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VARIANCE COMPONENTS ESTIMATORS 
IN A REPLICATED REGRESSION MODEL 

FRANTIŠEK STULAJTER 

Introduction 

The locally and uniformly best estimators for the function y = tr (D/J/J') + tr (CL) 
in a replicated regression model 

V=(t®X)0 + c, (1) 

where E[c] = 0, E[i*'] = l®L, 1 = ( 1 , ..., 1)', Y=(Y;, ..., Ym)' — is a mn 
random vector whose components Y ; / = 1, ..., m are assumed to be independent, 
Nn(X/5, E) distributed random vectors, are given in the paper [5]. These quadratic 

m 

estimators are based on Y = l / r a V Y and 

s= m — i l=1 

The aim of our paper is to study some (unbiased) invariant estimators for the 
fuction y = tr (CL). This approach covers the problem of estimation of a covariance 
function of a stationary time series, the mean value of which is given by the usual 
linear regression model, on the base of repeated independent observations 
Yi, ..., Ym. Each observation is of the length n. If we denote by £ the covariance 
matrix of any observation Y; / = 1, ..., m of the stationary time series Y,; 
t = 0, 1, ... having the covariance function R(T); T = 0 , 1, ..., then it can be 

written: R(T) = tr ( A ( T ) L ) ; T = 0 , ..., n - 1, where 

Af ^ í 1 / : 1/2 if | / - 1 | = T . . 1 n t 
; r ; i, j = l , . . , n ; T = 0 , . . . , n - l . 

elsewhere 

Thus the problem of estimation of a covariance function of a stationary time series 
with an unknown mean value given by the linear regression model on the basis of 
repeated independent observations is a special case of estimation of the function 
y = tr(CE). 
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1. Unbiased invariant estimators for the function 
y = tr(C£) 

Let P be any n x n matrix. Let us denote by 

1 m 

S^—[2(v,-Pv)(Y,-PrY. 

We show that the random matrix £ can be expressed with the help of the matrix S 
and some other matrix depending on the random vectory Y. Hence we have: 

m 

( m - l ) £ = V ( Y , - V+ Y - P Y ) ( X - Y+ Y - P V ) = 
i = l 

m 

= S [ ( V - V ) ( V - V ) ' + ( V - P Y ) ( V - P V ) ' ] = 
i = l 

= ( m - l ) S + mMYY'M\ where M = l - P . 

Thus we can write: 

Let us denote 

£ = S + - ^ - r M Y Y ' M ' . (2) 
m — i 

y = t r ( ( c - l M ' C M ) £ ) . (3) 

This random variable can be regarded as an estimator for the function y = tr (C£). 
The following theorem describes the properties of y. 

Theorem 1. Let the matrix P be such that P2 = P and PX = X. Then the 
estimator y given by (3) is unbiased and invariant for the function y = tr (C£). It 
has the dispersion given by 

IMr) = ^TZT f (CS)2 - m{^_x) [tr (CE)2 - tr ((C - M'CM)E)2]. (4) 

Proof. The condition PX = X guarantees that the random matrix £ is invariant 
with respect to the mean value X0 of the random vectors Yj; / = 1, ..., m and thus 
the estimator y is invariant too. The condition P2 = P implies that M2 = M and 
M ' 2 = M \ Using these factors and (2) we can write: 

y = t r ( ( c - ^ M ' C M ) ( s + ^ M Y V ' M ' ) ) , 

from which we have 

y = t r ( ( c - — M ' C M ) S ) + V ' M ' C M Y . (5) 
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Thus we can write, using (5): 

E_[y] = t r ( ( c - ^ M ' C M k W ^ t r ( M , C M E ) = tr(CE). 

The last two equalities are consequences of the known facts that 

E_[tr(AS)] = tr(AL) and E_[ Y'BY] = /J'X'BX0 + tr (BE) 

for A, B any symmetric matrices and of the fact that MX = 0 if PX = X. The 
dispersion of y can be computed using the known relations (see [3]) 

D_[tr(AS)]=-47rtr(Ai:)2 and D_[Y BY] = 2 tr (BE)2 if BX = 0. 

From these expresions, using the independence of Y and S and (5), we get: 

D_[y] = D_[tr((c-^-M'CM)sW Y'M'CMYJ = 

= — ^ r t r ( ( c - — M ' C f A ) l : ) \ — tr(M'CME)2 = 
m - 1 \ \ m I J m 

2 tr(C.£)2 r^—rr tr((2C-M'CM)EM'CM2:) = 
m — \ v m(m — \) 

= DE[tr (CS)] - m ( ^ _ 1 } [tr (CL)2 - tr ((C - M'CM).S)2]. 

Remarks: 

1. If we set P = I, then £ = S and y = tr (CS). 
2. P can be equal to any projector on the space M(X), the subspace of E" 

generated by the columns of the matrix X. Especially the estimator 

f = t r ( ( c - l M C M ) t ) (6) 

given by (3) with P = X(X'X)-'X', 

2 = £ = - 1 - r S ( X - x ( 4 ) ( V f - x r 4 ) ' , /5 = (X'X)-'X'V 

being the usual least squres estimator of 0 from the model (1) is unbiased and 
invariant for the function y = tr (CE). 
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2. The locally best unbiased invariant estimator 
for the function y = tr (CD) 

It is easy to show that in the model (1) the locally (at L = E0) best unbiased 
estimator 0* of the regression vector |3 is given by 

0*=^" . ! . . *? . where ft)< = (X'5£'XY 'X%-' Y,,; 
m i = i 

i = 1, .... m. Let £* = — ^ - V (V, - X0*)( Y - X0*)'. It is clear that the matrix L* 

is a special case of the matrix £ with P = P0 = X(X'L0
 1X)~1X'.£0"

1. Thus the estimator 
y* given by 

. . « ( ( C-—MÍCM 0 )S*) , M„= l -P„ 

is, according to the Theorem 1, an unbiased and invariant estimator for the 
function y = tr(CE). We shall prove now the following theorem. 

Theorem 2. The estimator y* given by (7) is the locally (at .£ = £0) best 
unbiased invariant estimator (LBUIE) for the function y = t r (CL). 

Proof. The LBUIE y*, for tr (C£) was derived in [5]. It was shown that 

У * = t r ( ( c - ^ - M o C M o ) s W V'M0CM0Y, with M 0 = l - P 0 . 

But using (5) we can see that yi) = y : :. 
R e m a r k : Since y* is the LBUIE and tr (CS) is an unbiased and invariant 

estimator for y = t r (C£) too, the inequality Djjy*] ^ D ^ t r (CS)] holds. From 
this inequality, using (4), we get the inequality tr (CL0)2 ^ tr ((C —M0CM0)L0)

2, 
which holds for any symmetric matrix C and any covariance matrix £0. 

3. Comparison of some invariant estimators 

The LBUIE has the disadvantage that it depends on the matrix L0 at which we 
want to minimize the dispersion of the estimator. The LBUIE y* given by (7) can 
have a great dispersion for E^-Eo. In this part of the paper we shall compare the 
estimator tr (CS) with the estimator y given by (6). These two estimators do not 
depend on L0. Our aim is to show that in some special cases the estimator tr (CS) is 
not admissible, because the estimator y is uniformly better than tr (CS). To prove 
this, let us begin with the following lemma. 
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Lemma 1. The estimator y given (6) is uniformly better than the estimator 
tr (CS) iff for any covariance matrix £ the inequality 

tr (C£)2 ^ tr ((C - MCM)E)2 (8) 

holds,whcrc M = I - P = I - X ( X ' X ) - 1 X ' . 

Proof: It follows from (4) and from the fact that Dj;[tr (CS)] = —-=— tr (C2)2. 
m — 1 

Consequence: J/' E[Y] = 0; / = l , . . . , m (X = 0), then the estimator y = 
1 / m \ 

— tr (C^YiYlj is uniformly better than tr (CS). 
Proof: The equality (8) holds trivially for M = l. 
The following theorem can be proved now. 
Theorem 3. Let y = tr E, (C= I). Then in the model (1) the unbiased invariant 

estimator y given by (6) with C = I is uniformly better than the unbiased invariant 
estimator tr S. 

Proof: According to (8) it is enough to prove that for any covariance matrix £ 
the inequality tr ( £ 2 ) ^ t r (P£)2 holds. Here P = P =X(XX) ! X . Because 
tr (AB') = (A, B) is an inner product in the space of n x n matrices, we can write 
(using the Schwarz inequality and the properties P 2 = P , P = P' and £ = £ ' ) : 

t r(PE)2 = (P .£,LP)^ | |PL| | 2 ^ | |P2: | | 2 +| |Mi: | | 2 = 

= tr (P£2P) + tr (M£2M) = tr ((P + M)£2) = tr £ 2 . 

Now we shall study the problem, whether the estimator y given by (6) is 
admissible in the class of invariant (not necesserily unbiased) estimators for the 
function y = tr (C£). Let k > 0 be any constant. Then the mean square error (MSE) 
of the estimator k • y is 

Ej{k • y - t r (C£)]2 = k2 • DE[y] + (1 - k)2 • [tr (CE)]2. 

Thus the MSE of k • y is uniformly smaller than the MSE of the estimator y iff 

[ t r ( C E ) ] 2 ^ Y ^ | D L [ y ] for all E. 

The following lemma is obvious. 
Lemma 2. The invariant estimator k • y for the function y = tr (C£) is uniformly 

better than the unbiased invariant estimator y given by (6) iff there exists such 
a constant d, l < d < ° ° , . that for every L the inequality 

[tr(CL)]2^d DE[y] holds. (9) 

For k and d we have: k=——-. 
d + 1 

Now we are able to prove the following theorem. 
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m ' n — 1 
Theorem 4. Lef Y = trX. Then the invariant estimator -y for y is 

m • n + 1 
uniformly better than the unbiased invariant estimator y defined by (6) with C = I. 

Proof : : It is enough to prove that the inequality (9) is true for d = m • n. This 
last inequality is, using (4) with C = l , equivalent to the inequality 

(tr X) 2 ^2n • [tr X2 + —^— tr (PX)21. 

But, using the Schwarz inequality, we get: 

iny ( t rS ) 2 ^ | | l | | 2 - ||-£||2= n • tr X 2 ^2n • Ttr S2H ^ - j tr (P.S)21 = c/- 0E[y] tor ii 

covariance matrix X. 
R e m a r k : For the special case n = l, when Y,; / = 1, ..., m are independent 

N(|3, a2) distributed random variables, 

1 m 

7 m-1 -tr ; 

The estimator y is the uniformly best invariant estimator for y = o2. 
m + 1 J 

E x a m p l e s . 

For C i= I the estimator y given by (6) for y = tr (CE) is not uniformly better than 
the estimator tr (CS). Thus the Theorem 3 is not true for C =£ I (see Example 3). 

B..-P.....-..-2.C-O.X-M). R(l) R(0)J 

Then y = tv (CX) = 2 • R ( l ) . It is easy to show that tr (CE)2 = tr X.2 and 
tr ( ( C - MCM)X)2 = tr (PX)2. Thus from the proof of the Theorem 3 we have that 
the estimator y given by (6) is uniformly better than tr (CS). 

E x a m p l e 2. 

Let n = 2, 
/R(0) R ( l ) R(2)\ / 0 0 1\ 

E = R ( l ) R(0) R ( l ) , C - 0 0 0 
\R(2) R ( l ) R(0) / Vl 0 0/ 

and X = ( l , l , 1)'. Then tr (CE) = 2R(2), tr (CL)2 = 2 • (R(0)2 + R(2)2) and 

tr((C-MCM)E)2 = ^ - ( 1 8 R 2 ( 0 ) - 14R2(1) + 16R2(2) + 12R(0)R(1) 
81 

+ 33R(0)R(2) + 16R(l)R(2)).So,tr(CL)2 =3 tr ((C - MCM)L)2 iff the function 
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(f)(ru r2) = 49r2 + 28r? - 24ri - 66r2 - 3 2 ^ 2 + 45 is nonnegative for every 

r«=_F7^\; ' = 1,2 such that k l ^ l . A solution of the equations -r-2- = --2- = 0 is 
K ( 0 ) 9r, 3r2 

ri = r 2 =l and 0(1 , 1) = 0. 

The matrix K= j - — ^ — | = ( - 9 Q R ) i s positive definite and the function <p 

has its minimum at the point (1,1). Thus we have proved that the estimator y is 
uniformly better than tr (CS). 

Examp le 3. Let n, £ and X be the same as in the previous example and let 

1° 1 °\ 
C= 1 0 1 . Then tr (CE) = 4R(1), tr (CE)2 = 4 • (R2(0) + 2R2(1) 

\ 0 1 0/ 
+ R(0)R(2)) and tr ((C-MCM)£)2 = ^-(45R 2 (0) + 82R2(1) + 4R2(2) 

o l 
+ 120R(0)R(1) + 33R(0)R(2) + 40R(1)R(2)). 

/ 1 0 - l \ . 
Now let So = 0 1 0 . Then tr(CLo)2 = 0, but tr ((C-MCM)Lo)2 = JJ. 

\-l 0 1/ 8 1 

Thus in this case tr (CS) is the locally (at .£ = £0) best unbiased invariant estimator 
for y = tr (C£) with D^([r (CS)] = 0. 
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OЦEHKИ KOMПOHEHT KOBAPИAЦИOHHOИ MATPИЦЫ 
B ПOBTOPEHHOM PEГPECCИOHHOM ЭKCПEPИMEHTE 

František Š tu l a j t e r 

Pcчюмc 

Предложены (несмещенные) инвариантные оценки функции у=Гг(СЕ), кде 2 — ковариа­
ционная матрица случайных векторов У,~Л г

м(Х0, Е ) ; / = 1 , . . . , т , С — любая симметричная 
матрица. Эти оценки сравниваются с несмещенной инвариантной оценкой (г(С8), где 

rr.>T(Y,-f)(Y,-Ý)' 

Показано, что для некоторых С оценка 1г(С8) недопустима. 
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