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ON THE b-EQUIVALENCE OF MULTILATTICES

MARIA TOMKOVA

The notion of the b-isomorphism for lattices was investigated by Kolibiar [5];
he proved the following theorem:

(A) Let M and M’ be distributive lattices. Then the following conditions are
equivalent:

(i) M and M’ are b-equivalent;

(ii) there are lattices M, and M, such that M is isomorphic with M, X M, and M’
is isomorphic with M, X M.

Klaucova [4] generalized theorem (A) for directed distributive multilattices.
Jakubik [2] studied pairs of modular lattices of locally finite lengths with
isomorphic unoriented graphs; he proved that two modular lattices M and M’ of
locally finite lengths have isomorphic unoriented graphs if and only if (ii) is valid.
Jakubik [3] also proved that if M and M are lattices of locally finite lengths such
that the unoriented graphs of M and M’ are isomorphic and if M is modular, then
M’ is modular as well.

In this note it will be shown that if M and M’ are b-equivalent directed
multilattices and if M is distributive, then M’ must also be distributive. Hence in
the above mentioned theorem of [4] it suffices to assume that M, M' are directed
multilattices and that M is distributive.

Let us recall some basic concepts that will be used later.

A multilattice [1] is a poset M in which condition (i) and its dual (ii) are satisfied:

(i) If a, b, heM and a<h, b <h, then there exists v € M such that (a) v<h,
v=a,v=band(b)zeM,z=a,z=b,z<v implies z =v. (avb), designates the
set of all elements v € M satisfying (i) ; the symbol (aAb), has a dual meaning.

We denote avb =u(avb),, anb=u(anb),.

For any multilattice M we denote by M the multilattice dual to M.

A poset A is called upper (lower) directed if for every pair of the elements a,
b € A there exists an element h€ A (deA)suchthata<h,b<h (d<a,d<b).
The upper and lower directed poset A is called directed [5].

A multilattice M is said to be distributive iff for every a, b, b', d, heM
satisfying d<a, b, b'<h, (avb),=(avb'),=h(anb)s,=(anb’),=d we have
b=b'[1]. . :
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The following definitions have been introduced in [4].

Let M be a directed multilattice a, b, x e M. We say that x is between a and b
and write axb if the following condition is satisfied.

®) [(@aax)v(bax)].=x, (arnx)a(bAax)canb.

Directed multilattices M, M’ are said to be b-equivalent if there exists
a bijection f of M onto M’ such that, for each a, b, x € M, we have axb iff f(a) f(x)
f(b). '

Further we assume that M and M’ are directed b-equivalent and that the
multilattice M is distributive. If f is the corresponding bijéction and x € M, we put
f(x)=x". The partial ordering and multioperations in M and M’ will be denoted by
<, v, A and c, U, N, respectively. Let u, v e M, u <v. The interval [u, v} is the
set {(xeM:u<x<b}. We say that the interval [u, v] is preserved (reserved) if

u'cv' (v'cu') in M'; the interval [u, u] is simultaneously preserved and
reversed.

We need the following results (cf. [4]):

Lemma I,. Let a, beM, a<b. Then axb iff a<x<b.

Lemma L. Let a, b, u, veM, usa<b<v and let the interval [u,v] be
preserved (reversed). Then the interval [a, b] is preserved (reversed).

Lemma I,. Let a, b, xeM, x<a, x<b (a<x, b<x). Then axb iff xeanb
(xeavb).

Lemma I,. Let a, beM, ueanb, veavb. If the interval [a,v] ([u, b]) is
preserved and the interval [b, v] ([u, a]) is reversed, then the interval [u, b]
([a, v]) is preserved and the interval [u, a] ([b, v]) is reversed.

The assertions of Lemma [, I, were stated in [4] under the assumption that both
M and M’ are directed distributive multilattices. But it follows from the method of
their proofs that they remain valid also without the assumption of distributivity of
M'.

Lemmal.. Leta.beM,ueanb,veavb. If the intervals (a, v], [b, v] or the

intervals [u, a], [u, b] are preserved (reversed), then the interval [u,v] is
preserved (reversed).

Lemma I.. Let a, b e M. Put aR,b (aR,b) iff there exists an element veM,

veavb, such that the intervals [a,v], b, v] are reversed (preserved). The
relations R,, R, are equivalences on M.

For a’, b’eM’ set a’'Rib' (a'Rib') iff there exists an element v'eM’,
v'ea’'ub’ such that the intervals [a’, v'], [b', v'] are reversed (preserved), i.e.
a=zv,b=v (asv, b=<sv).

Lemma 1. Let a, b e M. The relation aR,b (aR.b) is satisfied iff a’'Rib’
(a’'R3b") is valid.

Proof. Let aR,b be valid. Then there exists an element v € a v b such that the
intervals [a, v], [b, v] are reversed. Choose u € a Ab. By the Lemmas I and I, the
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intervals [u, a], [u, b] are reversed. Consequently u'2a’, u' 2b’'. Moreover by
Lemma I, we have aub, hence a’u'b’ holds. It follows that u’ e a’ub' according to
Lemma I,. Thus the relation a'Rib’ is valid.

Conversely, the assumption a’Rib’ implies that there exists v’ € a’Ub’ such that
the intervals [a’, v'], [b’, v'] are reversed. By Lemma I, we have v ea Ab. Choose
ueavb; then from Lemmas s, I, it follows that the intervals [a, u], [b, u] are
reversed and hence aR,b is valid.

Analogously we can prove the assertion concerning R3.

Lemma 2. Let a’, b'eM’, u'ea’'nb’, v'ea’'ub’. If the intervals [a’,v'],
[b’, v') are preserved (reversed), then the interval [u’, v'] is preserved (reversed).

Proof. Let the intervals [a’,v'], [b’,v'] be preserved. Choose reanu,
se€bAu. From Lemma I; it follows that aru, bsu. Consequently a'r'u’, b's'u’.
Using Lemma I, we obtain that the intervals [r, a], [s, b] are preserved and the
intervals [r, u], [s, u] are reversed. Choose ¢t € r As. By Lemma I, we have a’u’b’.
Hence aub. It follows that tea Ab, u e r vs according to the condition (b ). Using
Lemma I we infer that the interval [¢, v] is preserved. Consequently the intervals
(¢, s], [t, r] are preserved by Lemma I,. According to Lemma I the interval [z, u] is
simultaneously preserved and reversed. Hence t =r =s =u. Thus u<a<v.

If the intervals [a’, v'], [b’, v'] are reversed, then choose w € a v b. Consider r,
s, t as above. By Lemma I the interval [v, w] is reversed, hence the intervals
[a, w], [b, w] are reversed according to Lemma I,. Again from Lemma I; it follows
that the interval [¢, w] is reversed. Consequently the intervals [r, a], [s, b] are
reversed. Hence r=a, s=b, thus u=b =v.

Lemma 2'. Let a’, b'eM’, u'ea’'nb’, v'ea’ub’. If the intervals [u’,a'],
[u’, b'] are preserved (reversed), then the interval [u’, v'] is preserved (reversed).

Proof. Let the intervals [u’,a’], [u’, b'] be preserved. Choose reaAv,
s € b Av. Similarly as in the proof of Lemma 2 (by using Lemma I, and Lemma I,)
we obtain that the intervals [r, a], [s, &] are reversed and the intervals [s, v], [r, v]
are preserved. Choose weavb, t eras. Since avb, we have t €ea Ab according to
the condition (b). By Lemma I; the interval [u, w] is preserved. Therefore the
intervals [a, w], [b, w] are preserved by Lemma I,. Again by Lemma I; the interval
[¢, w] is preserved. Hence the intervals [r, a], [s, b] are preserved. Consequently
r=a,s=b. Thus v=a=u.

Let the intervals [u’, a’], [u’, b'] be reversed and let r, s, ¢t be as above. The
interval [¢, u] is reversed by Lemma Is. Then the intervals [¢, s], [¢, 7] are reversed
according to Lemma I,. Hence v =r=s=¢. Thus v <a<u.

Lemma 3. Let a’', b'eM’, a’Rib’. If w'ea’ub’, then the intervals [a’, w'],

[b', w'] are reversed.
Proof. Let a’Rib’. Then there exists v’ ea’ub’ such that the intervals [a’, v'],
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[b',v'] are reversed. Choose u’'ea’'nb’. The interval [u’, v'] is reversed by
Lemma 2. Hence the intervals [u’, a'], [u’, b'] are reversed according to Lem-
mal,. If w' ea’ub’, then again by Lemma 2 the interval [u’, w'] is reversed.
Therefore the intervals [a’, w'], [b’, w'] are reversed by Lemma L.

Analogously we can prove:

Lemma 3'. Let a', b'eM’, a’Rib'. If w' ea’ub’, then the intervals [a’, w'],
[b', w'] are preserved.

Lemma 4. Let a’, b'eM’, a'Rib’ (a’'R3b'). If u' ea’nb’, then the intervals
(u’,a'l, [u’', b'] are reversed (preserved).

Proof. Let a’'Rib’, u'ea’'nd’, v' ea’ub’. By Lemma 3 the intervals [a’, v'],
[b', v'] are reversed. Hence the interval [u’, v'] is reversed by Lemma 2. There-
fore the intervals [u’, a'], [u’, b'] are reversed according to Lemma I,. Similarly we
can prove the analogous assertion concerning R5.

Lemma S. The relations Ri, R4 are equivalence relations on M’ and they satisfy
the following conditions

(i) Ri-R:=R3-Ri

(ii) RiUR:=1I', RinR5>=0' (where 0'(I") is the least (greatest) element of the
lattice of all equivalence relations on the set M").

(iii) Ifa’, b', c'eM’', a’'cc’', a’Rib’, b'Ric’, then a’' c b’ cc’.

(iv) Leta',b',c',d'eM’',a’'Rib’',c'Rid',a'Ric’',b'R5d’, Then froma’'c b’ it
follows that ¢' cd' and from a' c ¢’ it follows that b'cd’.

The Lemma can be proved in the same way as [4, Lemma 9].

The following assertions K,, K, were proved by Kolibiar.

(K,) [5]- Let M be a Cartesian product of two posets M,, M,. M is a multilattice
iff M, and M, are multilattices. For x e M we denote by x,, x, the components of
x(x,;eM,). Let a, b, h, veM. Then ve(avb),, (ve(anab),) iff v,e(avbh)),
(vi € (a;:Ab,),,) for a;, b, h;, v,eM,; (i=1,2).

(K,) [6]. Let A be a quasiordered set. There exists a one-one correspondence
between the non trivial direct decompositions of the quasiordered set A into two
factors and pairs (R,, R,) of non trivial congruence relations R,, R, on A satisfying
the properties (i), (ii), (iii), (iv) from Lemma 5. To each couple (R, R,) with the
mentioned properties there corresponds the decomposition A ~A/R, X A/R, and
to each element a €A there. corresponds the element (a,, a,), where a; is the
equivalence class under R; (i =1, 2) containing a.

Denote M/R, =M, M/R,=M,, M'/Ri =M1, M'/R>= M3. From the assertion
K, and from Lemma I, it follows that there exists an isomorphism y: M ~ M, X M,.
According to K, and Lemma 5 there exists an isomorphism y':M'~Mi X M.
Since M, M' are multilattices, we infer that M, X M,, M1 X M3 are multilattices and
by K, M,, M,, Mi, M3 are multilattices as well. Let ¢ be a b-equivalence of M
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onto M'; then it is obvious that x =9 '@y ™' is a b-equivalence of M, X M, onto
M x M. In the same way as in [4] we can now prove that M, and M are
isomorphic, M, and M} are anti-isomorphic. Thus the following assertion holds.

Theorem 1. Let M, M’ be directed b -equivalent multilattices, @ be an b-equival -
ence of M onto M’ and let M be distributive. Then there exist multilattices M,, M,
such that M ~M,xXM,, M'~M, X M, whereby the elements xeM, x'eM’,
x'=@(x) are mapped on the same pair (x,, x,), x,€ M, x, € M,.

Theorem 2. Let M and M’ be directed b-equivalent multilattices. If M is
distributive, then M’ is distributive as well.

Proof. Let M, M’ be directed b-equivalent multilattices and let M be
distributive. Then by Theorem 1 there exist multilattices M,, M, such that
M ~M, XM, M' ~M, X M,. Since M is distributive, then by the assertion K,, M,
and M, are distributive also. Consequently M, is distributive. Thus by the assertion
K,, M' is distributive.

The following assertion has been proved-in [4].

(C) Let M, M’ be directed distributive multilattices. M, M’ are b-equivalent if
and only if there exist multilattices M,, M, such that M ~M, XM, and M'~
M, XM,.

The following result is a direct corollary of Theorem 1, Theorem 2 and the
assertion (C). _

Theorem 3. Let M, M’ be direct multilattices. If M is distributive, then the
following conditions are equivalent.

(a) M and M’ are b-equivalent multilattices.

(b) There exist multilattices M,, M, such that M ~M, X M, and M’ ~ M, X M,.
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O b-DKBUBAJIEHTHBIX MYJITUCTPYKTYPAX
Mapus TomkoBa
Pe3ome
B naunoit cratbe oGoGuieHa ofHa teopema O. Knay4yoBo# Kacarowascs nap RUCTPUOYTHBHBIX

MYJIBTUCTPYKTYp. 3aTeM J0Ka3aHo, YTO ecni M u M’ — b-3KBUBAJIEHTHbIE HANpaBJEHHbIE MYJILTHC-
TPYKTYpbl U ecnn M — auctpubyTHBHa, Torna M’ — Takxe JOJIKHA ObITh AMCTPUOYTHUBHA.
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