Mathematica Slovaca

Zbigniew Grande

On almost continuous additive functions

Mathematica Slovaca, Vol. 46 (1996), No. 2-3, 203--211
Persistent URL: http://dml.cz/dmlcz/128858

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1996

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

ON ALMOST CONTINUOUS ADDITIVE FUNCTIONS ${ }^{1}$

Zbigniew Grande
(Communicated by L'ubica Holá)

Abstract

It is proved that every additive function is the sum of two almost continuous (in Stallings' sense) additive functions and the limit of a sequence (of a transfinite sequence) of almost continuous additive functions. Moreover, it is shown that the maximal additive family for the set of all almost continuous additive functions having the graphs of the second category is contained in the class of continuous additive functions.

Let \mathbb{R} be the set of all reals. A function $g:(a, b) \rightarrow \mathbb{R}$ is said to be almost continuous (in Stallings' sense [5]) if for every open set $D \subset \mathbb{R}^{2}$ containing the graph $G(g)$ of the function g there is a continuous function $h:(a, b) \rightarrow \mathbb{R}$ with $G(h) \subset D$.

A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is called additive (see, e.g., [4]) if it satisfies Cauchy's equation

$$
f(x+y)=f(x)+f(y), \quad x, y \in \mathbb{R}
$$

It is well known that there exists additive almost continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ which is not continuous ([3], see also [2]). In this article, I prove that every additive function is the sum of two additive almost continuous functions and the limit of a sequence (of a transfinite sequence) of additive almost continuous functions, and I investigate the maximal additive family for the class of all additive almost continuous functions with the graphs of the second category.

Throughout the article, I assume the Continuum Hypothesis CH and all considered functions are real and of real variable.

[^0]
ZBIGNIEW GRANDE

Let

$$
\begin{aligned}
\mathcal{A} d d & =\{f: f \text { is additive }\} \\
\mathcal{A C} & =\{f: f \text { is almost continuous }\} \\
\mathcal{C} & =\{f: f \text { is continuous }\} \\
\Theta & =\{f: \text { for every } g \in \mathcal{A} d d \cap \mathcal{A C}, f+g \in \mathcal{A} d d \cap \mathcal{A C}\}
\end{aligned}
$$

Denote by \mathbb{Q} the set of all rationals. Every linear basis in \mathbb{R} over \mathbb{Q} is called a Hamel basis in \mathbb{R}. Let

$$
\begin{equation*}
I_{1}, \ldots, I_{n}, \ldots \tag{1}
\end{equation*}
$$

be a sequence of all open intervals with rational endpoints, let ω_{1} denote the first uncountable ordinal number, and let

$$
\begin{equation*}
x_{1}, \ldots, x_{\alpha}, \ldots, \quad \alpha<\omega_{1} \tag{2}
\end{equation*}
$$

be a transfinite sequence of all reals.
Remark 1. There is a Hamel basis $H \subset \mathbb{R}$ such that for every open interval $I \subset \mathbb{R}$ the intersection $I \cap H$ is of the cardinality continuum.

Proof. Let

$$
0 \neq x_{0}^{1} \in \mathbb{R}
$$

be arbitrary, and for every $\alpha<\omega_{1}$ and $n \geq 1$ let $\cdot x_{\alpha}^{n}$ be the first element x_{β} of the sequence (2) such that

$$
x_{\beta} \in I_{n}
$$

and the set

$$
\left\{x_{\beta}^{n}\right\}_{\beta<\alpha, n \geq 1} \cup\left\{x_{\alpha}^{k}\right\}_{k \leq n}
$$

is linearly independent over \mathbb{Q}. Then the set

$$
H=\left\{x_{\alpha}^{n}: \alpha<\omega_{1}, \quad n \geq 1\right\}
$$

is a Hamel basis such that

$$
\operatorname{card}(H \cap I)=c
$$

for every open interval I.
If f is a function, we mean by a blocking set of f a closed set $K \subset \mathbb{R}^{2}$ such that $G(f) \cap K=\emptyset$ and $G(g) \cap K \neq \emptyset$ for every continuous function $g: \mathbb{R} \rightarrow \mathbb{R}$. An irreducible blocking set (IBS) K of f is a blocking set of f such that no proper subset of K is a blocking set ([3]).

It is known that f is almost continuous if and only if it has no blocking set. Moreover, if f is not almost continuous, then there is an (IBS) K of f, and the x-projection $\operatorname{pr}_{x}(K)$ of K is a non-degenerate connected set ([3]).

Let

$$
\begin{equation*}
K_{1}, \ldots, K_{\alpha}, \ldots, \quad \alpha<\omega_{1} \tag{3}
\end{equation*}
$$

be a transfinite sequence of all irreducible blocking sets in \mathbb{R}^{2}.

ON ALMOST CONTINUOUS ADDITIVE FUNCTIONS

Theorem 1. If $f \in \mathcal{A} d d$, then there are $g, h \in \mathcal{A} d d \cap \mathcal{A C}$ such that $f=g+h$.
Proof. Let H be a Hamel basis from Remark 1. For every $\alpha<\omega_{1}$ there are points

$$
x_{\alpha}, y_{\alpha} \in H \cap \operatorname{pr}_{x}\left(K_{\alpha}\right)
$$

such that

$$
x_{\alpha} \neq y_{\beta}, \quad y_{\alpha} \neq x_{\beta}, \quad \text { for } \quad \beta \leq \alpha
$$

and

$$
x_{\alpha} \neq x_{\beta}, \quad y_{\alpha} \neq y_{\beta}, \quad \text { for } \quad \beta<\alpha
$$

For every $\alpha<\omega_{1}$ let $u_{\alpha}, v_{\alpha} \in \mathbb{R}$ be points such that

$$
\left(x_{\alpha}, u_{\alpha}\right) \in K_{\alpha}, \quad\left(y_{\alpha}, v_{\alpha}\right) \in K_{\alpha}
$$

Define

$$
\begin{aligned}
& g_{1}(x)= \begin{cases}u_{\alpha} & \text { if } x=x_{\alpha}, \alpha<\omega_{1}, \\
f(x)-v_{\alpha} & \text { if } x=y_{\alpha}, \alpha<\omega_{1}, \\
0 & \text { otherwise in } H,\end{cases} \\
& h_{1}(x)= \begin{cases}f(x)-u_{\alpha} & \text { if } x=x_{\alpha}, \alpha<\omega_{1} \\
v_{\alpha} & \text { if } x=y_{\alpha}, \alpha<\omega_{1}, \\
f(x) & \text { otherwise in } H,\end{cases}
\end{aligned}
$$

and let $g: \mathbb{R} \rightarrow \mathbb{R}(h: \mathbb{R} \rightarrow \mathbb{R})$ be the additive extension of $g_{1}\left(\right.$ of $\left.h_{1}\right)$ (see, e.g., [4]).

Observe that for every $\alpha<\omega_{1}$,

$$
\left(x_{\alpha}, g\left(x_{\alpha}\right)\right)=\left(x_{\alpha}, u_{\alpha}\right) \in K_{\alpha}
$$

and

$$
\left(y_{\alpha}, h\left(y_{\alpha}\right)\right)=\left(y_{\alpha}, v_{\alpha}\right) \in K_{\alpha} .
$$

So, the functions g, h are almost continuous, and, evidently,

$$
f=g+h .
$$

This completes the proof.
Remark 2. The inclusion

$$
\mathcal{A} d d \cap \mathcal{C} \subset \Theta
$$

follows from [1].

ZBIGNIEW GRANDE

LEMMA 1. Let $f: Z \rightarrow \mathbb{R}$ be a function with the graph $G(f)$ of the second category in \mathbb{R}^{2}, and let g be an upper semi-continuous function with domain a non-degenerate interval $J \supset Z$. Then for every countable sets $A, B \subset \mathbb{R}$ there is a point $x \in Z \backslash A$ such that $f(x)+g(x)$ is not in B.

Proof. Let $\left(b_{k}\right)_{k}$ be an enumeration of all points of the set B. For $k=$ $1,2, \ldots$, let

$$
A_{k}=\left\{x \in Z: f(x)+g(x)=b_{k}\right\}
$$

If for every $x \in Z \backslash A$ we have

$$
f(x)+g(x) \in B
$$

then

$$
G(f) \subset \bigcup_{k} G\left(f / A_{k}\right) \cup\{(x, y): x \in A, y \in \mathbb{R}\}
$$

and for every $k=1,2, \ldots$,

$$
G\left(\left(f-b_{k}\right) / A_{k}\right)=G\left((-g) / A_{k}\right)
$$

Since the set $G(-g)$ is nowhere dense, every set

$$
G\left(\left(f-b_{k}\right) / A_{k}\right), \quad k=1,2, \ldots,
$$

is also nowhere dense, and, consequently, every set $G\left(f / A_{k}\right), k \geq 1$, is the same. So, $G(f)$ is of the first category, a contradiction.

Remark 3. If the graph $G(f)$ of a function $f \in(\mathcal{A} d d \cap \mathcal{A C}) \backslash \mathcal{C}$ is of the second category, then for every open interval $I=(a, b)$ the sets

$$
\{(x, f(x)): x \in I, f(x)>0\}
$$

and

$$
\{(x, f(x)): x \in I, \quad f(x)<0\}
$$

are of the second category.
Proof. If $G(f / I)$ is a subset of the first category, then for every bounded open interval J there is a function

$$
h(x)=a x+b, \quad x \in \mathbb{R}, \quad a, b \in \mathbb{Q}, \quad a \neq 0
$$

such that $J \subset h(I)$, and, consequently,

$$
G(f / J) \subset a G(f / I)+(b, f(b))
$$

So, $G(f / J)$ is of the first category for every open interval J, and we obtain a contradiction, since $G(f)$ is of the second category. Suppose that the set

$$
\{(x, f(x)): x \in I, \quad f(x)>0\}
$$

ON ALMOST CONTINUOUS ADDITIVE FUNCTIONS

is of the first category. Since f is a discontinuous additive function with the Darboux property, the set $\{x \in \mathbb{R}: f(x)=0\}$ is dense ([4]). There is an open interval $J \subset I$ such that, at its center z, we have $f(z)=0$. Observe that, if $x \in J$ and $f(x)>0$, then

$$
f(z-(x-z))=-f(x)<0
$$

Since the function

$$
h(x, y)=(2 z-x,-y), \quad x \in I, \quad y \in \mathbb{R}
$$

is a homeomorphism, and the set

$$
\{(x, f(x)): x \in I, \quad f(x)>0\}
$$

is of the first category, the set

$$
\{(x, f(x)): x \in I, \quad f(x)<0\}
$$

is the same. But the set

$$
\{(x, f(x)): x \in I, \quad f(x)=0\}
$$

cannot be residual in $I \times \mathbb{R}$, so we have a contradiction.
Now, let

$$
\begin{aligned}
& \Omega=\{f \in \mathcal{A} d d \cap \mathcal{A C}: G(f) \text { is of the second category }\} \quad \text { and } \\
& \Delta=\{f: \text { for every } g \in \Omega, f+g \in \Omega\}
\end{aligned}
$$

Problem 1. Does exist a function $f \in(\mathcal{A} d d \cap \mathcal{A C}) \backslash \mathcal{C}$ with the graph of the first category?

Remark 4. The inclusion

$$
\Delta \supset \mathcal{A} d d \cap \mathcal{C}
$$

is true.
Proof. If $f \in \mathcal{A} d d \cap \mathcal{C}$, then for every function $g \in \Omega$ we have

$$
f+g \in \mathcal{A} d d \cap \mathcal{A C}
$$

([1]). There is $a \in \mathbb{R}$ such that

$$
f(x)=a x, \quad x \in \mathbb{R}
$$

Since the function

$$
F(x, y)=(x, y+a x), \quad(x, y) \in \mathbb{R}^{2}
$$

is a homeomorphism, the graph of the function

$$
h(x)=g(x)+f(x)=g(x)+a x, \quad x \in \mathbb{R},
$$

is of the second category. So, $f+g \in \Omega$, and the proof is completed.

ZBIGNIEW GRANDE

Theorem 2. If the function $f \in \Omega$, then there is a function $h \in \Omega$ such that $f+h$ is not in $\mathcal{A C}$.

Proof. Let

$$
H=\left\{t_{0}, \ldots, t_{\alpha}, \ldots\right\}
$$

be a Hamel basis, let

$$
M_{0}, \ldots, M_{\alpha}, \ldots, \quad \alpha<\omega_{1}
$$

be a transfinite sequence of all $G_{\delta^{-s e t s}}$ of the second category in \mathbb{R}^{2}, and let

$$
G\left(u_{0}\right), \ldots, G\left(u_{\alpha}\right), \ldots, \quad \alpha<\omega_{1}
$$

be a transfinite sequence of the graphs of all upper semi-continuous functions with domains being non-degenerate intervals such that the domains I_{0} of u_{0} and I_{1} of u_{1} have positive endpoints.

There exists a point $\left(x_{0}, u_{0}\left(x_{0}\right)\right) \in G\left(u_{0}\right)$ such that

$$
f\left(x_{0}\right)+u_{0}\left(x_{0}\right)>0 .
$$

Let $\left(s_{0}, w_{0}\right) \in M_{0}$ be a point such that the sets $\left\{x_{0}, s_{0}\right\}$ and $\left\{f\left(x_{0}\right)+u_{0}\left(x_{0}\right)\right.$, $\left.f\left(s_{0}\right)+w_{0}\right\}$ are linearly independent over \mathbb{Q}. Moreover, if x_{0}, s_{0}, t_{0} are linearly independent over \mathbb{Q}, we find v_{0} such that $f\left(t_{0}\right)+v_{0}, f\left(x_{0}\right)+u_{0}\left(x_{0}\right), f\left(s_{0}\right)+w_{0}$ are linearly independent over \mathbb{Q}.

Denote by $E_{1}\left(F_{1}\right.$, resp.) the linear subspace over \mathbb{Q} generated by $\left\{x_{0}, t_{0}, s_{0}\right\}$ $\left(\left\{f\left(t_{0}\right)+v_{0}, f\left(x_{0}\right)+u_{0}\left(x_{0}\right), f\left(s_{0}\right)+w_{0}\right\}\right)$.

By Lemma 1 and Remark 3, there is a point $x_{1} \in I \backslash E_{1}$ such that $0>$ $f\left(x_{1}\right)+u_{1}\left(x_{1}\right)$ is not in F_{1}.

Let $\left(s_{1}, w_{1}\right) \in M_{1}$ be a point such that the set $\left\{s_{1}, x_{1}\right\} \cup E_{1}$ is linearly independent over \mathbb{Q}, and the set $\left\{f\left(s_{1}\right)+w_{1}, f\left(s_{1}\right)+u_{1}\left(x_{1}\right)\right\} \cup F_{1}$ is also linearly independent over \mathbb{Q}. If the points

$$
x_{0}, x_{1}, t_{0}, t_{1}, s_{0}, s_{1}
$$

are linearly independent over \mathbb{Q}, we find a point v_{1} such that the set $\left\{f\left(t_{1}\right)+v_{1}\right.$, $\left.f\left(x_{1}\right)+u_{1}\left(x_{1}\right), f\left(s_{1}\right)+w_{1}\right\} \cup F_{1}$ is linearly independent over \mathbb{Q}.

Fix an countable ordinal $\alpha>1$ and suppose that we have defined points x_{β}, $\left(s_{\beta}, w_{\beta}\right) \in M_{\beta}$ and, if necessary, $v_{\beta}, 1<\beta<\alpha$, such that

$$
f\left(x_{\beta}\right)+u_{\beta}\left(x_{\beta}\right), \quad f\left(t_{\beta}\right)+v_{\beta}, \quad f\left(s_{\beta}\right)+w_{\beta}, \quad \beta<\alpha
$$

are linearly independent over \mathbb{Q}, and x_{β}, s_{β} and such t_{β} for which v_{β} exist are also linearly independent over \mathbb{Q}. Denote by $E_{\alpha}\left(F_{\alpha}\right)$ the linear subspace over \mathbb{Q} generated by $\left\{x_{\beta}: \beta<\alpha\right\} \cup\left\{s_{\beta}: \beta<\alpha\right\}$ and such t_{β} for which v_{β}

ON ALMOST CONTINUOUS ADDITIVE FUNCTIONS

$\operatorname{exist}\left(\left\{f\left(x_{\beta}\right)+u_{\beta}\left(x_{\beta}\right): \beta<\alpha\right\} \cup\left\{f\left(t_{\beta}\right)+v_{\beta}: \beta<\alpha\right.\right.$ and v_{β} is chosen $\} \cup$ $\left.\left\{f\left(s_{\beta}\right)+w_{\beta}: \beta<\alpha\right\}\right)$. By Lemma 1 , there is a point

$$
x_{\alpha} \in I_{\alpha} \backslash E_{\alpha}
$$

where I_{α} is the domain of the function u_{α}, such that $f\left(x_{\alpha}\right)+u_{\alpha}\left(x_{\alpha}\right)$ is not in F_{α}.

Let $\left(s_{\alpha}, w_{\alpha}\right) \in M_{\alpha}$ be a point such that the set $\left\{s_{\alpha}, x_{\alpha}\right\} \cup E_{\alpha}$ is linearly independent over \mathbb{Q}, and the set $\left\{f\left(s_{\alpha}\right)+w_{\alpha}, f\left(x_{\alpha}\right)+u_{\alpha}\left(x_{\alpha}\right)\right\} \cup F_{\alpha}$ is also linearly independent over \mathbb{Q}. If the set $\left\{t_{\alpha}, x_{\alpha}, s_{\alpha}\right\} \cup E_{\alpha}$ is linearly independent over \mathbb{Q}, then we find a real v_{α} such that the set $\left\{f\left(t_{\alpha}\right)+v_{\alpha}, f\left(s_{\alpha}\right)+w_{\alpha}, f\left(x_{\alpha}\right)+u_{\alpha}\left(x_{\alpha}\right)\right\}$ $\cup F_{\alpha}$ is linearly independent over \mathbb{Q}. All points $x_{\alpha}, s_{\alpha}, \alpha<\omega_{1}$, and such points t_{α} for which v_{α} exist form a Hamel basis H_{1}. Let h be the additive extension on \mathbb{R} of the function

$$
h_{1}(x)= \begin{cases}u_{\alpha}\left(x_{\alpha}\right) & \text { if } \cdot x=x_{\alpha}, \alpha<\omega_{1} \\ v_{\alpha} & \text { if } x=t_{\alpha} \in H_{1} \backslash\left\{x_{\beta}, s_{\beta}: \beta<\omega_{1}\right\}, \alpha<\omega_{1} \\ w_{\alpha} & \text { if } x=s_{\alpha}, \alpha<\omega_{1}\end{cases}
$$

Since

$$
G(h) \cap G\left(u_{\alpha}\right) \neq \emptyset
$$

and

$$
G(h) \cap M_{\alpha} \neq \emptyset
$$

for every $\alpha<\omega_{1}$, the function h is almost continuous ([3]), and its graph $G(h)$ is of the second category. Suppose that

$$
f(x)+h(x)=0
$$

for some $x>0$. Then

$$
x=r_{1} z_{1}+\ldots r_{k} z_{k}
$$

where $r_{i} \in \mathbb{Q} \backslash\{0\}$ and $z_{i} \in H_{1}$ for $i \leq k$. Thus

$$
r_{1}(f+h)\left(z_{1}\right)+\cdots+r_{k}(f+h)\left(z_{k}\right)=0
$$

which is a contradiction with the linear independence of

$$
(f+h)\left(z_{1}\right), \ldots,(f+h)\left(z_{k}\right) .
$$

But

$$
(f+h)\left(x_{0}\right)>0
$$

and

$$
(f+h)\left(x_{1}\right)<0
$$

so $f+h$ has not the Darboux property. Thus $f+h$ is not almost continuous $([3])$, and the function f is not in the collection Ω. This completes the proof.

ZBIGNIEW GRANDE

Problem 2. Are the following equalities true:

$$
\mathcal{A} d d \cap \mathcal{C}=\Theta=\Delta ?
$$

THEOREM 3. If $f \in \mathcal{A} d d$, then there is a sequence of functions $f_{n} \in \mathcal{A} d d \cap \mathcal{A C}$, $n \geq 1$, such that $f=\lim _{n \rightarrow \infty} f_{n}$.

Proof. Let $H \subset \mathbb{R}$ be a Hamel basis satisfying the condition from Remark 1. For every $\alpha<\omega_{1}$ there is a sequence of points

$$
x_{\alpha, n} \in H \cap \operatorname{pr}_{x}\left(K_{\alpha}\right), \quad n=1,2, \ldots,
$$

such that

$$
x_{\alpha, n} \neq x_{\beta, k}
$$

if

$$
(\alpha, n) \neq(\beta, k), \quad \beta<\alpha, \quad k, n=1,2, \ldots
$$

For each point $x_{\alpha, n}$ there is a point $y_{\alpha, n}$ such that

$$
\left(x_{\alpha, n}, y_{\alpha, n}\right) \in K_{\alpha}, \quad \alpha<\omega_{1}, \quad n \geq 1
$$

Define, for $n=1,2, \ldots$,

$$
g_{n}(x)= \begin{cases}y_{\alpha, k} & \text { if } x=x_{\alpha, k}, \alpha<\omega_{1}, k \geq n \\ f(x) & \text { otherwise in } H\end{cases}
$$

and let f_{n} be the additive extension of g_{n} on \mathbb{R}. Since

$$
\left(x_{\alpha, n}, y_{\alpha, n}\right) \in K_{\alpha} \cap G\left(f_{n}\right)
$$

for $\alpha<\omega_{1}$ and $n \geq 1$, all functions f_{n} are almost continuous. Moreover, if $x=x_{\alpha, k}, \alpha<\omega_{1}, k \geq 1$, then $f_{n}(x)=f(x)$ for $n>k$, and if $x \in H$, and $x \neq x_{\alpha, k}$ for all $\alpha<\omega_{1}$ and $k \geq 1$, then $f_{n}(x)=f(x)$ for all $n \geq 1$. So, $f=\lim _{n \rightarrow \infty} f_{n}$ on H and, consequently, on \mathbb{R}. Thus the proof is completed.
THEOREM 4. If $f \in \mathcal{A d d}$, then there is a transfinite sequence of functions $f_{\alpha} \in \mathcal{A d d} \cap \mathcal{A C}, \alpha<\omega_{1}$, such that $\lim _{\alpha} f_{\alpha}=f$, i.e.,

$$
\forall x \exists \beta<\omega_{1} \forall \omega_{1}>\alpha>\beta \quad f_{\alpha}(x)=f(x)
$$

Proof. Let a Hamel basis H be the same as in the proof of Theorem 3. There are pairwise disjoint sets $T_{\alpha}, \alpha<\omega_{1}$, such that every set

$$
H \cap \operatorname{pr}_{x}\left(K_{\alpha}\right) \cap T_{\alpha}, \quad \alpha<\omega_{1}
$$

is uncountable. For each $\alpha<\omega_{1}$ let

$$
\left(x_{\alpha, \beta}\right)_{\beta<\omega_{1}}
$$

ON ALMOST CONTINUOUS ADDITIVE FUNCTIONS

be a transfinite sequence of all points of the set

$$
H \cap \operatorname{pr}_{x}\left(K_{\alpha}\right) \cap T_{\alpha}
$$

and let

$$
g_{\alpha}(x)= \begin{cases}y_{\alpha, \beta} & \text { if } x=x_{\alpha, \beta}, \omega_{1}>\beta \geq \alpha \\ f(x) & \text { otherwise in } H\end{cases}
$$

where $y_{\alpha, \beta}$ are points such that

$$
\left(x_{\alpha, \beta}, y_{\alpha, \beta}\right) \in K_{\beta}, \quad \alpha, \beta<\omega_{1}
$$

and let f_{α} be the additive extension g_{α} on \mathbb{R}. Analogously as in the proof of Theorem 3, we can observe that all functions f_{α} are almost continuous and

$$
\lim _{\alpha} f_{\alpha}=f
$$

This completes the proof.

REFERENCES

[1] JASTRZEBSKI, J. M.-JEDRZEJEWSKI, J. M.-NATKANIEC, T. : On some subclasses of Darboux functions, Fund. Math. 138 (1991), 165-173.
[2] JONES, F. B.: Connected and disconnected plane sets and the functional equation $f(x+y)$ $=f(x)+f(y)$, Bull. Amer. Math. Soc. 48 (1942), 115-120.
[3] KELLUM, K. R.: Almost continuity and connectivity - sometimes it's as easy to prove a stronger result, Real Anal. Exchange 8 (1982-83), 244-252.
[4] KUCZMA, M.: An Introduction to the Theory of Functional Equations and Inequalities. Cauchy's Equation and Jensen's Inequality, PWN, Warszawa-Kraków-Katowice, 1985.
[5] STALLINGS, J.: Fixed point theorems for connectivity maps, Fund. Math. 47 (1959). 249-263.

Revised October 15, 1995

Mathematical Institute Pedagogical University ul. Chodkiewicza 30 PL-85-064 Bydgoszcz POLAND

[^0]: AMS Subject Classification (1991): Primary 26A15, 14L27, 26A51. Secondary 54C08. Key words: additive function, continuity, almost continuity, Darboux property, transfinite sequences.
 ${ }^{1}$ Supported by KBN grant (1992-94) No. 211449101.

