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Math. Slovaca 27,1977, No. 4, 331—336 

ON THE b-EQUIVALENCE OF MULTILATTICES 

MARIA TOMKOVA 

The notion of the ^-isomorphism for lattices was investigated by Ko l ibiar [5]; 
he proved the following theorem: 

(A) Let M and M' be distributive lattices. Then the following conditions are 
equivalent: 

(i) M and M' are b-equivalent; 
(ii) there are lattices M, and M2 such that M is isomorphic with Mx x M2 and M' 

is isomorphic with MxxM2. 
Klaucova [4] generalized theorem (A) for directed distributive multilattices. 

Jakubik [2] studied pairs of modular lattices of locally finite lengths with 
isomorphic unoriented graphs; he proved that two modular lattices M and M' of 
locally finite lengths have isomorphic unoriented graphs if and only if (ii) is valid. 
Jakubik [3] also proved that if M and M' are lattices of locally finite lengths such 
that the unoriented graphs of M and M' are isomorphic and if M is modular, then 
M' is modular as well. 

In this note it will be shown that if M and M' are b-equivalent directed 
multilattices and if M is distributive, then M' must also be distributive. Hence in 
the above mentioned theorem of [4] it suffices to assume that M, M' are directed 
multilattices and that M is distributive. 

Let us recall some basic concepts that will be used later. 
A multilattice [1] is a poset M in which condition (i) and its dual (ii) are satisfied : 
(i) If a, b, h eM and a^h, b^h, then there exists v eM such that (a) v^h, 

v^a,v^b and (b) z eM, z^a,z^b, z^v implies z = v. (avb)h designates the 
set of all elements v eM satisfying (i); the symbol (ar\b)d has a dual meaning. 

We denote avb = u(avb)h, a/\b = u(aAb)d. 
For any multilattice M we denote by M the multilattice dual to M. 
A poset A is called upper (lower) directed if for every pair of the elements a, 

b eA there exists an element he A (deA) such that a^h, b^h (d^a, d^b). 
The upper and lower directed poset A is called directed [5]. 

A multilattice M is said to be distributive iff for every a, b, b', d, heM 
satisfying d^a, b, b'^h, (avb)h =(avb')h =h(ar\b)d = (at\b')d =d we have 
b=b'[l]. . 
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The following definitions have been introduced in [4]. 
Let M be a directed multilattice a, b, x eM. We say that x is between a and b 

and write axb if the following condition is satisfied. 
(b) [(a Ax)v(b AX)]X =x, (a AJC)A(& Ax)aa /\b. 
Directed multilattices M, M' are said to be 1>-equivalent if there exists 

a bijection f of M onto M' such that, for each a, b, x e M, we have axb iff f(a) f(x) 

Further we assume that M and M' are directed fr-equivalent and that the 
multilattice M is distributive. If / is the corresponding bijection and x e M, we put 
f(x) = x'. The partial ordering and multioperations in M and M' will be denoted by 
^ , v , A and c , u , n , respectively. Let u, v eM, u ^v. The interval [u, v] is the 
set {x eM: u^x^b}. We say that the interval [u, v] is preserved (reserved) if 
w'czt;' ( U ' C M ' ) in M ' ; the interval [u, u] is simultaneously preserved and 
reversed. 

We need the following results (cf. [4]): 

Lemma I,. Let a, b eM, a^b. Then axb iff a^x ^b. 
Lemma I2. Let a, b, u, veM, u^a^b^v and let the interval [u,v] be 

preserved (reversed). Then the interval [a, b] is preserved (reversed). 
Lemma I3. Let a, b, x eM, x^a, x^b (a^x, b^x). Then axb iff x ea Ab 

(xeavb). 
Lemma I4. Let a, beM, ueaAb, veavb. If the interval [a,v] ([u, b]) is 

preserved and the interval [b, v] ([u, a]) is reversed, then the interval [u, b] 
([a, v]) is preserved and the interval [u, a] ([b, v]) is reversed. 

The assertions of Lemma I5 ,16 were stated in [4] under the assumption that both 
M and M' are directed distributive multilattices. But it follows from the method of 
their proofs that they remain valid also without the assumption of distributivity of 
M' . 

Lemma I5. Lef a, beM, u ea Ab, v eavb. If the intervals [a,v],[b,v] or the 
intervals [u, a], [u,b] are preserved (reversed), then the interval [u,v] is 
preserved (reversed). 

Lemma I6. Let a, b eM. Put aRxb (aR2b) iff there exists an element v eM, 
veavb, such that the intervals [a, v], [b,v] are reversed (preserved). The 
relations Rx, R2 are equivalences on M. 

For a', b'eM' set a'R\b' (a'Rib') iff there exists an element v'eM', 
v'ea'ub' such that the intervals [a',v'], [b',v'] are reversed (preserved), i.e. 
a^v, b^v (a^v, b^v). 

Lemma 1. Let a, beM. The relation aRxb (aR2b) is satisfied iff a'Rlb' 
(a'R'2b') is valid. 

Proof. Let aRxb be valid. Then there exists an element v eavb such that the 
intervals [a, v], [b, v] are reversed. Choose u ea Ab. By the Lemmas L and L the 
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intervals [w,a], [u, b] are reversed. Consequently u'^a', u'^b'. Moreover by 
Lemma I3 we have aub, hence a'u'b' holds. It follows that u' ea'ub' according to 
Lemma I3. Thus the relation a'R\b' is valid. 

Conversely, the assumption a'R\b' implies that there exists v' ea'ub' such that 
the intervals [a', v'], [b', v'] are reversed. By Lemma I3 we have v ea/\b. Choose 
u eavb ; then from Lemmas I5, I2 it follows that the intervals [a, u], [b, u] are 
reversed and hence aRxb is valid. 

Analogously we can prove the assertion concerning RL 

Lemma 2. Let a', b'eM', u'ea'nb', v'ea'ub'. If the intervals [a',v'], 
[b', v'] are preserved (reversed), then the interval [u', v'] is preserved (reversed). 

Proof. Let the intervals [a',v'], [b',v'] be preserved. Choose rea/\u, 
s ebAu. From Lemma I3 it follows that am, bsu. Consequently a'r'u', b's'u'. 
Using Lemma I, we obtain that the intervals [r, a], [s, b] are preserved and the 
intervals [r, u], [s, u] are reversed. Choose terAs. By Lemma I3 we have a'u'b'. 
Hence aub. It follows that tea Kb, uervs according to the condition (b). Using 
Lemma I5 we infer that the interval [/, v] is preserved. Consequently the intervals 
[t, s], [t, r] are preserved by Lemma I2. According to Lemma I5 the interval [t, u] is 
simultaneously preserved and reversed. Hence t = r=s=u. Thus u^a^v. 

If the intervals [a', v'], [b', v'] are reversed, then choose w eavb. Consider r, 
5, f as above. By Lemma I5 the interval [i;, w] is reversed, hence the intervals 
[a, w], [b, w] are reversed according to Lemma I2. Again from Lemma I5 it follows 
that the interval [t, w] is reversed. Consequently the intervals [r, a], [s, b] are 
reversed. Hence r = a, s=b, thus u^b^v. 

Lemma 2'. Let a', b'eM', u'ea'nb', v'ea'ub'. If the intervals [u',a'], 
[u', b'] are preserved (reversed), then the interval [u', v'] is preserved (reversed). 

Proof. Let the intervals [u',a'], [u',b'] be preserved. Choose reaAv, 
s eb AV. Similarly as in the proof of Lemma 2 (by using Lemma I3 and Lemma I,) 
we obtain that the intervals [r, a], [s, b] are reversed and the intervals [s, v], [r, v] 
are preserved. Choose w eavb, terAs. Since avb, we have teaAb according to 
the condition (b). By Lemma I5 the interval [u, w] is preserved. Therefore the 
intervals [a, w], [b, w] are preserved by Lemma I2. Again by Lemma I5 the interval 
[t, w] is preserved. Hence the intervals [r, a], [s, b] are preserved. Consequently 
r = a, s = b. Thus v^a^u. 

Let the intervals [u', a'], [u', b'] be reversed and let r, s, t be as above. The 
interval [t, u] is reversed by Lemma I5. Then the intervals [t, s], [t, r] are reversed 
according to Lemma I2. Hence v = r = s = t. Thus v ^a^u. 

Lemma 3. Let a', b' eM', a'Rlb'. If w' ea'ub', then the intervals [a', w'], 
[b', w'] are reversed. 

Proof. Let a'R'\b'. Then there exists v' ea'ub' such that the intervals [a', v'], 
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[b',vf] are reversed. Choose u'ea'nb'. The interval [u',v'] is reversed by 
Lemma 2. Hence the intervals [u',a'], [u',b'] are reversed according to Lem-
ma I2. If w' ea'ub', then again by Lemma 2 the interval [u', w'] is reversed. 
Therefore the intervals [a', w'], [b', w'] are reversed by Lemma I2. 

Analogously we can prove: 

Lemma 3 \ Let a', b' eM', a'R'2b'. If w' ea'ub', then the intervals [a', w'\, 
[b', w'] are preserved. 

Lemma 4. Let a', b' eM', a'R\b' (a'R'2b'). If u' ea'nb', then the intervals 
[u', a'], [u', b'] are reversed (preserved). 

Proof. Let a'R\b', u' ea'nb', v' ea'ub'. By Lemma 3 the intervals [a', v'], 
[b', v'] are reversed. Hence the interval [u', v'] is reversed by Lemma 2. There­
fore the intervals [u', a'], [«' , b'] are reversed according to Lemma I2. Similarly we 
can prove the analogous assertion concerning RL 

Lemma 5. The relations R\, R2 are equivalence relations on M' and they satisfy 
the following conditions 

(i) R\R'2 = R'2R\ 
(ii) R\uR2 = I', R\nR2 = 0' (where O'(I') is the least (greatest) element of the 

lattice of all equivalence relations on the set M'). 
(iii) If a', b', c' eM', a'czc', a'R\b', b'R'2c', then a'cb'cc'. 
(iv) Let a', b', c', d' e M' , a' Rib', c' R\d', a' R2c', b' R2d' ..Then from a' c= b' it 

follows that c' cz d' and from a' c c ' it follows that b' czd '. 
The Lemma can be proved in the same way as [4, Lemma 9]. 
The following assertions K,, K2 were proved by Ko l ib i a r . 
(K,) [5]. Let M be a Cartesian product of two posets M,, M2. M is a multilattice 

iff M, and M2 are multilattices. For x eM we denote by xu x2 the components of 
x(XieMi). Let a, b, h, veM. Then ve(avb)h, (v e(a/\b)h) iff vte (atv bt,)hi 

(Vi e (ai/\bi)h.) for at, b{, ht, vt eM, (/ = 1, 2). 
(K2) [6]. Let A be a quasiordered set. There exists a one-one correspondence 

between the non trivial direct decompositions of the quasiordered set A into two 
factors and pairs (I?,, R2) of non trivial congruence relations R{, R2 on A satisfying 
the properties (i), (ii), (iii), (iv) from Lemma 5. To each couple (Ru R2) with the 
mentioned properties there corresponds the decomposition A ~ A / J R , x A/R2 and 
to each element a eA there corresponds the element (ax,a2), where at is the 
equivalence class under Rf (i = \, 2) containing a. 

Denote M/RX=MU M/R2 = M2, M'/R\=M\, M'/R'2 = M'2. From the assertion 
K2 and from Lemma I6 it follows that there exists an isomorphism *p:M ~Mxx M2. 
According to K2 and Lemma 5 there exists an isomorphism ty': M ' —Mi x M \ 
Since M, M ' are multilattices, we infer that M, x M2, M\ x M2 are multilattices and 
by K,, M,, M2, Ml, M'2 are multilattices as well. Let q> be a 6-equivalence of M 
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onto M ' ; then it is obvious that x = ip'(pip~l is a fe-equivalence of M, x M 2 onto 
M! x ML In the same way as in [4] we can now prove that M, and M! are 
isomorphic, M2 and Mi are anti-isomorphic. Thus the following assertion holds. 

Theorem 1. Let M, M ' be directed b -equivalent multilattices, cpbeanb -equival­
ence of M onto M ' and let M be distributive. Then there exist multilattices M,, M2 

such that M~MxxM2, M' ~MxxM2, whereby the elements xeM, x'eM', 
x' = q)(x) are mapped on the same pair (xx,x2), xxeMx, x2eM2. 

Theorem 2. Let M and M ' be directed b-equivalent multilattices. If M is 
distributive, then M' is distributive as well. 

Proof. Let M, M ' be directed b-equivalent multilattices and let M be 
distributive. Then by Theorem 1 there exist multilattices M,, M2 such that 
M~Mxx M2, M' ~MX x M2. Since M is distributive, then by the assertion K,, M, 
and M2 are distributive also. Consequently M2 is distributive. Thus by the assertion 
K,, M ' is distributive. 

The following assertion has been proved in [4]. 
(C) Let M, M ' be directed distributive multilattices. M, M ' are b -equivalent if 

and only if there exist .multilattices M,, M2 such that M~MX xM2 and M' ~ 
M, x M2. 

The following result is a direct corollary of Theorem 1, Theorem 2 and the 
assertion (C). 

Theorem 3. Let M, M ' be direct multilattices. If M is distributive, then the 
following conditions are equivalent. 

(a) M and M ' are b-equivalent multilattices. 
(b) There exist multilattices Mx, M2 such thatM~Mx x M2 andM' ~MX x M2. 
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О Ь-ЭКВИВАЛЕНТНЫХ МУЛТИСТРУКТУРАХ 

М а р и я Т о м к о в а 

Р е з ю м е 

В данной статье обобщена одна теорема О. Клаучовой касающаяся пар дистрибутивных 

мультиструктур. Затем доказано, что если М и М' - Ъ-эквивалентные направленные мультис­

труктуры и если М - дистрибутивна, тогда М' - также должна быть дистрибутивна. 
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