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ON LEBESGUE PSEUDONORMS ON C0(T) 

IVAN DOBRAKOV 

Let T be a locally compact Hausdorff topological space and let o(SBo) denote 
the CT-ring of all Baire measurable subsets of T. Denote by G>( T) the Banach space 
of all continuous functions on T tending to zero at infinity with the usual supremum 
norm | | | | r . Let further Y be a Banach space and Y* its dual. (All considered 
Banach spaces are either real or complex.) 

Definition. We say that a mapping p: G>(T)—>[0, +°°) is a Lebesgue 
pseudonorm on C( T) if it has the following properties: 

i ) p(f)=P(\f\X 
2) \f\Z\g\*p(f)*p(g), 
3 ) P(af) = \a\p(f) f°r each scalar a, 
4) p(f+g)^p(f) + p(g),and 

5) ifg, f„eCo(T), n = 1,2, ..., and £ l / » l = \o\ then p(f„)^0. 
n 1 

There is a remarkable result, see [7, 24H], which is valid in the more general 
context of arbitrary Riesz spaces with a linear space topology such that every 
order-bounded set is bounded, that condition 5) may be replaced by the following 
"disjointness" condition: 

5d) if g, f„eCo(T), « = 1,2, ..., f„fm = 0 for n±m, and | / „ | ^ | 0 | for each n, 
then p(f„)^>0. 

(For more information about Lebesgue topologies on a general Riesz space see 
[7, section 24] and also [8].) 

According to the Lebesgue Dominated Convergence Theorem each countably 
additive Baire measure u: o(3So)—»the scalars of Co(T), induces by the equality 

ft(f)=jTl/l -«(.«, )=SUP {\jTed^|: 9GG*n \g\-il/l} , /eCo(T), 

a Lebesgue pseudonorm on Co(T). Hence by the Riesz Representation 
Theorem each bounded linear functional Fe Co(T)* = ca(o(&lo)) — the Banach 
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space of all countably additive scalar valued Baire measures on a(S8») with the total 
variation norm, induces by the equality 

F(/) = sup {\F(g)\;gea(n \d\^\f\} =£l/l Ml*, ), /eC(T), 

where //F is the representing Baire measure of F, a Lebesgue pseudonorm on 

a(n 
Let Lt: a(T)—* Y be a bounded linear operator and for y* eY* let fiy. denote 

the representing Baire measure of the linear functional y*U. 
For fea(T) put Of=sup {\Ug\; gea(n M^| / |} , and for Eeo(9S0) put 

/2(E) = sup v((i,., E). 
|y.|Sl 

Then clearly £/=|L t |<+°°, and U has the properties 1), 2) and 3) of the 
Definition above. Further, by the Hahn—Banach Theorem and the Riesz Rep
resentation Theorem we have the equalities 

L>/=sup{sup {\y*Ug\;gea(n\9\=:\f\}} = 
|y.|SI 

= sup {sup (\y*Ug\;gea(n\s\^\f\}} = 
|y.|Sl 

= sup I | / |dv( /v , ) 
|y.|SI JT 

for each fe a(T), hence U is also subadditive. 
Obviously fi(0) = O, fi is monotone and countably subadditive. Since each 

measure v(n,-, -),y*e Y* has the Fatou property, i.e., E> e a(58n), n = 1, 2, ... and 
£„/'£?=> v(n,; En)/'v(fiy', E), fi also has the Fatou property. 

Let U*: Y*-*a(T)* = ca(a(9io)) be the conjugate of Lt. Then 

fi(T)= sup v(ft,., 7 )= sup |y*Lt|=sup |Lt*>>*| = |Lt*| = |Lt|<+oo. 
I?'|S1 |y.|SI |y«|Sl 

According to Theorems VI. 4.8, IV. 9.1 and IV. 9.2 in [6] (for a short proof of 
IV. 9.2 see [9]) Lt is weakly compact <*-Lt* is weakly compact ofi: o(&k)—* 
[0, |Lt|] is continuous, i.e., E,ea(9Bo), n = l,2, ... and E,\0 => /}(E^)-»0o 
there is a countably additive measure A: a(S3o)—*[0, 1] such that fi is absolutely 
A-continuous «*/J is exhaustive, i.e., if E„ea(9So), « = 1,2, ... are pairwise 
disjoint, then fi(E,)—»0. 

Let Lt be weakly compact. Then from the exhaustivity of fi on a(33b) it is easy to 
see that U has the property Sd) stated above, hence U is a Lebesgue pseudonorm 
on a(T). The converse is also true, see Theorem 3.3 in [11], where a lot of other 
characterizations of weak compactness of Lt is proved. 

Let ^ c 2 T . We say that a set function v: s4—* Y has the property (p), or better 
that v is uniformly exhaustive, if for each e > 0 there is a positive integer N, such 
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that for any collection of pairwise disjoint sets At,..., AN. e si there is at least one 
ne{\ K} for which |v(A,)| =it?, see [5, Def. 4]. We say that f,ge Co(T) are 
orthogonal if /• g = 0. 

In [3] we announced the following characterization of weak compactness of U: 

Theorem 1. For a bounded linear operator U: Co(T)-* Y the following 
conditions are equivalent: 

1) U is weakly compact, 
2) fl: o(9bo)—*[0, \U\] is uniformly exhaustive, and 
3) Uhas the following property (p): for every e>0 there is a positive integer N, 

such that for any collection fi,..., fN.e Co(T) with \\f„\\T^\ andf„fm = 0 for 
n£m, n, m = \, ..., N. there is at least one ne{\,..., N,} for which \Ufn\ = e. 

We now prove this result, and in Theorem 2 below we give an extension of it. 
(Theorem 2 from [3] will be proved elsewhere.) 

Proof. 1)=>2). Let e>0 and let A: o(9&0)-*[0, 1] be a countably additive 
measure such that fl is absolutely A-continuous. Then there is a d>0 such that 

Eec7(38n) and A(E)<5 => fl(E)^e. Take a positive integer iV.^j-1 + 1. Then 

for any collection of pairwise disjoint sets E,,..., EN. e CT(08O) there must be at least 
one n e {1,..., iV,} for which A(E,)< o, since otherwise we have the contradiction 

l^A(T) ^ 2 A ( E ) > 1. Thus fl(E,)^e for at least one ne{\, ..., N.}, hence fl is 
i - l 

uniformly exhaustive on CT(S8O). 

2)=>3). Let £>0 and take a positive integer N. so that for any collection of 
pairwise disjoint sets E,,..., EN. e o(9So) there is at least one n e {1,..., N} for 
which fl(E,)^e. Take arbitrary /, , . . . , fN.eCo(T) with ||/.||i--il and / / / / = 0 for 
i±j, i, j=\,..., N,. Since by the Hahn—Banach Theorem and the Riesz Rep
resentation Theorem 

\Uf,\= sup |y-Ufi| = sup I f / dfiy.I^ sup f |/1 dv(fiy., •) ^ 
|y*|si | y | s i \JT \ | . . | s i JT 

^sup v(py.,{t,teT,fi(t)^0}) = fl({t;teT,fi(t)*0}) 
|y«|S, 

for each i = \, ...,N„ and since the sets E = {t; te T, ft(t) * 0}, i = 1,..., N. are 
pairwise disjoint, there must be at least one ne{\,..., N.} for which |Lt/„| = 
fl(E.)^e. 

3) => 1). Clearly U has also the property (p). Denote by % the lattice of all open 
Baire subsets of T and by <g0 the lattice of all compact Ga subsets of T. Let Ve <% 
and let y* e Y*. Then 

v^y., V) = sup { £ |/ | dv(tiy., );feCo(T),\f\^Xv] 
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by the regularity of the Baire measure v(fiy>, ) and Theorem B in § 50 in [10], 
hence fi(V) = sup {Of; feCa(T), \f\<Xv}- The last equality implies that ft: 
?So—>[0,\U\] is uniformly exhaustive. Since any finite collection of pairwise 
disjoint compact G& sets can be mutually separated by the same number of pairwise 
disjoint sets from %>, see Theorem D in §50 in [10], ft: <£0—>[0, |Lt|] is also 
uniformly exhaustive. Since v(fiy-, E) = sup {u(/V> eO; C e *&>> C^E} for each 
y* e Y* and each Ee a(33o) by the regularity of the Baire measure v((jv-, •), ft(E) 
= sup {(i(C); Ce%0, CczE) for each Eeo(9S0). Thus /J :a(33o)->-[0, |Lt|] is 
uniformly exhaustive, hence Lt is weakly compact. The theorem is proved. 

R e m a r k 1. Let X be a Banach space and consider the Banach space C»(T, X) 
of all X-valued continuous functions on T tending to zero at infinity with the 
supremum norm. It is well known that C0(T, X)* = cabv(o(0io), X*) — the 
Banach space of all countably additive X*-valued Baire measures with bounded 
variations. Since reflexive Banach spaces have the Radon—Nikodym property, 
a subset M c cabv(o(35o), X*) is relatively weakly compact if and only if the subset 
{v(n, •); yt e M } <= ca(o(3*30)) is relatively weakly compact, see [1], [2] and [4]. 
Hence for reflexive Banach spaces XTheorem 1 remains valid if C(T) is replaced 
by C0(T, X). We note that the implications 1)=>2)*>3) of Theorem 1 hold for 
Co(T, X) for any Banach space X, see [1], [2] and Theorem 3 in [4] in this 
connection. In fact, above we proved that for any bounded linear operator Lt: 
C(T, X)—> y, X being an arbitrary Banach space, the following conditions are 
equivalent: 

1) ft (=the semivariation of the representing measure of U) is continuous on 
O(®o), 

2) ft is uniformly exhaustive on a(59o), and 
3) Lt has the property (p) in Theorem 1. 

Theorem 2. Letp: Co(T)—*[0, +°°) have the properties I)—4) of the Definition 
above, let p(l) = sup {p(f); f e Co(T), | / | ^ l } < + <», and letp have the property 
(p) from Theorem 1. Then for every e>0 there is a positive integer Me such that 

M. 
for any collection /i ..., /M. eC(T) with 21/"I — * there is at least one 

n 1 

n e {1, ..., M£} for which p(f„)^e 
Proof Suppose the contrary. Then there is an e > 0 such that for each positive 

integer M there are M functions /,, ..., fMe Co(T)+ = {/; fe Co(T), f^O} such 
M 

that ~Zfn = l and p(fn)>e for each n = \, ..., M 
n 1 

e k 
Let k be the smallest positive integer for which p( 1) < x • x • Since p( 1) > e, k ^ 5. 

If now fe Co(T)\ / § 1 and p(f)>e, then \ <max /(f) = | | / | |r (otherwise we have 
k leT 

the contradiction 
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l>\p(\)^p(\\f\\r)^p(f)>B). 

In this proof let Nt for d > 0 denote the smallest positive integer corresponding 
to 6 according to the property (p) of p. Put M=N.,S + . . .+ Nt2

k*'- Then by 
M 

assumption there are functions f, ..., fM e Co(T)+ such that ^f„ ^ 1 and p(f„)>e 
n 1 

for each n = \,..., M. To each f„ we construct two functions q>„ and V- m , t n e 

following way: We put 

£,,„ = {/: re T/B(0=^}, £ . , = {r: re T, /*(') = ̂ } , 

Fn.0 = { r : r e T , / , ( r ) ^ } , and F.^^t: te T, f„(t)^} . 

Then £,,nn£,,i = 0, £ , i^=0 (T< l l /"l |r) , £..o is a closed and £,, i a compact subset 

of T. We put <p, = 1 if £ , 0 = 0. If £.o £ 0, then according to Theorem B in § 50 in 
[10] we take a function <p,eCo(TY such that <p,^l, <pB(r) = 0 for r e £ , 0 , and 
<p,(r) = 1 for r e £ , i. Similarly we put V« = 1 if F».0 = 0, and if F„.0 =£ 0, then we take 
a function v«ecoC0+ such that V- = L V»(0 = ° f° r reF„.0, and v»(0 = l for 
r e F . j . 

Clearly 

and 

tєT, <pn(t)>0^>fn(t)>\, (\-<p„) „=0, 

f„ = Ц>„fn+(\- Ҷ>n)fn < Ц>„f„ + 1 . 

The last inequality implies that 

e<p(f„)^p(Xr„fn)+\p(l)^P(Xl>nfn) + { 

hence p(ipnf„)>-z for each n = 1, ..., M. 

Put ni.i = l. Let fii,2 be the first n e { l , ..., M) for which 

p((l-<p m ,,)V«/n)>^, 

if it exists. Let «i,3 be the first n e {1, ..., M) for which 

P((l - ^...Kl ~ <P".0V"/-)>4^. 
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if it exists. In general, let nx r be the first n e {1, ..., M} for which 

/>((!-<#.. ) . . .(1-<P„, , , )^„ /n)> 4 -^ , 

if it exists. Since the functions V*,.„ (1-<jV,)•!/>„, 2, •••, (1 — <P«, .) ••• (1 _<P». . ,)V». . 
are pairwise orthogonal elements of C J ( T ) + with values in [0, 1], continuing in this 
manner, owing to the property (p) of p we may arrive only to some r. < N .^. 

Put 
Ji = {n, 1, ..., ni „}, and 

ai = <Pn, , + (l-<p„, ,)<p„, 2 + . . .+( l -<p„ , , ) . . . (1-<JP„, „ ,)<p„, „. 
Since 

l - a 1 = ( l - < p i , , , ) - . . . ( l - ( p n , , ) , p ( ( l - a . ) ^ f ) ^ 4 - % 

for each ne {1, ..., M} — Ji. Thus 

^<p{Wn)^p{a^„fn)+p((l -at)xl>„fn)^p(aiynfn) + ̂  > 

hence p(aii/>„/„)>- —-pr for each n e {1, ..., M} — J.. 

Let n21 be the smallest number from {1, ..., M} - J\. Let n2 2 be the first 
w e {1, ..., M} — Ji for which 

P((l - (Pn, ,)aiH>nfn)>^2, 

if it exists. Let n2 3 be the first n e { l , . ., M} - J for which 

p((l - (p^ ,) (1 - ( f O a , t / / „ / „ ) > ^ , 

if it exists etc. Since the functions 1//̂  ,, (1 — <p^. , )^ 2 , ..., (1 —<p^,) •...• (1— 
<t°"2. JV^ . are pairwise orthogonal elements of C(T)+ with values in [0, 1], 
continuing in this manner, owing to property (p) of p, we may arrive only to some 
r 2 < N - . 

Put 

J2={i2, i , ..., n2<r!}, and 

a2=<P^, + (1-<P„2,)<P„2 2 + • • + ( 1 - ? V . ) •••• (1-<P"2.2 .)<Pn2.2-

Then J1nJ2 = 0, {1, ..., M} - (JiuJ2)=ft0, and similarly as above 

p(a 2 a ,^„ /„ )>2 - ^ - j - 4 -^2 
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for each n e { l , ..., M} — (JiuJ 2) . 
Continuing in this way we obtain pairwise disjoint sets / . , ..., Jk i c {1, ..., M} 

such that 1 =card J,<N^tor each i = 1, ..., k — 1, hence {1, ..., M} — (Ji u . . . u 
J* i)=£0, and functions a., ..., a*_i of the form 

«. = <Pn, • + (l-<P-,,)<Pn,2 +•••+ (1-<P-,,) •••• (1-<P-,., ,)<#.,„, 

/' = 1, ..., k — 1, such that 

/>(«* i < - * - 2 ' - - a i W / - ) > | - 4 ^ - - - 4 ^ r T > | 

for each n e {1, ..., M} — (/,u...uJ<c i). 
Take some M0e {1, ..., M} —(JiU...uJk i). Then by the last inequality there 

must be a point t0eT such that 

ak i(t0)-...a1(to)^>n0(to)>0. 

But then yno(to)>0, hence /w(to)>T- Further a,(to)>0 for each / = 1, ..., k-l, 

hence by the definition of a, there exists an n,,, e J, such that <Pn,.ll(t0)>0. But then 

/- , ( ' « )>£• Hence 

2/-(fe)--2,/-..»+/»a(fe)>i, 
n \ , 1 

M 

which contradicts the assumption 2 / - = l- The theorem is proved. 

Corollary. Let p: C0(T)—>[0, +°°) Aave the properties 1)—4) of the Definition 
above, and let, for each g e G>(T)+ and e>0, there exist a positive integer N„., such 
that for any collection fu ..., fsQ. e Co(T)* of pairwise orthogonal functions with 
Nm. 

2 / " = 3 there is at least one n e { l , ..., N„,t} for which p(f„) = e. Then the same is 
n 1 

frue without assuming pairwise orthogonality. 
Proof. For ge C,(T)+ it is enough to put pe(f) = p(9A|/|), fe Co(T), and apply 

the theorem. 
R e m a r k 2. Let Tbe an arbitrary set and let 9? c 2 T be a ring. Then it is easy to 

prove that Theorem 2 and its Corollary remains valid if Co(T) is replaced by 5(9?) 
— the space of all 9L — simple scalar valued functions on T. There are many other 
spaces for which the assertion of Theorem 2 and its Corollary are valid. Neverthe
less the author was unable to solve the following 
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Problem. Does Theorem 2 hold if G ( T) is replaced by an arbitrary Riesz space ? 
R e m a r k 3. In a forthcoming paper the assertion of Theorem 2 will be proved 

for arbitrary Lebesgue pseudonorm on G ( T ) or on S(3i). The proof essentially 
uses the Hahn—Banach theorem, see section 5.3 in [8]. 

R e m a r k 4. By a slight modification of the proof of Theorem 2 we can achieve 
that the assertion of Theorem 2 remains to hold if the property 3) of p: 

p(af)= \a\-p(f) for each scalar a, is weakened to 3w): lim p ( — 1=0, and the 

subadditivity of p is weakened to 4w): for each e > 0 there is a 6 > 0 such that 
p(f+ g) = p(f) + e whenever p(g)<6. The same is true if G ( T ) is replaced by 
5(9?). We note that for so weakened p the validity of the result in Remark 3 is an 
open question. 

R e m a r k 5. The given method of proof of Theorem 2 may be applied to prove 
that condition 5) in the Definition above may be replaced by condition 5d), 
compare with 24H in [7] Namely, suppose 5d) =£> 5). Then there are g e G ( T Y , 

e > 0 and a sequence f„eCo(T)*, n = l,2, ... such that 2 . / " — r an(* P«(f-) = 
n 1 

2 e 
p(gAf„)>e for each n = 1, 2, ....Take a positive integer k so that— pe(l)<-and 

construct the functions q>„ and ip„, n = 1, 2, ... as in the proof of Theorem 2. Since 

the functions VL (1 _<r ,i)V'2'••• '(1 -<Pi "•••" (1-f lk i)V«> • •• a r e pairwise ortho
gonal elements of Ca(T)+ with values in [0, 1], by 5d) there is a positive integer 
r\ ̂  1 such that 

pg((l- qt)- ...(l- q>r,)y>„f„) = ^ 

for each n>rt. Put a, = q>\ +(l - q>\)qh + ... + (l - q>\) - . . . ( 1 -q>r, \)q>r,. Then 

A,(aiV»/")>2_ ; j72 

for each n>r\. Since the functions V-.+i> ( l - ^ + i ) ^ , ^ , .... (1 — ^ . n ) •...• 
(1 — q>n+„ i)Vi+"' ••• a r e pairwise orthogonal ... etc. Continuing in this way we 

obtain a contradiction with the assumption ^f„ = l-

REFERENCES 

[1] BATT, J.: Applicatюns of the Oгlicz—Pettis Theorem to opeгator-valued measures aпd compact 
and weakly compact linear tгansformations on the space of continuous functions. Revue Roumaine 
Math. Pure Appl. 14 (1969), 907—935. 

[2] BATT, J.: On weak compactness in spaces of vectoг-valued measures and Bochneг-integraЫe 

334 



functions in connection with the Radon—Nikodym property of Banach spaces. Revue Roumaine 
Math. Pure Appl. 19 (1974), 285—304. 

[3] DOBRAKOV, I.: On subadditive operators on C(T). Bull. Acad. Polonaise Sciences Math. Asrr. 
Phys. 20 (1972), 561—562. 

[4] DOBRAKOV, I.: On representation of linear operators on C(T, X). Czech. Math. J. 21 (96) 
(1971), 13—30. 

[5] DOBRAKOV, I.: On submeasures I. Dissertationes Mathematicae 112, Warszawa 1974. 
[6] DUNFORD, N., SCHWARTZ, J. T.: Linear operators, parti. Interscience, New York 1958. 
[7] FREMLIN, D. H.: Topological Riesz spaces and measure theory. Cambridge University Press 

1974. 
[8] FUGLEDE, B.: Capacity as a sublinear functional generalizing an integral. Det Kongelige Danske 

videnskabernes Selskab, Matematik-fysiske Meddelelser, K4benhavn 1971. 
[9] GOULD, G. G.: Integration over vector-valued measures, Proc. London Math. Soc. (3) 15 

(1965), 193—225. 
[10] HALMOS, P. R.: Measure theory, D. Van Nostrand, New York 1950. 
[11] THOMAS, E. G. F.: On Radon maps with values in arbitrary topological vector spaces, and their 

integral extensions. Yale University 1972. 

Received February 18, 1980 
Matematicky ustav SAV 

Obrancov mieru 49 
814 73 Bratislava 

ОБ ПОЛУНОРМАХ ЛЕБЕГА НА С(Т) 

Иван Добраков 

Резюме 

Пусть Т есть локально компактное хаусдорфово пространство. Обозначим С(Т) банахово 
пространство всех непрерывных скалярных функций на Т стремящихся к нулю в бесконечности 
с равномерной нормой. Далее, пусть У есть банахово пространство. В работе доказана 
и расширена следующая характеризация слабо компактных линейных операторов (/: С(Т)—* У, 
анонсированная в [3, Теорема 1]: 

Теорема 1. Ограниченный линейный оператор V: С(Т)—* У является слабо контактным 
тогда и только тогда, когда ои имеет следующее свойство: 
(р) для каждого е>0 существует натуральное число N. такое, что для любого набора },, (2,.... 

/л.,еС>(Т) с ||/,||т=1 и /./„ = 0 для пФт, п, т = \,2,..., N. существует хотя бы одно 
яе{1, 2 IV.}, для которого |(//.| = е. 

335 


		webmaster@dml.cz
	2012-07-31T23:55:55+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




