Mathematica Slovaca

FrantiSek Stulajter
Variance components estimators in a replicated regression model

Mathematica Slovaca, Vol. 36 (1986), No. 2, 191--198

Persistent URL: http://dml.cz/dmlcz/128867

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1986

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz


http://dml.cz/dmlcz/128867
http://project.dml.cz

Math. Slovaca 36, 1986, No. 2, 191—198

VARIANCE COMPONENTS ESTIMATORS
IN A REPLICATED REGRESSION MODEL

FRANTISEK STULAJTER

Introduction

The locally and uniformly best estimators for the function y =tr (DBf') + tr (CX)
in a replicated regression model

Y=(1QR®X)B+ ¢, (1)

where E[e]=0, E[ee'|=IQRZE, 1=(1,...,1), Y=(Y!, ..., ¥.) —is a m-n
random vector whose components Y;; i =1, ..., m are assumed to be independent,
N,(XB, ¥) distributed random vectors, are given in the paper [S]. These quadratic
estimators are based on Y= l/mE Y; and

i=1

I & v 7\’
S=—"7 ;(Yz— Y)(Y.-Y).
The aim of our paper is to study some (unbiased) invariant estimators for the
fuction y = tr (CX). This approach covers the problem of estimation of a covariance
function of a stationary time series, the mean value of which is given by the usual
linear regression model, on the base of repeated independent observations
Yi, ..., Y.. Each observation is of the length n. If we denote by X the covariance
matrix of any observation Y;; i=1, ..., m of the stationary time series Y,;
t=0,1,... having the covariance function R(t); t=0,1,..., then it can be

tr (A(t)X); t=0,...,n—1, where

written: R(t)=n—r
172 if |i—j|=1.

A(t),»,-={ 0 elsewhere ° i,j=1,..,n; t=0,...,n—1.

Thus the problem of estimation of a covariance function of a stationary time series
with an unknown mean value given by the linear regression model on the basis of

repeated independent observations is a special case of estimation of the function
y=tr (CX).
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1. Unbiased invariant estimators for the function
y=tr (CX)

Let P be any n X n matrix. Let us denote by
: 1 & _ _
B~ S (Y-PV)(Y,-PY).
i=1

We show that the random matrix £ can be expressed with the help of the matrix S
and some other matrix depending on the random vectory Y. Hence we have:

(m-1E=S (Y~ Y+ V—PY)(Y,— Y+ V-PY) =
i=1

=S (Y= V)Y~ V) +(Y-PY)(Y-PY)]=

=(m—-1)S+mMYY'M’, where M=1-P.

Thus we can write:

MYY'M'. (2)
m-—1

Let us denote
)7=tr((C—%M’CM)2). (3)

This random variable can be regarded as an estimator for the function y = tr (CX).
The following theorem describes the properties of y.
Theorem 1. Let the matrix P be such that P?=P and PX=X. Then the

estimator 7 given by (3) is unbiased and invariant for the function y =tr (CX). It
has the dispersion given by

Dg(7)=

2 tr (CEy —sz_—l) [tr (CE) —tr (C—M'CM)E)?].  (4)

Proof. The condition PX =X guarantees that the random matrix X is invariant
with respect to the mean value XB of the random vectors Y;; i=1, ..., m and thus
the estimator 7 is invariant too. The condition P>=P implies that M*=M und
M’'2=M’. Using these factors and (2) we can write:

1 m o
-~ — o ! —_ IM!
=t ((c —~M CM)(s+m_1 MYY ))
from which we have
1 _ _
= -—MCM + YMCMY. 5
7=t ((C—--MCM)S)+ ¥'M (5)
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Thus we can write, using (5):

Ex[7]=tr ((c—% M'CM)x) +% tr (M'CME) = tr (CE) .

The last two equalities are consequences of the known facts that
Ex[tr (AS)]=tr (AX) and Ef[Y'BY]=pg'X'BXg + tr (BX)

for A, B any symmetric matrices and of the fact that MX=0 if PX=X. The
dispersion of y can be computed using the known relations (see [3])

Di[tr (AS)] = mz_

T (AX)?* and Dg[Y’'BY]=2 tr (BX)* if BX=0.
From these expresions, using the independence of Y and S and (5), we get:
- 1 oimna) — _
Dil7]=Dstr ((C--- M cm)s)+ v'M CMY] -

- mz_ i ((c—rln— M'cm)z)z+ml tr (W'CME)? =

2
m(m—1)
2

—m [tr (CX)*>—tr ((c- M'CM)E)Z] .

- tr (CE)? ~ tr ((2C— M’CM)EM'CME) =

= Dx[tr (CS)]

Remarks:

1. If we set P=1, then £=8 and 7=tr (CS).
2. P can be equal to any projector on the space #(X), the subspace of E"
generated by the columns of the matrix X. Especially the estimator

—rr((C——MCM)z) (6)
given by (3) with P=X(X'X)"'X’,

f-g=_L_
m—

(Y= XB)(Y.—XB)', B=(X'X)"'X"Y

iMs

being the usual least squres estimator of B from the model (1) is unbiased and
invariant for the function y = tr (CX).
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2. The locally best unbiased invariant estimator
for the function y = tr (CX)

It is easy to show that in the model (1) the locally (at X=X,) best unbiased
estimator §* of the regression vector B is given by

m

1
B*=— > B*, where fi=(XE'X) 'X'E;'Y,;

m =

i=1,...,m.LetX* = 1_ i S (Y, = XB*)(Y.—XB*)'. It is clear that the matrix £*

i=

is a special case of the matrix £ with P=P,=X(X'E;'X)"'X'Es". Thus the estimator
y* given by

yr= tr((C—% M,CM,)E*). M,=I1—P,

is, according to the Theorem 1, an unbiased and invariant estimator for the
function y =tr (CX). We shall prove now the following theorem.

Theorem 2. The estimator y* given by (7) is the locally (at X =1X;) best
unbiascd invariant estimator (LBUIE) for the function y = tr (CX).

Proof. The LBUIE y¥ for tr (CX) was derived in [5]. It was shown that

y?;:rr((c—lZ MiCM,)S )+ Y'MiCM, ¥, with M,=1-P,.

But using (5) we can sce that yj = y*.

Remark: Since y* is the LBUIE and tr (CS) is an unbiased and invariant
estimator for y =tr (CX) too, the inequality Dg[y*]< Dg)tr (CS)] holds. From
this inequality, using (4), we get the inequality tr (CXy)*> = tr ((C— M;CMy)X,)?,
which holds for any symmetric matrix C and any covariance matrix X,.

3. Comparison of some invariant estimators

The LBUIE has the disadvantage that it depends on the matrix X, at which we
want to minimize the dispersion of the estimator. The LBUIE y* given by (7) can
have a great dispersion for X# X,. In this part of the paper we shall compare the
estimator tr (CS) with the estimator ¥ given by (6). These two estimators do not
depend on X,. Our aim is to show that in some special cases the estimator tr (CS) is
not admissible, because the estimator 7 is uniformly better than tr (CS). To prove
this, let us begin with the following lemma.

194



Lemma 1. The estimator y given (6) is uniformly better than the estimator
tr (CS) iff for any covariance matrix X the inequality

tr (CE)*=tr ((C—MCM)X)’ (8)
holds,where M=1-P=1-X(X'X)"'X".
Proof: Itfollows from (4) and from the fact that Dg[tr (CS)] =

2 2
p— tr (CX)>.
Consequence: If E[Y;]=0; i=1,...,m (X=0), then the estimator §=
r% tr (CZY,»Y,-’) is uniformly better than tr (CS).
i=1

Proof: The equality (8) holds trivially for M=1.

The following theorem can be proved now.

Theorem 3. Let y=tr X, (C=1). Then in the model (1) the unbiased invariant
estimator y given by (6) with C=1 is uniformly better than the unbiased invariant
estimator tr S.

Proof: According to (8) it is enough to prove that for any covariance matrix X
the inequality tr (£%)=tr (PX)’> holds. Here P=P'=X(X'X)"'X'. Because
tr (AB’) = (A, B) is an inner product in the space of n X n matrices, we can write
(using the Schwarz inequality and the properties P2=P, P=P’ and £=X'):

tr (PX)’= (PE, IP) <||PX|]’<||PZ|]* + ||[ME|*=

=tr (PX?P) + tr (MX2M) =tr (P + M)X?) =tr X2,
Now we shall study the problem, whether the estimator ¥ given by (6) is
admissible in the class of invariant (not necesserily unbiased) estimators for the

function y = tr (CX). Let k >0 be any constant. Then the mean square error (MSE)
of the estimator k- is

Eg[k - 7 —tr (CE)*=Kk?- Dg[9]+ (1= k)*: [tr (CX)]>.
Thus the MSE of k - y is uniformly smaller than the MSE of the estimator ¥ iff

[tr (cz)]Zs%—f—% Ds[9] for all E.
The following lemma is obvious.
Lemma 2. The invariant estimator k - 9 for the function y = tr (CX) is uniformly
better than the unbiased invariant estimator ¥ given by (6) iff there exists such

a constant d, 1 <d <, that for every X the inequality
[tr(CE)I*<d - Dg[7] holds. )

d—1

For k and d we have: k=m.

Now we are able to prove the following theorem.
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m-n—1
m-n+1
uniformly better than the unbiased invariant estimator ¥ defined by (6) with C=1.

Proof:: Itis enough to prove that the inequality (9) is true for d =m - n. This
last inequality is, using (4) with C=1, equivalent to the inequality

Theorem 4. Let y=trX. Then the invariant estimator { for v is

2 . 2 2
(tr £)2<2n [trE +——tr (PE) ]
But, using the Schwarz inequality, we get:
(tr2)2$HI|[2-HEszn-trEstn'[tr22+m1_1 tr (PE)’-]:d-Dz[«y] for any

covariance matrix X.
Remark: For the special case n =1, when Y;; i=1, ..., m are independent
N(B, 0*) distributed random variables,

. 1
Y=-"7

m-—1 ¢

Vs

(Y- Y)*:

I
-

. m—1 _. . . . .
The estimator prar S the uniformly best invariant estimator for y = o2

Examples.

For C # I the estimator ¥ given by (6) for y = tr (CX) is not uniformly better than
the estimator tr (CS). Thus the Theorem 3 is not true for C # I (see Example 3).

Example 1. Let n=2, C=((1) (1)), E=(§E(g ggé;)

Then y=tr(CX)=2-R(1). It is easy to show that tr (CX)’=trX* and
tr ((C—MCM)X)?=tr (PX). Thus from the proof of the Theorem 3 we have that
the estimator { given by (6) is uniformly better than tr (CS).

Example 2.
Let n=2,
R(0) R(1) R(2) 001
2=(R(1) R(0) R(l)), C=(0 0 0)
R(2) R(1) R(0) 100
and X=(1,1,1)". Then tr (CE) = 2R(2), tr (CX)* = 2-(R(0)*+ R(2)?) and
tr ((C—MCM)E)2=8;41-(18R2(O) — 14R%*(1) + 16R*(2) + 12R(0)R(1)
+ 33R(0)R(2) + 16R(1)R(2)). So, tr (CX)?> = tr ((C— MCM)X)? iff the function
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¢(r1, r)) = 49r5 + 28r} — 24r, — 66r, — 32rr, + 45 is nonnegative for every

_R() . < 2o _Q
=R’ i=1,2 such that |r,|<1. A solution of the cquatlons 31, =0is

rn=r,=1and ¢(1,1)=0.
2 2 \
e ¢} _( 56-32). - .
The matrix K {ar, r ) 1o (_32 98) is positive definite and the function ¢
has its minimum at the point (1,1). Thus we have proved that the estimator ¥ is
uniformly better than tr (CS).
Example 3. Let n, ¥ and X be the same as in the previous example and let

010
c=(1 0 1). Then tr (CE)=4R(1), tr(CE)’=4-(R*0) + 2R*Q)
010

+ R(0)R(2)) and tr (C—MCM)E)* = 851-(45122(0) + 82R%(1) + 4R?*?2)
+ 120R(0)R(1) + 33R(0)R(2) + 40R(1)R(2)).

1 0-1
Now let 2(,:( 01 O) Then tr (CZI(,)2 0, but tr ((C—MCM)X,)*=
-1 0 1

Thus in this case tr (CS) is the locally (at X =1X,) best unbiased invariant estimator
for y =tr (CX) with Dg(tr (CS)]=0.
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OUEHKHW KOMITOHEHT KOBAPUALIMOHHOM MATPULIbI
B ITOBTOPEHHOM PE'PECCMOHHOM 3KCITEPUMEHTE

Frantisek Stulajter

Pcsiome

MpeanoxeHbl (HeeMeleHHble) HHBapHaHTHbIC oueHKH PyHkuun y =tr(CXL). kue £ — wkoBapHa-
LMOHHAs MaTpuua cnyyaiHbix BekTopoB Y, ~N,(XB, X); i=1,....,m, C — nmobass cummeTpHyHas
Marpuua. ITH OLUCHKK CPaBHUBAIOTCH ¢ HCCMEIUEHHON WHBapuaHTHOM oucHko# (r(CS), rie

L& o
S= T2 (Y- DY -V)

Moka3zao, uto anst HekoTopbix C ouenka tr(CS) Hegonycruma.
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