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C A U C H Y P R O B L E M FOR SOME 

SEMILINEAR EVOLUTION EQUATIONS 

ROSSELLA AGLIARDI 

(Communicated by Michal Feckan ) 

A B S T R A C T . Well-posedness of the Cauchy problem in Sobolev spaces is stud
ied for some semilinear evolution equations. For example, hyperbolic equations 
and Schrodinger equations are included in this framework. The maximum or
der of the derivatives in the nonlinear part which is specified is the one which 
yields well-posedness without any special additional assumptions, as the following 
counterexample shows. 

In [1] I studied the Cauchy problem in H°° for an operator P of the form: 
771 

P = Ppm(Dt, DJ + £ a •(*, x, DJ D r ' (0-1) 
j=r 

with 
772 

-%(D.,Dx)=Dy* + £ £ aQ.D:DrJ 

j = l | a |=p j 

and satisfying the following properties. Let r be the maximum multiplicity of 
the characteristic roots and assume that Ppm{r^) can be written in the form: 

Ppm(r,0 = f[fl(r~\}(0), (0-2) 
j=ii=i 

where Aj are real-valued, Aj(£) # \h
k(£) if i ̂  h and £ # 0, A}(f) = \k(Q for 

r 

some ^ ̂  0 and s > sr_1 > • • • > sx, ]T s.• = m. 
3 = 1 

aj 
, ( f , x , D J = Y,aaj(t,x)D°, where aaj e B([-T,T); B°°(Rn)) • 

\<*\<PU-r) 

(0.3) 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Pr imary 35A05, 35G05. 
K e y w o r d s : p-evolution equation, energy estimate, Sobolev space. 
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R e m a r k . Especially (0.2) is satisfied if the characteristic roots are real with 
constant multiplicity, that is, -P p m (r,f) can be written in the form: 

Ppm(r,0 = f[(T-\i(0Y' 
І=l 

with £ rt = m, r = rx > • • • > rk, A*(£) -£ \h(£) if i -£ h and £ --• 0. 
І = l 

The result I proved in [1] is the following: 

THEOREM. If P satisfies the assumptions (0.1), (0.2). (0.3). the initial data 
gh are in H°° and f G C([-T,T]; H°°). then the Cauchy problem 

Pu(t) = f(t), 

Dhu(0) = gh, h = 0,...,m-l, 

has a solution u(t, •) G II°° for all t G [—T,T]. Moreover the following energy 
inequality holds for every s G N: 

t fm-l ' 

||u(i,-)||^5<Af(T) 53ll5JI^+P("»-l-^)+ /ll/^.OH^dr 
I h=0 J

0 

If p = 1, the result above can be deduced from the literature about hyperbolic 
equations. As it is well-known, if the characteristic roots are not distinct, then the 
Cauchy problem is C°° -well-posed only when, in general, some special conditions 
on the lower order terms hold. (See [4], [5], [7]). Such conditions are trivially 
satisfied if the maximum order of the lower order term is m — r. 

As for non-kowalewskian equations, only results in the case p = 2 (Schro-
dinger type equations) are available (see [2], for example). Well-posedness in 
H°° has been proved some time ago by T a k e u c h i ifp = 2, r = 1 and an 
assumption is made on the subprincipal symbol P2rn-i • (See [9], [10], [11].) 

Thus it seems that, in order to get II°°-well-posedness, the highest order 
term which is allowed (after Ppm) is Ppm-pr- If this is not the case, we cannot 
expect II°° -well-posedness to hold, in general. 

The purpose of this paper is to study the Cauchy problem in II°° for some 
semilinear equations whose linearization is of the form (0.1), i.e. 

Ppm(Dt,-Dx)(u(t,x))+f(t,x,{didy(t,x)}3=Q,...,m-r ) = 0 , (0.4) 
\ct\<p(m—r—j)/ 

where P is as above. 

The main result is found in §3, where the hypotheses on / are fully detailed. 
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In order to prove this result a refinement of the energy estimates for the linear 
operator is needed. Thus §2 is devoted to resume the result obtained in [1] with 
a view to getting more precise estimates. 

Finally §4 shows that derivatives of u of higher order are not allowed in / , 
in general. An example is given showing that H°°-well-posedness may fail even 
in the linear case if the order of the lower order term exceeds pm — pr. 

§1. Notation 

We shall denote by Sm the class of the pseudo-differential operators p(x, Dx) 
whose symbol p(x, £) satisfies the following condition: 

sup sup | d * D f p ( x , 0 | - ( £ ) H ~ m <oo forsome J 3 > 0 . 
ay/3£Nn x , ^ K n 

\£\>B 

The pseudo-differential operator whose symbol is (£) will be denoted by A(Da.). 
If u e Hs(Rn), its Sobolev norm ||A5w||L2 will be denoted by ||iz||3. 

M 

Let M,p,5 e N be fixed. If u{t,x) e fl C'([-T,T]; Hs^M~jH^n)) =' 
j=0 

ES
M([-T, T], Rn), we shall use the following notation: 

M 

llll~(*)illl2,A# = 5 Z H^?«(*» 0 i i 2 + „ w - j ) • ( L 1 ) 
j=0 

§2. The linear equation 

Consider a linear operator of the form: 

m 

P = Ppm(Dt,Dx) + ,£aj(.t,x,Dt)D?-j (2-1) 
j=r 

satisfying (0.2) and (0.3). 
The following result is a refinement of [1; Proposition 6.2], 

THEOREM 2.1. If P satisfies the assumptions (2.1). (0.2). (0.3), the initial 
data gh are in H°° and f G C([-T,T}\ H°°), then the Cauchy problem 

Pu(t) = f(t), 

D£u(0) = 5 л , Л = 0 , . . . , m - 1 , 
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has a solution u(t, •) G H°° for all t G [—T, T] . Moreover the following energy 
inequality holds for every s E N : 

t 

Kí)||||Sim_r<м(т)|| | |кo)|| | |S ( m_1 + |yi|/(т,.)ILd^ (2.2) 

Remark 2 .1 . If p = 1 and r = 1, (2.2) recaptures the well-known energy 
inequality holding in the strictly hyperbolic case. 

Let dx denote D t - A - ( D J . If J = {jv...,jk), set {J} = {j^.-.J^, 
\J\ = k,dJ = dji..-dJk. 

LEMMA 2.1. Assume that X- belong to Sp. j = l , . . . , s . and there exists 
S > 0 such that 

| A i ( 0 - A _ ( O I > * ( O p / ° r a n 2 l M - i ^ j . 

Denote l h = {J = (j1,...Jh) : j 1 < ••• < j h , {J} C {1,... ,s}} for h = 
l , . . . , s . 

T/ien /Or a// ft = 0, . . . , 5 — 1 

or1""- E 4 M M J /°r50me eyes-*. 
Jeis-i 

P r o o f . See [1; Lemma 4.2]. • 

P r o o f o f T h e o r e m 2.1 . Arguing as in [1] we reduce our Cauchy prob
lem to a Cauchy problem for a system with diagonal principal part. The un
known functions U = {UJ}\J\<m_1 are defined as U0 = u and U3 = djU if 
0 < \J\ < m — 1. As we showed in [1], we are led to consider a system of the 
form: 

Dt U - V(DX)U - B(t, x, Dx)U = T(t, x), 

U(t = 0) = G, 

where the entries of the diagonal matrix V are some A •, the entries of B belong 

to # ( [ - T , T]; S°) and the initial values G of U are determined as follows: 

Uo(t = 0) = gO) 

Uj(t = 0) = (-i)\J\ ] T ^ ( A j i o . . . o A J J ( D J O | J | _ , if 0 < | J | < m - l . 

k<IJI 
3i,-Jk£{J} 

ji<-'<jk 
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Thus, as in [1], we have a solution U such that: 

dr /l|A^(r,-) IL2 

m —1 

| |A*u(i) | |L2<C(T)(||A*G||L2 + 

which yields: 

Y.\\Uj(t)\\s<C'(T)\'^\\9i\\s+v(rn-.-j)+ f\\f(r,-)\\sdr\. (2.3) 
|J | <m- l I j=0 J

0 ) 

Now observe that we can write 

ll#t.(V)ll.+*m-P-J) < £c,||tf,(-)ll. (2-4) 
| J | < m - l 

for some positive constants c3. Indeed, letting h = m — r — j , we can write 

(£(sk-i))-h 
\d{u{t,-)\\ 

s+p(m — r—j) дt> «(*,-) 
s+ph 

with sk as in (0.2). Dis

tributing h among the terms sk — I so that sk — 1 — hk > 0 and ~~ hk = h, 
k=i 

and applying Lemma 2.1 to each Qlk~l~hk, we get (2.4) immediately. Then, 
combining (2.3) with (2.4), we get (2.2). • 

Remark 2.2. Actually (2.2) is true if we only assume aaje tf([-T,T]; Bs(Rn)). 

§3. T h e nonlinear equation 

Consider the following differential equation: 

Ppm(Vt,Vx)U{t,x) + f(t,X,{d{da

xu{t,x)} ^...^-r ) = 0 , (3.1) 
\a\<p(m—r—j)' 

where P p m (D t ,D a .) satisfies (0.2). 

Remark 3.1. If all the characteristic roots coincide, then r = m, that is / is 
allowed to depend only on u and not on its derivatives of any order. 

Let us write vh for d{hd%hu and f{t,x,v1(t,x),...,vi(t,x)) for 

f(t,X,{dihd~»u(t,x)}hssl / ) ^ / ( « , X > { ^ u ( t > x ) } i = 0 | . . . l m - r )-

We assume that the function / satisfies the following hypothesis: 

f(t,x, v,,..., ve)eC([-T,T];C0O{RnxCe)), 

(Vt€[-T,T])(Vve£e){x^f{t,x,v1,...,ve)eB°°{Rn)), 

(Ví S [-T,T]){x H+ f{t,x,0,...,0) € £T'(Rn)) . 

(3.2) 
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LEMMA 3.1. Let f(x,v11...,v£) G C°°(Rn x C )̂ with bounded derivatives of 
all order in x for fixed v1,...,ve. Assume that vh G Hs(Rn), h = 1,...,£, 
for an integer s > [§] + 2. Let R be such that max ||^||r__]+1 < R and let 

UR = {w G Ĉ  : \wh\ < cnR, h = 1,. . . ,£}, being cn the constant of Sobolev 
embedding. Then 

| | / (x ,^ (a : ) , . . . , ^ (x) ) | | 5 < 

<c.-v.,„{i + ElM.(1 + E K K ' n i l * ) } -
1 h=l V E7.<5 i^h / } 

lh>l 

Here MsR denotes sup max |<9f d^1 ... d^f(x, vv...,vt)\. 

P r o o f . It is a slight modification of similar Lemmata in [5; Chapt. V]. D 

LEMMA 3.2. Let f satisfy (3.1), (3.2) and let u G Em_ r ([-T,T], Rn) for an 
integer s > [§] + 2 . Let R be such that sup ||||w(£, Ollllrni+i m _ r < R. Then 

te[-T,T] L 2 J ' 

/(*,X,{^9^_(<,x)}j=0|...>m-r ) 
|o:|<p(ra—r—j)' "5 

< c.MttR{i + iii|ti(t)iiiiJim_r (i + llll-(-)iin_:U_r)} • 

P r o o f . It follows easily from Lemma 3.1. D 

Let us now turn to the equation (3.1). Combining Lemma 3.2. with (2.2) we 
obtain 

IIIKOIIIL,m_ r<OA{lllKo)IIIU-i + M; i R | i | . 

• ( l + sup || | |«(r)|| | |, im_ r ( l + sup | | | |«(r) | | | | ;_i i m_ r)) } . 

(3-3) 
Thus we can finally prove the main result. 

THEOREM 3.1. Assume that (3.1), (3.2) hold. Then any Cauchy problem for 
(3.1) with initial data at t = 0 assigned in H°°(Rn), has a local (in time) 
solution u(tr) G H°°(Rn). 

Remark 3.2. Actually (2.2) implies Hs-well-posedness for any s in the linear 
problem, and (3.3) yields if5-well-posedness for any sufficiently large s in the 
semilinear problem. 
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§4. The example 

Consider an operator with constant coefficients of the following form: 

P=Ppm + Q> (4-1) 
where 

771 

IV(D*,Dt) = Dr + £ £ aajD«xDrJ 

j=l \a\=pj 

=n(D*-vD*)r< 
3 = 1 

with A -(0 real and distinct when £ ^ 0, and Q(DX) = J2 aaj D£ for some q, 
\a\=pm—q 

pr/2 < q < pr, where r = max{r^. : j = 1 , . . . , k}. Suppose rx=r. 
By applying Fourier transform to Pu(t) = 0, we get: 

e-^^P(i,Dt)u(t,i) = {W(i,\(i))+R(i,Dt))D\v(t,i) + Q(i)v(t,i)=^, 
(4-2) 

where v(t,0 = e-
itX^u(t,0, I T ( £ , T ) = fl (r - A.(0) ' and B(£,Dt) = 

JÎ-1 

п( E aycAxЮ-A^ðг^Dř). 
(/t2,-.''fc)^(0,...,0) 

Dividing (4.2) by I P f r V O ) and letting gtf) = n , ^ { ( ) y K£,D t) = 

fi(«,Dt) , 

•, we have: n«(f,Ai«)) 

Drv + q(t)v = -r(Z,Dt)D
r
tv. (4.3) 

In what follows we shall assume that q(£) is such that: 

(3e 0 eR n ) ( |£ 0 l = l & i r ^ 0 ) < 0 ) . (4.4) 

Let r-(«[;), z = 1, . . . , r , denote the roots of r r + Vq(£) = 0 and let r r be such 
that rr(£0) = >/|q(£0)|- Then there exists a conic neighbourhood T of £0 in 
which: 

Tlr ( 0 = max ftr.(0 > 8'\^'qlr for some 5' > 0; (4.5) 
r l < j < k 

(j -* j) = > | r < (0 - r / O I > * K r * / p for some 5 > 0. (4.6) 

Given a "large" positive integer N, take a continuous not identically vanish
ing function g with supp(#) C B(N£0,e) <s T and let v0(t,£) = ff(?)e'7-(f). By 
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the method of successive approximations we can construct a solution v(t, £) of 
the Cauchy problem (4.3) with initial data d/i>(0, £) = d{vo(0,^) such that: 

\d{v(t,0\ < (AW-q/ry\g(0\ •exp(c|«||c;r9/ r) for some A,c>0; 
(4.7) 

\v(t,Z)\>±\v0(t,O\ (4.8) 

oo 

for large |£|. Indeed, if we set v(t, £) = ]T vk(t> 0> w n e r e ^ . k -= 1, . . . , is the 
k=0 

solution of the Cauchy problem: 

Dr
t(t,0 + q(Ovk(t,0 = -r(^,T)tWtvk_1(t,0, 

d}vk(t,O = 0, 0<j<r-l, 

then, in view of (4.5) and (4.6), we have: 

i ^ ( f , ^ 

for sufficiently large |f|. Then (4.7) and (4.8) hold. 

Now u(t, £) is a solution of 

P(Ç,Dt)й(t,Ç) = 0, te[0,T], 

дţй(0,Q = X)(iЛ.(O)Ч"Л«(0,í), 0 < j < m - 1. 
h=0 

(4.9) 

Let us assume that any forward Cauchy problem for P is well-posed in H°°. 
Then there exists s G N such that: 

ra—T 

iifi(*,oiiL-(Rn) < M.(T) £ ni£rw,oiL-(R-) < Af,(T)At^m-i)||5iiL2(R,1) 
J=0 

(4.10) 
for some MS(T), Ms(T) > 0. On the other hand, 

\\u(t,OhH^) > ^S'tNP~q/r \\9hHR«) (4-11) 

in view of (4.8). However, (4.10) and (4.11) are incompatible if At is large enough. 
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