Ay =A, and so [1]6* o[y, 1]. On the other
hand if z <y, then.by (D), x <z or z<x, and so z ¢[1]0*, and [1]0*=[y, 1].

Now suppose x, y € S with x <y <x**. Then it is routine to verify that 6(x, y)*
o 6(y,x**), hence O(x, y)** <= O(y,x**)*. This leads to [1]0(x, y)** <
[x**, 1], and since [1]@(x, y)* = [y, 1], it follows from Lemma 3.1 that 6(x, y)* v
O0(x, y)**# V. This is contrary to the hypothesis.

Now suppose x, y €S with x <x**, y <y** and x** # y**_ It is simple to verify
that 0(x,x**) A 8(y,y**)=A, and hence that [1]0(x,x**)** c [1]0(y,y**)* =
=[y**, 1]. Since [1]6(x, x**)* = [x**, 1] and since O(x, x**)* v O(x, x**)** =
=V, it follows by Lemma 3.1 that x** Ay** =0, hence x Ay =0. Thus the theorem
is proved.

At this point we introduce a few notations.

N(S)={neS:n isnon-closed}, i.e., N(S)={neS:n#n**},
C(S)={ceS:can=0, neN(S)},
N**(S)={n**:neN(S)} and C*(S)={c*:ceC(S)}.

It is clear that C(S)< B(S) (in fact C(S) is an ideal in B(S)) and 0 e C(S). Also
note that if ce C(S) and n e N(S), then cAan** = (cAan)**=0 and hence it
follows immediately that C(S) can also be defined as

C(S)={ceS:can**=0 forall neN(S)}.

Since there cannot be any confusion, we simply v_vrite N, C, N**, C* for N(S),
C(S), N**(S) and C*(S) respectively.

?) (8)s denotes the restriction to B(S) of a congruence 6.
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Definition 3.3. Let y € Con S. Then define

N,={neN:(n,n**)ey}
and
C,={ceC:(0,c)ey)}.

It should be noted that C, is an ideal in B(S), N, =N,., and N, =N.

Definition 3.4. Let S be a PCS. We say S is a neo-Boolean algebra (in short,
NBA) iff S satisfies (S1).
We remark that every Boolean algebra is an NBA.

Lemma 3.5. Every NBA satisfies condition (D).

Proof. Suppose (D) fails in S. Then there exist x, y € S such that x <y** and x
are incomparable. The latter of these implies x Ay <x and x Ay <y, and it is also
clear that y <y**. We know that (x Ay)**=x** and since x Ay <x <x** x Ay is
a non-closed element and hence xAy#0. Thus y and x Ay are two distinct
nonclosed elements such that y A(x Ay) = x Ay # 0, which implies that (S1) fails in
S and the lemma is proved.

We shall now examine the congruences of NBA'’s in some detail. The following
lemma is obvious.

Lemma 3.6. Let S be an NBA. Then
@={(n,n**):ne N}UA;.

If AcS, then A" denotes the set of upper bounds of A.

Lemma 3.7. Let S be an NBA. Then (N**)“=C*,

Proof. Let us assume that N is non-empty, since the case N is empty is easily
handled. It is obvious that C* = (N**)“,so let y e (N**)“. Then y=n**forne N,
hence n**Ay* =0 for n € N, which implies y* € C and hence y € C* as y is clearly
closed.

Lemma 3.8. If S is an NBA and X cN(S)=N, then N x«y)»=N—X.

Proof. Suppose y belongs to the left side. Then y is nonclosed, and yAf =
y**Af for some f e (X**)". If ye X, then y**<{f and so y =y**, contrary to y
being nonclosed. Thus Nx-y»=N — X.

Conversely, if ye N—X, then yax =0 for all xeX, and so y*=x** for all
xeX; ie. y*e(X**)". Now clearly yAy*=0=x**Ay*, and so x € Nx+y*.

Lemma 3.9. Let S be an NBA and let feConS with c¢. Then [}*=
=((N*))".

Proof. Let {x,y) e BA((N%*)“)" and x# y. Since S < ¢, in view of Lemma 3.6
we may suppose x € N and y =x**, thus (x, x**) e and (x, x**) € (N}*)“)".
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Then x Af =x**Af for some fe (N%*)“. However, x**e N}*, and so f=x**>x,
implying x = x**, which is a contradiction, hence SA((N**)*)"=A.

Next, let a eCon S be such that aAf=A. If neN and {(n, n**) ea, then
(n,n**) ¢p,and so n e N — N,. Then by Lemma 3.8 we get (n, n**) e (N}*)*)"
and hence aAp <= ((N3¥*)“)". Thus by 2.1, in order to show a = ((N%*)“)", it
suffices to show that [1], = (N%*)“. Suppose x € [1], and x é (N%*)“. Then x #n**
for some n € Ny and so x An** <n**_ It is clear that x An** is closed (being in fact
0 if x#x**) and so we obtain from Lemma 3.5 that x An**<n<n** and
therefore we get {(n, n**) e a. This is impossible since (n, n**) € 3, showing that
[1]« = (N%*)“. The lemma is thus proved.

Corollary 3.10. Let S be an NBA. Then ¢*=((N**)")"=(c*)".
Proof. Immediate from Lemma 3.9 and 3.7.

Corollary 3.11. Let S be an NBA and let N={n}. Then ¢*=(n**)".
Proof. From the hypothesis we see that (N**)“=[n**, 1] and hence from
Corollary 3.10 the result is immediate.

Lemma 3.12. Let S be an NBA and let 3 e Con S be such that [1],nN is
non-empty. Then v is dense (i.e. y*=A) in Con S.

Proof. Let noe[1],nN. Since (no, 1) ey, (no,n¥*)ew. If [N|=1, then
N ={no} and hence ¢p*=(n%¥*)" by Corollary 3.11, which implies ¢*c vy, and
clearly ¢ c v, giving ¢ v@p* <. By Lemma 3.5, Con S is distributive. It can easily
be shown that in this case (O vy)* = @* Ay *forany 6,y € Con S. Thus (p ve*)*
= @*A@**=A,i.e. ¢v*is dense and so v is dense. Thus we assume [N|=2
and let neN be such that n#n,. Then nAn,=0 by (S1). Therefore from
(no, 1) ey we get (0,n) ey, hence (0, n**) ey, yielding (n, n**) ey, thus we
have @ cy. Next we wish to show @*cy. We know, by Corollary 3.10,
@*=((N**)*)". Now if f e (N**)“, then f=n%*=n, and so from noe[1], we get
fe[l]y, thus (N**)“c[1],, which implies @*c1p. We thus have pve*cvy,
proving as above that v is dense.

Definition 3.13. Let F be a filter in S. F is Boolean iff FNN is empty, or
equivalently F = B(S).

Remark 3.14. Lemma 3.12 implies that if 9 € Con S is not dense, then [1], is
a Boolean filter in S.

Definition 3.15. Let A c C. Then we define

dc(A)={ceC:cra=0, aeA}.

Lemma 3.16. Let S be an NBA and let I cC be an ideal in B(S). Then
(N**UTudc(D)" = {1).

Proof. Let f e (N**uIudc(I)). Then f is an upper bound for N**ulTudc(I).
Hence f*,\x=0 for xeN**UIUdc(I), thus f*/\n**=0 for neN, f*Ai=O for
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ieland f*Aj=0forjedc(I). From f*An**=0,n e N we get f*e C. Thus f*e C

and f*Ai=0, i el, hence f*edc(I). Since f*Aj=0, jedc(I), and f*edc(I), it

follows, in particular, that f*Af*=0 and hence f*=0, i.e. f is dense. Since

f e (N**)“, we see that f is closed and so we conclude that f = 1, proving the lemma.
By taking I = {0} we immediately have:

Corollary 3.17. Let S be an NBA. Then
(N**uC)* ={1}.
Lemma 3.18. Let S be an NBA and let F be a Boolean filte'r in S. Then
F = ((N** = Ne**)udc(Ce))".

Proof. Suppose feF is such that f£n** for some n**e N** — Neg**. Then
fAn**<n** giving fAn**<n <n** using Lemma 3.5. Now (fAn** n**)efc
F, which implies n** e Ne** and this is a contradiction, thus F ¢ (N** — Ng**)“,
Next let fe F and y € dc(Ct). Since (f*, 0) e F, we have (f*Ay,0)eF and so
f*Ay eCe. From this we get f*Ay =0, since y edc(Cr) whence f=y, showing
F = (dc(Cr))" and the lemma now follows.

Lemma 3.19. Let S be an NBA and let F be a non-trivial (i.e. F# {1}) Boolean
filter in S. Then (Ne**UCr)“ = B(S).

Proof. Let g € (Ne**UCe)“. First suppose Ng is non-empty. Then let n € N¢ and '
hence g =n**. From this it follows by (S1) that g is closed. Next suppose Np is
empty. Then F c (N**)“ by Lemma 3.18. Since F is non-trivial, choose f € F such
that f# 1. Then f* € C, since (N**)“ = C* by Lemma 3.7. From the hypothesis we
have that f is closed, and f#¥1 and hence f*#0. Also f*e Ce, as we know
(f*, 0) e F. From this we see that g =f*+# 0, from which it immediately follows,
because f* e C, that g is closed; thus the lemma is proved.

The following theorem gives a nice description of pseudocomplements for
congruences associated with filters. ’

'i‘.heorem 3.20. Let F be a Boolean filter in an NBA S. Then
(F)* = ((Ne**UCr)*)".

Proof. If F={1}, then F=A and hence Ng** is empty and Ce = {0}, so the
theorem clearly follows. We now suppose F#{1}. Let (x,y)eF A
((Ne**UCr)")" with x # y. We wish to show that x and y are both closed. Without
loss of generality we can assume x <y, whence x =x** or y = y**. Therefore

(x,x**), (y,y**) e FA((Ne**UCr)*)".

But (z, z**) e FA((Ne**UCr)")" implies z = z**, since g =z ** for all g € Np**.
Thus x and y are closed.
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We have xAf=yAf and x Ah =y Ah for some feF and h € (Ne**UCe)“. We
know by hypothesis that f is closed, and since F is non-trivial, we get by
Lemma 3.19 that A is closed. Then (x Af) v (xAh) = (yAf) v (yAh) and so
xA(fvh) = ya(fvh). Now feF c((N**—Ng**) U dc((Ce))“ by Lemma 3.18
and hence fvh € (N**UCr U dc(Cr))”, since h € (Ne**UCe)“. By Lemma 3.16,
fvh =1. Thus we see that x =y, contrary to the assumption x # y. This shows that
EA((Ne** U Cp)*) =A.

Next suppose a€ConS to be such that FaAa=A. We show that ac
= ((Ne**UCr)*)". Let F,=[1]. and we claim that F, = (Ns**UCg)". For, suppose
feF;tobesuchthat f£n** for some n € Ng, then fAn**#n**, ie. fAn**<n**,
Since fAn** is closed, f An**<n <n** using Lemma 3.5. From this it follows that
(n,n**) ea, since (fAn**, n**) e (F1)"ca.But (n,n**) eF, since n € N¢ and
so we have a contradiction, showing that F, = (N¢**)*. Next let f € F, be such that
f#c for some ceCr. Then fAac#c, and also (fac, c)eFica. But since
(0,c)eF, (fac,c)eF andso (fAac, c) e F Aa, which is a contradiction, proving
Fi1c(Ce)". Thus F,c (Ne**UCr)“, proving the claim and thus we get (F1)" <
= ((Ne**UCe)“)". To complete the proof, by 2.1 we need to show aAgpc
= ((Ne** U Ce)*)", and so let (x, x**) € aA@. Then {x, x**) ¢ F, since FAa =
= A and so x** ¢ Ne**, and therefore we conclude x* € (Ng**)"“. As x** e N**, we
x*eC" and hence x*e(Cr)*. Thus x*e(Ne**uCr), so that (0,x**) €
((Ne**UCr)“)", from which we get (x, x**) € ((Ne**UCe)*)", implying a Ap <
((Ne**UCer)“. This completes the proof.

Corollary 3.21. Let S be an NBA and let A c N**. Then
((A"))*=(N**-A)uO))";
((N**)*)")*=(C*)".

Proof. Let F=A". Then Ng¢** = N**— A by Lemma 3.8 and one easily checks
that C¢ = C. The corollary now follows from the above theorem.

in particular

Corollary 3.22. Let S be an NBA and let K cC. Then
((K*)M)* = ((N**udc(K))*)";
in particular
((C))*=((N**))".
Proof. Observe first that if K < {0}, then the first equality holds trivially. If K
contains a non-zero element, then K* is a Boolean filter, and so we may apply

Theorem 3.20 with F = K“ to establish the result; for, in this case Np** = N** and
Ce=dc(K).

Lemma 3.23. Let S be an NBA, let A c N** and let K < C. Then (A*)* A(K")"
= ((AuUK)“)".
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Proof. Since (AUK)“c A", we get (AUK“) c(A*)"; (AUK)*)" = (K“)"
be symmetry and so ((AUK))*)" c (A“)"A(K*)". Let {(x,y) € (A“)"A(K")"
with x#y. Then there exist fe A“ and g e K* such that xAf = yAf and xAg
= yAag.If A is empty or K contains no non-zero elements, then the lemma holds
trivially, hence we assume that A is non-empty and K contains a non-zero element.
This implies that f and g are closed. Now without loss of generality we can assume
that x<y and y=y** If x is closed, then xA(fvg) = ya(fvg) and
fvg e (AuUK)“, implying that (x,y) € ((AUK)“)". If x <x**, then we have
(x,x**)e(A“)" and (x,x**) e (K")", which implies by Lemma 3.8 that
x**eN**—~ A andso x*eA“. Since x**e N** and K = C, we get x*e K" also,
hence x*e(AUK)“. Since xAx*=0 = x**Ax*, we have that (x,x**) €
((AUK)*)". Thus (x,y) € ((AUK)*)" and the lemma is proved.

Theorem 3.24. Let S be an NBA and let ¢ € Con S be non-dense. Then
P*=((N$*uC,))".

Proof. We know that ¢ = Fv (3 A®), where F =[1], and hence, since Con S is
distributive, y* = (F)* A (¥ A@)*. Since vy is non-dense, F is a Boolean filter by
Lemma 3.12 (or by Remark 3.14). By Theorem 3.20 we have (F)*=
((Ne**UCr)“)", and by Lemma 3.9 (¢ A@)* = (((Nyre)**)*)". Thus we have

P*=((Ne**UGCe))" A((N%2*))" since Nyro=N,
=((Ne**))"A((Ce)*) " A((N% %)) byLemma 3.23.

Now clearly Ng**c N**, and so (N$*)" = (Ne**)“, which yields ((N3*)")" <
((Ne**)*)". Hence we have p*=((N%*)*)" A ((Ce)*)", which yields by Lem-
ma 3.23 again that p*=((N%* u C¢)")", proving the theorem.

We now return to the problem of characterizing the PCS’s whose congruences
form a Stone lattice. We have already seen that (S1) is a necessary condition. The
following example shows that it is not sufficient.

Example 3.25. Let B be the Boolean algebra of finite and cofinite subsets of w.
For each atom a in B we choose a new symbol n, and let S = Bu{n,:a is an atom
in B}. Define A on S as follows:

(i) if x, y e B, then x Ay =x A"y,
oy s n, if x=a
(ii) if xeB, then x An, = |[ 0 otherwise,
_[na if a=b
10 if a#b,
and define * on S as follows:

(i) if x e B, then x*=x’', x’ being the complement of x in B,

(ii) (n.)*=a* for every atom a in B.

Then it is clear that ¥ = (S, A, *,0) is a PCS with B(S)=B and N(S)= {n.:a is
an atom in B}; moreover, (n,)**=a and so N**(S) is the set of atoms in B.

(iii) n, An,

388



Clearly ¥ satisfies (S1), but we claim that Con & is not a Stone lattice. For, suppose
Con & is Stone. Let A be an infinite subset of N** whose complement is also
infinite, e.g. A ={{1}, {3}, {5}, ...}. Then A* and (N** — A)" are Boolean filters
in S. Since C(S) = {0}, we have by Corollary 3.21 that ((A*)")* = (N**—-A)“)"
and ((A*)")** = (A“)". Since Con ¥ is Stone, we have (A")" v (N**-A)")" =
=Vs. By restricting this equation to B(S), and then translating to the lattice of
filters F(B(S)), we get A“v (N**—A)“=B(S) in F(B(S)). But it is straightfor-
ward to verify that A“v(N**—A)" is the filter of cofinite sets in w and so
A“v(N**—A)“ + B(S), which is a contradiction, proving the claim.

We shall now give a second necessary condition on S — suggested by the above
example — in order that Con S be a Stone lattice.

Theorem 3.26. Let Con S be a Stone lattice. Then S satisfies :

(S2) (i) if AcN** then vA exists,
(ii) if K =C, ther vK exists.>)

Proof. If A is empty of K < {0}, then (S2) holds trivially, and so in the rest of
the proof we assume that neither of these instances occurs. From the hypothesis
and Theorem 3.2 we obtain that S is an NBA.

We first show that v N** and v C exist. By Corollaries 3.21 and 3.22 we have
((N**))")* = (C*)" and ((C*)")* = ((N**)“)" and hence using the hypothesis
again we get ((N**)*)" v (C*)" =Vs. By restricting this equation to B(S) we get
(N**)“v C*=B(S) in F(B(S)). Hence there exist elements m and ¢ in B(S) such
that m e (N**)*, te (C)" and mat=0. Since mvte (N*uC)*={1}, we have
mvt=1 and hence m and ¢t are complements of each other in B(S), i.e.t =m* and
m =t*. We claim that m is the least element in (N**)“. For, if not, there exists
my e (N**)* such that m >m,. Thenm,vt=1, and since m At =0, m;At =0 and so
m, is a complement of t. However, complements are unique in B(S) and we have
a contradiction, proving that m is the least element in (N**)“. Similarly one argues
that m* is the least element of C*. Thus vN**=m and vC =m*. It is clear that
m e C and hence C =[0, m*], and also we note that C is, of course, a Boolean
lattice. :

We have by hypothesis that ((A“)")* v ((A“)")**=Vs. We also have by
Corollary 3.21 that ((A“)")* = (((N**—A)uC)“)" and by Theorem 3.20 that
(((N*=A) U C)Y))*=(A")". Thus we get (A“)" v (((N**—A)uC)*)" =Vs.
From this, as before, one has A“Vv((N** — A)uC)*=B(S) in F(B(S)) and
arguing as in the previous paragraph we can find a € B(S) such that a is the least
element in A* and a* is the least element in (N**— A)uC)”, thus v A exists and
VA =a.

%) For A cB(S), if sup A exists in the Boolean algebra B(S), then we write VA for sup A.
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Again by hypothesis, ((K*)")* v ((K*)")**=Vs. From Corollary 3.22 we have
(KYY* = ((N**udc(K))“)" . and by Theorem 3.20, ((N**udc(K))*)")*
= ((dedc(K))*)". Hence it follows that ((N**udc(K))“)" v ((dcdc(K))“)" =Vs.
Then there exist f € (dc(K))* (and f e (N**)* also) and g € (dcdc(K))“ such that
fvg=1and fAg=0. From this it follows that fAm* and g Am* are complements
of each other in the Boolean lattice [0, m*]. Then arguing as before and noting that
(ddc(K))* = K", we conclude that vK exists in [0, m*] and hence v K exists in
B(S). This completes the proof.

We shall now prove that (S1) and (S2) are indeed sufficient conditions on S in
order that Con S be a Stone lattice.

Therefore 3.27. Let S satisfy (S1) and (S2). Then Con S is a Stone lattice.

Proof. First we note from the hypothesis and Lemma 3.25 that S satisfies (D)
— hence Con S is distributive by 2.2.

Let y be any congruence on S. If vy is dense, then the theorem is immediate.
Thus we assume that iy is not dense. Then by Theorem 3.24 we have y* =
=((N%*uC,)")", and from Theorem 3.20 it follows that y** = ((N** - N%*) U
U dc(Cy))*)", since S satisfies (S1). Also we have from (S2) that VN** vC,
vN¥* and vC, exist, and so let VN**=m, vN¥*=u and vC,=r. Then
vC=m*, v(N*—N¥*) = mau* and vdc(C,) = m*Ar*. From this we get
v(N$*UC,) = uvr and v((N*—=N3}*) U dc(Cy)) = (mAau*) v (m*Ar*) =
=u*Ar* = (uvr)*. Hence we get y*=(uvr)" and y**=((uvr)*)". Now
(0, (uvr)*)ey*and ((uvr)*, 1) eyp** andso (0, 1) € Yy*vy**, implying that
Y*vy**=Vs. Thus we see that Con S is Stone, proving the theorem.

We thus have proved the following Theorem.

Theorem 3.28. Con S is a Stone lattice iff S satisfies (S1) and (S2).

Corollary 3.29. (Katrinak [7]). Let B be a BA. Then Con B is a Stone lattice iff
B is complete.

Proof. Treating B as a PCS, (S1) holds trivially in B and N**(B) is empty.
Hence the corollary follows immediately from Theorem 3.28. '

§ 4. Congruences forming Boolean lattices.

The purpose of this section is to describe those PCS’s whose congruence lattices
are Boolean lattices. It turns out that the only finite Boolean algebras treated as
PCS’s have this property. We also consider some related questions. We shall begin
with the following lemma.

Lemma 4.1. If Con S is complemented, then S is a Boolean algebra.
Proof. Suppose S is not a Boolean algebra. Then there exists at least one
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non-closed element in S which implies that ¢ # A. From the hypothesis we see that
@ is complemented. Let ¢’ denote a complement of ¢. Since g A@p’'=A, then
@' <g@*. (Recall that Con S is pseudocomplemented.) Hence p v’ < ¢ ve*. We
claim that ¢ ve*+#V. For, suppose ¢ ve*=V. Then (0,1) € ¢ ve*, and so
(0,1) e (pve*)s = (@)sVv(¢*)s = (¢*)s, inshort (0, 1) € (¢*)s, which implies
that (0, 1) e@p*. Then V=0(0, 1)< @*<V,i.e. ¢*=V, from which it follows that
@ < @*, which is impossible and so the claim is proved. Then ¢ v ¢’ # V, which is
clearly a contradiction since ¢’ is a complement of ¢. Thus we conclude that S is
a Boolean algebra and so the lemma is proved.

Corollary 4.2. If Con S is complemented, then S is a finite Boolean algebra.

Proof. By Lemma 4.1 we see that S is a Boolean algebra. Then Con S is
isomorphic with the ideal lattice of the Boolean algebra S. Now the corollary is an
immediate consequence of the wellknown facts that there exists non-principal
ideals in an infinite Boolean algebra and that non-principal ideals do not have
complements in the ideal lattice of that algebra.

Corollary 4.3. If Con S is complemented, then Con S is distributive.

Proof. Immediate from Lemma 4.1 and the fact that the congruence lattice of
a Boolean algebra is distributive.

The following theorem contains a characterization of PCS’s whose congruence
lattices are Boolean.

Theorem 4.4. The following statesments are equivalent:

(1) Con S is complemented,

(2) S is a finite Boolean algebra,

(3) Con S is a finite Boolean lattice,

(4) Con S is a Boolean lattice.
In this case, Con S =S.

Proof. (1) implies (2) by Corollary 4.2, that (2) implies (3) is well known, (3)
implies that (4) is trivial and (4) implies that (1) is trivial as well.

The following Corollary is implicit in Jones [5].

Corollary 4.5. The variety PCS has a unique simple algebra in it, namely the
2-element algebra. )

Proof. If S is a simple algebra in PCS, then Con S is the Boolean lattice, with
two elements. The corollary now follows immediately from Theorem 4.4.

Corollary 4.6. The class of all congruence lattices of PCS’s cannot be charac-
terized by a set of first order axioms.

Proof. We only need to observe that an elementary class with arbitrarily large
finite models has infinite models, and then apply Theorem 4.4.
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Our next theorem gives a necessary and sufficient condition on S in order that
the interval [A, @] of Con S be a Boolean lattice. In this connection we need the
following Theorem which was proved in Varlet [12].

Theorem 4.7. Let L be a A-semilattice and let Con L be the lattice of
congruences on L. Then Con L is a Boolean lattice iff every closed interval in L is
totally ordered and is of finite length.

Theorem 4.8. The interval [A, @] of Con S is a Boolean lattice iff

(i) (D) holds in S,

(ii) for c e B(S) every interval [a, b] in D. is of a finite length.

Proof. Suppose [A, @] is a Boolean lattice. Then [A, @] is distributive and
hence by 2.3 we see that (D.,) holds in S. We shall show that (U"') also holds in S.
Suppose (U’) is false in S. Then there exist two closed elements ¢; and ¢, and
a non-closed element a in S such that a**=c,, c,<c; but c;€a. Then (c.Aa)*=
c3%. It is clear that 6(c;Aa, c;) = 0(a, c1) = . Since every interval of a Boolean
lattice is a Boolean lattice and [A, @] is a Boolean lattice, we have that the interval
[A, O(a, c1)] is a Boolean lattice. However, we claim that the congruence 6 =
6(cz2na, c2) is not complemented in [A, 0(a, c,)]. For if 6 were complemented,
then let a be its complement in [A, 6(a, c¢1)]. We know from [9] that every interval
of Con S is pseudocomplemented ; hence [A, 6(a, c1)] is pseudocomplemented. So
let 3 denote the pseudocomplement of 8 in [A, 6(a, c.)]. Since a A0 = A, we have
ac/[} and hence avO < [3vO. It is clear that (a,c,)¢0 and also (a,c:)ép
(because (a, c;) €3 would imply (c.Aa, c,) €8 contradicting the fact that 8 is
a pseudocomplement of 8). We claim that in fact (a,c,) ¢ 3v0. For in the

opposite case there exists xi,...,x, in S such that {(a,x,)e0, (xi, x:)€f,
(x2,x3) €0, ..., {xa, c1) €B. Since both 8 and 8 are contained in 8(a, c,), we have
a=x,Aa = X2Aa =...= X, Aa = c;Aa=a;sox;=a fori=1, ..., n. Note that

a<¥c,, hence it follows that x;<c, for i =1, ..., n. From this it follows that a = x,,
X2=x3, etc. since (u,v) € B(caAc,) implies u <c; and v <c,. Thus we see that
(a, c1) € B, a possibility that has already been excluded. Hence the claim is proved
and we (a, c;) ¢ 3v 0. This implies that v <0 (a, c,), whence avO c@ (a, c).
But we know av€@ = 6(a, c:), since a is the complement of 0 in [A, 6(a, c1)].
Thus we have a contradiction. This shows that 6(c;Aa, c) is not complemented in
[A, 6(a, c1)], which contradicts the fact that the interval [A, 0(a, c,)] is a Boolean
lattice. Thus we see that (U') holds in S and so (D) holds in S, proving the
theorem. To prove (ii): let c € B(S) be arbitrarily fixed. By (i) (D) holds in S,
which implies that D. is a chain. Let ¢ <6(D. X D.). We can regard D. as
a A-semilattice. Then we let . =y n (D. X D.). Treating v as just a semilattice
congruence on (semilattice) S, we see from (D, ) and (U"') that ¥ = y.UAs. From
this it follows that the interval [A, 6(D. X D.)] is isomorphic with L., the lattice of
semilattice congruences on the semilattice D.. The hypothesis implies that
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[A, 0(D.xD.)] is a Boolean lattice, hence L. is a Boolean lattice. Then by
Theorem 4.7 we get that every interval in D. is of finite length. Thus (ii) is proved.
Conversely, suppose (i) and (ii) hold in S. Then by (i) we have, as before, that
each D is a chain and [A, 8(D. x D.)] is isomorphic with L. (as above). Since D, is
a chain and by (ii) every interval of D, is of finite length, then again by
Theorem 4.7 we see that L. is a Boolean lattice and hence [A, 6(D. X D.)] is
a Boolean lattice for every c € B(S). Moreover it is easy to see that ¢ =

= V 6(D.xD.), and 8(D., X D.,) A 6(D.,x D.,)=A if c,+ c. because of (D).

ceB(S)
Thus [A, 0] can be regarded as a direct product of the Boolean lattices [A, 8(D. x
D.)] for c e B(S), hence [A, 0] is a Boolean lattice. This proves the theorem.

Corollary 4.9. Suppose that S has the property:

For c € B(S) every interval [a, b] in D.(S) is of a finite length.

Then the following statesments are equivalent:

(1) The interval [A, 6] is a Boolean lattice,

(2) S satisties (D), '

(3) Con S is modular,

(4) Con S is distributive,

(5) Con S is a Heyting lattice.

In particular, if every D. in S is finite or if S itself is finite, then (1)—(5) are
equivalent.

Proof. (1) and (2) are equivalent by Theorem 4.8, and the fact that (2)—(5) are
equivalent to each other was shown in [11].

We shall make the following definition.

Definition 4.10. A property P of a PCS S is (finite) Boolean iff the following is
true:

P holds in S iff S is a (finite) Boolean algebra.

We have already encountered one such property in Lemma 4.1, namely that of
Con S being complemented. We shall now consider another such property.

Theorem 4.11. The following statesments are equivalent:

(1) S is a Boolean algebra, :

(2) Every element of Con S is a meet of maximal elements.

(3) A is the intersection of all maximal elements in Con S.

Proof. That (1) implies (2) is well known. On the other hand, (2) implies that
the intersection of all maximal elements of ConS is A. From 2.4 one has
immediately A = ¢, from which (1) follows.

Theorem 4.12.

(1) Every two congruences on S permute with each other.

(2) Either S is a Boolean algebra, or else S is of the form Bu{1} where B is
a Boolean algebra and 1 is the new largest element of S.
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Proof. (1) implies (2): First we note that (1) implies the modularity of Con S, as
it is well known, which in turn implies by 2.2 that (D) holds in S. Now we claim
that, for any closed element ¢, D. contains at most one non-closed element. For
suppose that for some ¢, D. has at least two non-closed elements, say x and y.
Without loss of generality we may assume that x <y <c. Let ¢ =60(x, y) and
n=06(y,c). Then (x,c) € pon. Observe that the only non-trivial congruence
class of v is [x, y] and the only non-trivial congruence class of n is [y, c]. Hence it
is obvious that (x, c) é noy, giving ¥ on# noy. This contradicts (1), hence our
claim is true; in particular S can have at most one dense element not equal to 1.
Next we claim that if c# 1 is a closed element, then D, = {c}. For, if D. contains
a non-closed element, say x, consider ¥ =0(x, c¢) and n=0(c, 1). Then (x, 1) €
P on, and it is easy to see that (x, 1) énoy, contrary to (1) again. Thus we have
shown that S cannot have any non-closed element except possibly one dense
element which is different from 1, i.e. S can only be either a Boolean algebra, or
else S is of the form Bu{1}, where B is a Boolean algebra. On the other hand, if S
is a Boolean algebra it is well known that (1) holds in S, and also from this
well-known fact it easily follows that if S is of the form Bu{1}, (1) holds in S. Thus
the theorem is proved.

Finally the author would like to thank the referee for his comments.
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O NMONYCTPYKTYPAX C IICEBOOOOITIOJHEHHUAMHU CO CTPYKTYPAMU
KOHIPY3HLUA CTOYHA

I'.II. llaskannaHaBap
Pe3iome
B pa6oTe 1aHa xapakTepH3auus MOJYCTPYKTYP C ICEBIOAONOIHEHHIAMH CO CTPYKTYPOR KOHIPY3H-
uuit CroyHa. DrTa xapakTepu3auus BKJIOYaeT pe3ynbTaT KaTpHHAKa, KOTOPbI XapaKTepH3yeT
6yneBbie anre6pbl, CTPYKTypa KOHTPYIHIHMI KOTOPBIX ABIAETCH CTPYKTYpoH CTOYyHa.

PaccMaTpHBaloTCs TakXe MOJYCTPYKTYPBI C NCEBIOAOMNONHEHHAMH, Y KOTOPbIX CTPYKTYPbl KOH-
rpy3HuHMiA 6yneBbI.
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