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A NOTE ON THE MAXIMAL SEMILATTICE
OF AN R*NC-SEMIGROUP DECOMPOSITION

FRANTISEK KMET

Let S be a semigroup with an ideal J. By an ideal we mean a two-sided ideal. The
principal ideal generated by an element a € S we denote by J(a).

An element x € S is called nilpotent with respect to J if x" € J for some positive
integer n. An ideal I of S is called a nilideal with respect to J if each element of I is
nilpotent with respect to J.

An ideal P c S is called completely prime if for any a, b of S, ab € P implies that
either a € P or b € P. A subsemigroup U of S is a filter of S if xy € U implies x e U
and y € U. We consider the empty set a filter and a completely prime ideal of S. By
N(J) we denote the set of all nilpotent elements of S with respect to J. The Luh
radical C(J) is the intersection of all completely prime ideals of S which contain J.
The Clifford radical R*(J) is the union of all nilideals of S with respect to J. A
commutative semigroup, each element of which is idempotent, is called a semilat-
tice. A Congruence g on S is a semilattice congruence if the factor semigroup S/p
is a semilattice. By a maximal semilattice decomposition of a semigroup S we mean
a partition of S belonging to a minimal semilattice congruence on S. A semigroup S
is semilattice indecomposable if the only semilattice congruence on S is the
universal congruence.

A semigroup S is called archimedean [6] if for any a, b of S there exists
a positive integer n for which a” € SbS.

We define a relation n on a semigroup S as follows: anb if and only if
ae N(J(b)) and b e N(J(a)).

A semigroup S is called an R*NC-semigroup if for each ideal J of S,
R*(J)=N(J)=C(J) holds.

It is known [2] that S is an R*NC-semigroup if and only if for an arbltrary ideal J
of S the set N(J) is an ideal of S.

In this note we prove that in an R*NC-semigroup S the relation 7 is equal to the
minimal semilattice congruence and S is a semilattice of archimedean semigroups.

In an arbitrary semigroup S we denote by U(x) the smallest filter of S containing
an element x, by U, ={y e S|U(y) = U(x)} a U-class of S and by Y the set of all
distinct U-classes of S with the multiplication U,U, = U,,.
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Let T be the family of all completely prime ideals of S. Define an equivalence
relation 7 on S as follows: xJy for x, y e S if and only if x, y € I, or x, y ¢ I for all
Ie T. The equivalence relation 7 is a congruence on S ([7], [10]).

Let M be the set of all filters of S without the empty set. Define an equivalence
relation M as follows: x/ly for x, y € S if and only if U(x)= U(y).

The following is known.

Lemma 1 (M. Petrich [7, Theorem 3, 2]). Y is the maximal semilattice
decomposition of S.

Lemma 2 (R. Sulka [10, Theorem 1]). The fulfilment of the following conditions
for elements x, y of a semigroup S is equivalent:

a) x7Jy,

b) xAy,

c) U(x)=U(y),

d) C(x)=C(y),

e) C(J(x))=C((y)).

Lemma 3. In an R*NC-semigroup S for elements a, b we have anb if and only if
N(J(a)) = N(J(b)).

Proof. Suppose anb, i.e. ae N(J(B)) and b e N(J(a)). Then ae N(J(b))
implies J(a)< N(J(b)) and from this by R.Sulka [9, Lemma 2] we obtain
N(J(a))c N(N(J(b)))=N(J(b)). Similarly, from beN(J(a)) we obtain
N(J(b))= N(J(a)). From both inclusions N(J(a))c N(J(b)) and N(J(b))c
N(J(a)) we have N(J(a))=N(J(b)).

Conversely, if N(J(a))= N(J(b)), then evidently a e N(J(b)) and b € N(J(a)),
therefore anb holds.

Corollary 4. In an R*NC-semigroup S for elements x, y we have xny if and only
if xJy.

Proof. If xny, then N(J(x))=N(J(y)). However, S is an R*NC-semigroup and
so N(J(x))=C(x))=N(y))=C(J(y)) which by Lemma 2 gives xJy. Con-
versely, if xJy, then by Lemma 2 and by the definition of an R*NC-semigroup we
obtain C(J(x))=N(J(x))=C(y))=N((y)), which means by Lemma 3 that
xny.

Remark 1. In general in a semigroup S we have only n < 7. For example, let
S1={0, e11, €12, €21, €22} be a semigroup with the multiplication e;-ex = ey,
eitmi=0€u=2e;-0=0, j¥m, i, ], k, me{1,2}. Then we have One.z, enne,
however Oney; does not hold. Therefore 7 is not an equivalence relation on S, and
nNcT=51xX8, n¥J.

Theorem 5. Let S be an R*NC-semigroup. Then to the congruence n there belongs
the maximal semilattice decomposition of S. Moreover, each n-class is an archime-
dean semigroup.
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Proof. The first statement follows from Corollary 4 and Lemmas 1 and 2. Let
now A be an n-class and any a, b € A. Then a € N(J(b)) implies that a" = xby for
some positive integer n and x, ye€S'. Then a"*’>=(ax)b(ya). Evidently
a"*?*e J(ax), a"**e J(ya), thus a € N(J(ax)) and a € N(J(ya)). The set N(J(a)) is
an ideal of S and so ax € N(J(a)) and ya € N(J(a)). Therefore ax, yae A. From
the preceding we obtain a"*?>=(ax)b(ya) e AbA, which means that A is an
archimedean semigroup.

Remark 2. A non-commutative archimedean semigroup can contain more than
one idempotent. This is shown by the next example.

Let S;={a, b} be a semigroup of left-hand zeros, i.e. the semigroup with the
multiplication ab = a®>= a, ba = b>=b. Evidently, S; i an archimedean semigroup
with two idempotents.

A semigroup S is called a C,-semigroup if for all x, y, z of S, xyzyx = yxzxy
holds. A C;-semigroup is an R*NC-semigroup [3].

Theorem 6. Let S be a C,-semigroup. Then S is a semilattice of archimedean
semigroups each of which contains at most one idempotent.

Proof. Suppose, that idempotents e, f belongs to some n-class A. Then
N (e))=NJ(f)), i.e. e=xfy and f=set for some x,y,s,teS'. Since S is
a C;-semigroup we have e = e’ = xfyxfyxfy = fyx*(fy)* = fu and f = f* = setsetset =
ets’(et)? = ets’ete’t = ets*(et)’e = ve, where u, v € S. Using the preceding we obtain
e=fu=fu=fe=ve’=ve="f.

We note that the next theorem is valid in commutative ([1], [8]) and in
quasicommutative semigroups ([4], [5]).

Theorem 7. Let S be an R*NC-semigroup and suppose that in S the idempotents
commute with all elements. Then S is a semilattice of archimedean semigroups each
of which has at most one idempotent.

Proof. Suppouse, that idempotents e, f belong to some n-class A. Then
NJ(e))=NJ(f)), i.e. e™ = xfy and f" = set for some positive integers m, n and x,
y, s, te S'. From this it follows that e = xfy = xyf? = ef = eset = se’t = {.
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3AMETKA K MAKCHUMAJIbLHOMY TTOJIYCTPYKTYPHOMY PA3BUEHUIO
R*NC-TTOJIYTPYIIIbI

FrantiSck Kmet
Pc3rome

[Moayrpynna S, B kotopo# paaukansl Kiugpdopna u JIlyra OTHOCUTCABHO NPOU3BONBLHOTO HicATa

paBHbl, HazBaHa R*NC-nonyrpynnoi. B crarhe gokasano, yro R*NC-nonyrpynna sBasietcest nonayc-
TPYKTYPOWH apXUMCIOBbIX MOJYrpynil.
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